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BAYESIAN FORECASTING USING NON-UNEAR
TIME SERIES MODELS.

Zafar Mahmud
Department of Statistics, Bahauddin Zakariya University,

Multan, Pakistan.

Abstract:
It is generally considere,1that the 'st'ltisticalforecasting methods
are .~uperiorto the metho,I,~,which are ba.~edon Non-.~tati.~tical
Principle.~. Non-stati.~tical methotl.~ are le.~.~.~ophisticated ami
simple to understand for ,In ordinary person. 'This paper presents
the forecast base,1on purely statistical methOits called Bayesian
Foreca.~ting.A.~ymmetrictime series method ha.~been used along
with Kalman'.~ Filter re.mlts. GARCH process has been u.~edto
estimate non-constant l'ilriances in the obsen'ation equation anti
in the system equation. Finally exchange rate of Pakistani rupees
again.~tUKpounds i.5 u.5edfor foreca.~tingprupose.

Keywords
Non-linearity; Bayesian; Forecasting; Asymmetric; Time series: GARCH

Variances and Simplex Methods.

1. 'Introduction

There has been a boom in the development of statistical forecasting
methods throughout the twentieth century. It has been noted through some
comparative studi~s on univariate time series forecasting, "that no single
procedure or class of procedure is superior in all circumstances"; see Newbold
and Granger (1965), Reid (1975), Makridakis and Hibon (1979), Makridakis et al
(1982) and Makridakis et al (1993), The.statistical model considered in this study
is the Nonlinear Dynamic Time Series Model, which may include the non normal
and nonlinear forms and in particular it contains complex nonlinear model which
is an extension a dynamic linear model discussed by Harrison and Stevens (1976)
This extension of dynamic linear model is based on the innovations with one of
different rules according to the whether the innovation is positive or negative,
whi..:h was referred asymmetric time series by Wecker (1981). The asymmetric
model is generally required in the situation where the distribution of the residual
is squared with non-zero mean. In fitting asymmetric moving average model



. . . . . . . - "",, " '. ,.' r :. "\ ~..•In tillS study the asymmetric moving average model IS conSIdered as a'
non-linear model. The dynan1ic nonlinear model {DNLMj' is' a "syste;n' of
equations, which specifies how the observations. of process or stochastically ..
dependent on the current process parameters and secondly how the process
evolves in time (for detail see Harrison (1976) and harvery (1979) This model is
stated in terms of equally space intervals of timc. Throughout the articles' the i

following notions are the standards.

(2i)Bayesian Forecasting Using non.linear Time Series Models'

statistics becomes a simple static case of the dynamic linear model (DLM). For
constant F" the model is a state space representation in which the parameters may
be. interpreted as process level, process growth and so on. The process
Y. = FI 0_. + E. specifies the stochastic dependence of the observation
variable on the (unknown) process "parameters" it being assumed that this
completely specifies the distrubution or y•.' The matrix G represents the fixed
characteristics of the process, 0.... = G0_. _ I + w...•, which defines the
deterministic motion of the parameters from movement to the next, superimposed
'on which is a random component specified by W_, which'we term 'distrubance
vector' at time t. According to the study the observation equation is.

YI = 0\ E\_I,+ EI ••••••• : ••••••••• .<2.2)
We call (2.2) as asymmetric moving average model of order one abbreviated as

" "ASMA (I)" where E\ = max (0, E\) and E\ = min (0, EI) with E (E \) =
-E(E-I) = 'cru-,J2rr:andVar(E\) = Var(E-.) ';' cr2(/2attimet. For 0+1= 0-.
= 0•.This model redu~ed to "MA (1)" see Box and Jenkin (1976). Asymmetric
moving average models along with its relationships with asymmetric moving
average models have been discussed in Mahmud (1989, 1990). Accordingly if cr'.
is, non-constant at each t, then it may be estimated by the ARCH or GARCH
process defined by Bollerslev (1986) below in (2.3). Bera and Higgins (1993) also
gave Ii comprehensive discussion on the ARCH models
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(ASMA) with GARCH residuals, it is assumed that the residuals 'are independent
but not identical. This indicate that residuals variance may depend on the past

. .
residuals and their past variances (for detail see Mahmud (1991) and Bollersleve
(1986) Since the parameters in the Bayesian model are random variables, so these
parameters in the mean part of the nlodel' inay assume different values at time t-I
and t. Therefore the,difference between the.values . .of,the parameters at ,time IY
andt.may or may not have the coristant:yariance. 'The Kalman's results (1963)
have been used to cstimate the v~lues of.the random variables (parameters) at
each t, which provides elegant recursive relationship for updating information
concerning the parameter. The variances of these random variables (pa'ram~iersY \
were noted to be non-constant., and .were\ estimated ..by the" GARCH. process.' ., . '. _. . .,' . . ,. - \" , .. .'-

Further in forecasting the. future value,' when .the future input-is known and'
unknown'iias--been considered for comparison. ,:Theprior.values of. th~.parameters
have ben'si~uiated by~:'rhe Simplex Method" given by Neider and Mea~ (1965).

2.
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(2.3)
p

2 ",2 ",2cr I = Yo + LY I E I _I + r.•...cr I. j
1- 1 j ""1

•Now we discuss the observation and system equations of ASMA (I) for the
process defined in (2.1) as

F. = (E\_I E"t.tl, 0_. = (~~:)

(
I 01 (w+11

G = ° 1)' W_I =w- J
For asymmetric moving average of order q.

0....= (0~....) and F. = [E+,., E".I] where E+.t.t = [E\.I + E\.2, ... E\.q]0...•
- - [- + - - ] 0' d0-E -.t-I - E I_I E t-2, ..... , E t-q, "an __.•.

have q component in each. The seasonal components may be introduced in

~

" ,.

(2.1)

, n);

E, }
+ W_t

F,e +Y, =

t = time index (1, 2, .

VI = (n x I) vector of process observations made at time t;. '.

f r ".,' ',~ "e_. = (m x I) vector of process parameters at time t;

Ft = (n x m) matrix of independent variables, kno~n at time\

G = (m x m) known system matrix;

The dynamic nonlinear model has the observation eqwition and tile syste~l'
equation as undcr respectively.' ,

0_. = Ge_1-l

with E. - N(O, 0'2,) and W_, - N (0, 0.), if 0_. = 0_.- I = 0_ and E. S
are indcpcndcnt Then the conventional linear normal model of the classical
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M
A

k,1 = E(e-t +k)

e-t+ k = Ge-t+ k-I + ffi-t+ k
The prediction of future values of Y•• + k requires inferences about -t and
independent variable' matrix F. + k. Assuming

r (Yl> Ft) ...•....•......•. (3.3)

1:k,1= Var (e-t+k) I (Yt, Ft) (3.4)
At k = 0(3.3) and (3.4) are known from the Kalman filter algorithm. so from
(3.3) and (3.4). We have

MA
k,1= GMAk_I,1andrk,1= GI' k,I-I G' + 01+k for k = I, 2, .

sample period and also may be used to find the maximum of the Joint posteriors
at t = I, 2, .....• n, which may help to estimate the parameters of vector SoO at time
t = I, 2, ..... and the information may be used to infer the distrubition of the
future observation Y. + k (k = 1, 2, ..... ) and these predictions are purely
extrapolative in nature. From the equations of the Nonlinear Dynamic Models.
Dynamic Models (NLDM) we may write at time t, a future observation value as

YI+k = FI+k e_l+k + EI+k _ (3.1)

................. (3.2)

IfFt+tt is known then according to Harrison and Stevens (1976)

YA
+lk = Ft+kMAk,land ely,l = FI+k I •••.t Ft+k + elt+k

where M
A

• and r. are obtained recursively from (3.3) and (3.4). The future
forecasting when the elements of F, + k, crl.+k and n. + k are not known, may be
replaced by their expected values available in the past in estimation process of
this model. The order identification of asymmetric moving average model and
GARCH order have been discussed in Mahmud (1990, 1991).

a+oO, a-oO, E +.•••• and E - oO.• as the last element. The quantities co.+ and ro." represents
the disturbance terms corresponding to the random variables at and a,'
respectively for ASMA (I) in the system equation defined in (2.1). We know that
ro_, -N(o.n.). So the diagonal components of the square metrix Q, are Var (ro\) =
(a\)' and Var (ro".) = (a".)' which mayor may not have constant variances with
respect to time. If the components of Q, have non constant variances with respect
to time, then we need a process to estimate the components of Q•. The unknown
compnents of n. along with asymmetric moving average model at each t may be
estimate by using ARCH or GARCH (see Bollersleve 1986) process as given in
(2.3). .., - "_., I

3. I!stimation. and Forecasting

For the estimation of the parameter included in the model, we shall use the
powerful results given by Kalman (1963). At time t = 0, it is assumed that the
prior information concerning the parmeters S." is described in the form normal

distrubition as S:" - N(ml.", 4). Now the Kalman results provides elegant
recurrence relationship for updating and revising the information's concerning the
parameter vectors. Since the objective of the article is to provide Bayesian
forecasting, therefore we can write the results in the form, most suitable for the
application. The distribution of S." prior to the 1st information is N(m.", 4) and
the posterior distribution of S•• is also normally distributed i.e., (S..JY.) -N(m..,
I.) where the values of m.. and I. can be obtained recursively from the Kalman
results.

(
e+o~ ( Var (e+o) • 0 J

Ifll4 = e-oJ and !o = 0 VarWo)

I

'.Ii

::

1,.
!Ij

.1

Let yAI:; F.mt then El:; VAl - Yb Rl :; Grt_1G' + Qb aAy,t = FtRtF'1 + ~t

And At = RtFt (~y,trl then mt = Gml_l+ AtEt and rt :; Rt - Atay,t

At, then the posterior of e_, at time t prior to the last observation is N( lIlt !t)-t.
The quantities in At are explained. Since E. is one step ahead forecast error
(conditional), so VA,and a

A
,.• are the expectation and variance ofY. (conditional

on F.) the quantity At E. is refereed as Kalman's gain. The quantities E, and At
clearly works like the one step ahead forecast error within sample period and
"smoothing constant" respectively in many conventional system (At is not in
general constant and is in fact a matrix of order m x n). Posterior density of SoO

obtained t = 1, 2, ..... may help to find the E. one step ahead forecast error within

3. Application

The. aim is to study the results the Pakistani data. This is to done by
considering the exchange rate of Pakistani rupee versus UK pound, that covers the
period ..from. June. 1991 to March. 1998 (monthly. basis). We used 1st 72.
observations for estimation of the model's parameters and next 10 obselYations
for testing the forecasting efficiency of the fitted model. The time series is. non-
.stationary and also its variance changes over the time period of observations.
These changes in the variance seem not be directly related to changes in the level
and .so it turns out that taking logarithms does not stabilize the variance. So the
series used for the model fitting and forecasting is reduced to stationary by.

. differencing the logarithmic series. The model fitted to this series is asymmetric

'- L
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Since e.t is random variable so its components e\ and e', are random variable in
Bayesian models, the variances of e\ and e-, are found by the recursive process

" defined by the Kalman's alter. The variances of the random disturbances 00\ and
OO't corresponding to the parameters e\ and e-, are represented at Var (00\) =
(0'\)' and Var (00',)' = (0",)', respectively, which have been estimated by using
GARCH process, given as under. ,.

(0'+1)2= 0.1125 + 0.1517 (ro+I_I)2+0.1539'(O". __lf
'. ,

and (cr.)2 = 0.1517+ 0.1535 (ro.'1)2 .
In diagnosytic checking it has been noted that ACF of the standrdized residuals
and squared standaridized residuals remain with in :!: 20' Iimites. This indicates
that standardized residuals are independent and identical. The mean of the
standardized residuals is not significant from zero at 5% level of significance. The
Bartlet test statistics also indicated that the variance of the standardized residuals
is constant over the sample period. Also the measures of the Skewness and
kurtosis indicated no Skewness and slightly leptokuritic(which is a feature'of
financial time series) respectively. The forecasting behavior of this model is when
the future inputs are know and unknown are presented below. .

series},The modeHitfed to this series is asymmetric moving average of orde( one
ASMA,(I) is chosen by using BIC criterion given by Akaike (1978,1979) ,

With crt calculated at each t. In Bayesian analysis -t is the random
variable which may have nonconstant ,yariance and. is' estimated by usi~g' the
Kalman's results. We fitted the asymmetric moving average model with different'
specification, along with GARCH variance in observation~and' system equaiio'ri'
given in (2.1). The prior parametric values were simu!llted '~yusing' simplex
method explained by NeIder and Mead (1965). The simulated prior values of
mean parameters and variance parameters are' given as:- '.' ..'

. . .. '.' ., t.. ". • -, '. .. .. -h... . .,......(" +I,.f .. + ,. ~ ~ '" "., . .., wjo~'I,I•. J4 _.:...1,." ~ • 0{ ,,",,' .L

•. ".... I. '. ,. -t. "" . .,"'" •• ~.~ h.. ,

m-o = :_j ~(~:~:~~Jand'~ ~'(~.1~52~~~;5~t. -~ ..."~

•

I
I
I'
"l:
:'

J. ,

~
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Forecasting Behavior of the Model
(Logarithmic Series)

flayesian Foreca.<ting Using non-linear l1me Series Model.'

REFERENCES

•.

Years Month Logarithmic Forecast Fl Forecast Fl

Values known unknown

1997 June 4.19360 4.19430 4.19430
••

1997 July 4.2 J 896 4.16400 4.17737
.

1997 . August 4 ..17881 4.16400 4.13413

1997 September 4.17582 4.18939 4.13068
••

1997 October 4.24187 4.23588 4.19666

1997 November 4.31161 4.27499 426639

1997 December 4.29576 4.27193 ~U5053

1998 January 4.27944 4.28754 4.23421
.

1998 February 4.28160 4.28347 4.23687

1998 March 4.29613 4.29351 4.25090

I. Akaike, H. (1978); A Bayesian Analysis of minimum AIC procedure Ann.
[nst. Statist. Mltth JOA, 9 - 14.

The post-Sample Predictive test (given by Harvey 198 I p-180 when F is
known suggests that the observations with in the sample and post sample period
are generated by the same model, indicates the suitability of the fitted model
Similarly the forecasting behavior of the model when F, is unknown is slightly
under estimating the original values as given in the table above.
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So the model fitted is described as under

y. = e•• e+.-l + ee'I_'1 + e-.

Since!. has nonconstant variance, estimated by using GARCH process' is as.
2 . 2. . ~ L

(j. = 0.07 + 0.154e •. 1

:i ~
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GARCH process, given as under. ,.

(0'+1)2= 0.1125 + 0.1517 (ro+I_I)2+0.1539'(O". __lf
'. ,

and (cr.)2 = 0.1517+ 0.1535 (ro.'1)2 .
In diagnosytic checking it has been noted that ACF of the standrdized residuals
and squared standaridized residuals remain with in :!: 20' Iimites. This indicates
that standardized residuals are independent and identical. The mean of the
standardized residuals is not significant from zero at 5% level of significance. The
Bartlet test statistics also indicated that the variance of the standardized residuals
is constant over the sample period. Also the measures of the Skewness and
kurtosis indicated no Skewness and slightly leptokuritic(which is a feature'of
financial time series) respectively. The forecasting behavior of this model is when
the future inputs are know and unknown are presented below. .

series},The modeHitfed to this series is asymmetric moving average of orde( one
ASMA,(I) is chosen by using BIC criterion given by Akaike (1978,1979) ,

With crt calculated at each t. In Bayesian analysis -t is the random
variable which may have nonconstant ,yariance and. is' estimated by usi~g' the
Kalman's results. We fitted the asymmetric moving average model with different'
specification, along with GARCH variance in observation~and' system equaiio'ri'
given in (2.1). The prior parametric values were simu!llted '~yusing' simplex
method explained by NeIder and Mead (1965). The simulated prior values of
mean parameters and variance parameters are' given as:- '.' ..'

. . .. '.' ., t.. ". • -, '. .. .. -h... . .,......(" +I,.f .. + ,. ~ ~ '" "., . .., wjo~'I,I•. J4 _.:...1,." ~ • 0{ ,,",,' .L

•. ".... I. '. ,. -t. "" . .,"'" •• ~.~ h.. ,

m-o = :_j ~(~:~:~~Jand'~ ~'(~.1~52~~~;5~t. -~ ..."~

•

I
I
I'
"l:
:'

J. ,

~
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Forecasting Behavior of the Model
(Logarithmic Series)

flayesian Foreca.<ting Using non-linear l1me Series Model.'
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So the model fitted is described as under

y. = e•• e+.-l + ee'I_'1 + e-.

Since!. has nonconstant variance, estimated by using GARCH process' is as.
2 . 2. . ~ L

(j. = 0.07 + 0.154e •. 1
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