
Known as among the best schools of Lahore, one would not expect poor•
ethics there. To investigate this hypothesis, let us do the grouping as

follows.
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SUMMARY

A property of Raj-Murthy estimator is discussed. Compafisons of
different sampling schemes under a super-population model is made and
numerical evaluation is also provided.

1. INRODUCTION

Numerous sampling schemes with resulting estimates of the population
total in unequal probability sampling are discussed in'the literature. Some
of the schemes and/or estimates which arc more frequently referred to in
the literature and with which the present paper is concerned occur in Raj
(1956). Murthy (1957), Horvitz,and Thompson (1952), Lahiri (1951),
Sampford (1967), Durbin (1967) and Brewer (1963). One comes across
three broad types of estimators here in called (i) Raj-Murthy. (ii) Ratio
and (iii) Hovitz-Thompson estimators. As early as 1955 Godambe (1955)
proved the nonexistence of a best linear unbiased estimators. This makes
the comparison of different sampling schemes with their resulting
estimates extremely difficult. However, numerical comparison by Rao and

•

Based on the above infonnation, we reject the hypothesis of poor ethi.~sun
the part of teachers in the selected institutions. On the contrary, the r~sults
arc quite encouraging except in the case of last parameter. Probahly this
question might have been misunderstood by the students .

7. CONCLUSION

The institutions selected in our survey, have good reputation ethically
nothing alarming in the market. The statistical analysis has actually
supported this hypothesis for both government and private institutions.

• But there arc many institutions with bad reputation. Unethical behaviour
of teachers is also said to be one contributory factor. Most likely these
rumours arc not baseless.
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arc each unbiased estimators of Y and are uncorrclated. Any linear
combination Lc,ti ,where LCi = 1 is also ali unbiased cstimator ofY.

RaJ (1'15(,) suggestcd using y~(n) = ~LliR(n)which forn = 2 is

Bayless (1969) and Bayless and Rao (1970) seem to suggest that Raj-
Murthy estimates perfoml better in an over all sense, Some progress can
be made if the general set up considered by Godambe (1955) is restricted
through a super-population model. Such models were discussed by Smith
(1938) and Coc~ran (1953), Relevent work in this direction are Godambe
(1955) and Rao, T. J (1971), In the following sections, we discuss a new
property of Raj-Murthy estimators. The super-population model is then
considered in which among a given class of estimators Hovitz- Thompson
estimators are found to be superior. Numerical comparisons are also

provided,

2. RAJ-MURTHY ESTIMATORS
Let the characteristics of interest for N units in the population be Y I, Y" .

N
, Y N and the population total be Y = L r; ,Let X, be the size of the rth

i=\

unit which is known to us and let P",= X,/X where X = LX" Raj
(1956) suggested a.sampling scheme which chooses the ith unit at the first
draw with probability p" At the next draw jth unit is selected from

amongst the remaining units with probability proportional to p) and sr,

on, If YI'Y2'" ,Yn are the units selected in the sample of size n in the

same order then

Abdul Kadir A, Kat/an and Ms. If/at Khawaja

(2.3)
y, (

Y,~(2)- A l-P2)+~(I-p,)
2 - PI- P2

We will call this Murthy's method of symmetrizing Y~(n), Perhaps it
has not been noticed that if we start with any linear combination
dl, + (1- d)I, and then symmetrize we get back Y';" (2) i.e. an
expression which is free from d. This rcsult extends to the general case of
n, Consider y~(n,C) = LCil, Where C,=1. The resulting Murthy's

estimate is Y;'I (n) which does not dcpend on the set C of
(CI, C2, ' , •• Cn), The result is contained in the following theorem.,
Theorem I: Y~f (n, C) when symmetrized does not depcnd on C.

Proof: The result can be casily proved by the mcthod of induction and
the fact that the result is clearly true for n = 2,

A consequence of theorem I is that while symmetrizing to get Y~I(n) one

can consider only II (when CI = 1,C, = 0) l' 1). This dircctly leads to

Ly,P(sl i)
the often quoted result that Y~I(n) = -----, where P(sli) is the

pes)
probability of the sample with YI as the first unit selected, where pes) is

thc probability of sample. Replacement of 11'/2 ,.".",t n by I, only in

symmctrizing to get Y';" (n) may result in some loss of information. Das

(1951) has considered a general set of cstimators like (1',/2'"'' ",/J
which for n = 2 givcs

On Probability Proportional to Size Sampling 9

Y~ (2) = .!.[2i(1 +PI) + b.(l- P,)] (2.2)
2 P, P2

Murthy (1957) considered all possible permutations of (Y, 'Y2' .... Yn)

which lead to different estimates Y~(n). He then proved that weighted
average cf these estimatcs, with weights proportional to the probability of
thc sample in that particular order, leads to Y~f (n) Which has smaller

variance than Y~(n) . His estimate fot n = 2 is

(2.1)

+Yn-I +~(l- Pt - P, - .. ,,- Pn-I)
Pn

In =YI + Y, + ..

I -2i1-

PI

II = YI + YI +2i(J - PI)
PI

8
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(3.3)nL: p,'(I-r)
1=1

n
" l!..p2(I-r)L... lj r

;::::01

'. However, there are several ways in which the model can go wrong. First
f(Z,) may not provide an adequate description of the deterministic part

of the relation between r: and Z,. Secondly assumptions about E, may
not be valid and finally both these may go wrong. We can take care of the
first defect by demanding that the sampling scheme should be such that

(3.3) becomes unbiased for Y (for any set of r; s). For fixed n there are

(:J distinct samples. A sampling scheme assigns (:J probabilities

adding upto one to the distinct samples. We do not kno~v whether for a

general y there will exist a sampling procedure which renders (3.3)

Oil Probubility Proportiollul to Size Sampling II

other characteristics Z, is known for the ith unit and Y, is known to depend
on Z, in some stochastic way the generalit\. of the situation can be
restricted in a meaningful way. For example. we may have on the lincs of
Smith (1938) and Cochran (1953).

r; = f(Zi) + Ei (3.1)

For its simplicity, Smith (1938) and Cochran (1953) choose f(Z,) ~ BXiSU
that (3.1) becomes

Y, = P X, +E, (3.2)

(3.2) is the usual super-population model with the extra assumptions that
E(E,)=O,E(E,Ej)=O for i;toj and Var(E,)=u'X,",

where Yo S; r S; I. We assume first a random sample of N units is
selected from (3.2) from which a subsequent sample ofn units is selected.

I N
I Given the validity of the model in (3.2) estimation of Lr; = Y is

i~1
equivalent to estimating px. The best linear unbiased estimator of X (in
the context ofmodcl (3.2» is

(2.5)

(2.4)Yo
N -I

, 1- P,
" = -_.-

P,P,

Ahdul Kudi, A. Kurt",' ulld Ms. lffat Khawaja

r, =y, +Y, (I-PI) \
P, ( ~

1;=y,+2'L(1-PI~ K-~ Ii
PI \ 1- p,)1

,; = .1"11 PI alld

For any effective comparison iltffie estimates. the message from Godambe
(1955) is to restrict the generality of the situation If for ,',ample some

3. THE LINEAR STOCHASTIC MODEL

Both these can be symmetrized b\1he method of Murthy. We denote the
symmetrized estimators obtained by (2.4) and (2.5) by t' and T.
Numerical calculations for the cases considered here shows that T
pcrfomls well. Howe\'cr. there is one thing very awkward about both (2.4)
and (25). Since X's arc known to uS (and therefore X is also known) and
the estimators in (2.4) and (2.5) arc unbiased for Y (for anv Y 's). ()ne. ,
would expect that ifY's arc replaced in (2.4) and (2.5) by X's. the result
should be X. We shall call thIS property A which nms as follows.

Property A: Correspondence to any sampling procedure let y' be the
unbiased estimate of Y. 1f when Y,'s in y' is replaced by X" y' ~ X the

estimator y' is said to enjoy property A.

Estimators in (2.4) and (2.5) do not enjoy property A and as such are
seriously defective. Some estimators in Rao, T. J (1971) do not enjoy this

property
We do not recommend use of T. The point of including this here is just to
indicate that numerical evidence (even if it spreads over 30 or 40 isolated
cases) in favour of an estimator is not a sufficient justification for

recommending it.

.\

Where K =L--.f!..-
1_\ 1 ~ PI

Yet an other set of estimators mav be

)11
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we put Y, = ..!.p'(Y'l)+l
n '

On Probability Proportional to Size Sampling 13

[
. {LE' p"".,) )' I

=E P, S - LEO' i
~ LP;2(I.y) p() ( J J

=a'(Lx,),r[ E{~ LP;;o.r)P(S)}-Lp;2r]

Now since y; is unbiased for Y for all y;(s)

which gives L: ,<"'') peS) =..!. Ip;2(l'r) (5.2) then becomes
Ii ~ " n 1

(4.1)
"Z>,

'- .-
YIII!) -Y,. - LPi

4. HORVITZ-THOMPSON AND RATIO ESTIMATES

For y = y~(3.3) becomes
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unbiased for Y but it looks probable because there are l:j adjustable

parameters on satisfy N equations for unbiasedness. Note that the estimate

in (33) enjoys property A.

•

= p,rL:{L:: } 2P(S)':X2J\'a,r LXiYl( ~. "1)'1
L .r I ~ ..L _. I J

E[var(Y~T)~EL:{L'r, -y}'P(S)
• of Jfj .

.( '~2 '.
I Yo .

= L~L-L P(s). E(y2)
s l 1r1;..

a'(LX,)2rr LP,'r(_1 -Ill (5.3)
; \ nP )1L. "I _

At r = Y, and I (5.3) reduce to

a'(Lx,)[N -IJanda2(LXiA..!.- Lp,2J' An implication of (5.3)
. /I . Ln

is that if there arc more than one sampling schemes which make y;
unbiased there is little to choose between them because the expected
variance is the same for all.

The expected variance of the Horvitz-Thompson estimator can be
obtained as

(5.1)

(4.2)I " Y,. _.' - ..,-Y(I' -;. lIT - /I L... P
,I ,

Elvar(yr)1 = EL {y~r) - y)' pes)

~4~{y~)'P(S)-y']
Since Y~ is unbiased (5.1) reduces (a

Let s denote the sample (YI, Yl,. ., Yo) and pes) the probability of the
sample s (regardless of order). pes) defmes a sampling scheme and we
assume that the sampling scheme is such that (33) becomes unbiased for

a general y. The expected variance of Y ~ is defined as

5. EXPECTED VARIANCES OF DIFFERENT SCHEMES

(4.1) is the usual ratio estimate and (4.2) is the Horvitz-Thompson
estimates when probability of inclusion of the ith unit 7r, = nP, . Both the
ratio estimator and Horvitz-Thompson estimator enjoy property A.
Lahiri's (1951) and Midzuno (1951) sampling schemes make (4.1)
unbiased for Y and likewise. Bre\\Cf's (1963), Durbin's (1967) and

Sampford's (1967) schemes make (4.2) unbiased for Y.

and for r - i (3 3) becomes

•
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PopiJlation 7 I 8 9 10 11 12
X Y
0.1 0.7 0.4 0.3 0.6 0.1 0.4
0.2 Ll 1.0 1.0 1.0 0.4 0.8
0.3 1.5 1.8 1.5 Ll Ll 0.9
0.4 1.6 2.8 1.2 Ll 3.2 1.6
Y/X, DF I FL D IF FL

On Probability Proportional to Size Saml'ling 15

Six other artificial populations with N = 4 were considered in which the
ratio Y, / X, is D (decreasing). D.F (decreasing fast), I (increasing). 1. F
(increasing fast) and F.L (fluctuating) with X,. These are given in table.2

Table 2. Values of X and Y and Y/x for Six artificial population with N=4

fomparing y~ and y; for population 1 to 6, it is clear that Y;{T
terforms better not only when y = I but also in cases when y = 112. Thist to be expexted because for y =1, y~T is better than Y;where as fortll2 these are equally good as regards their expected variance. In these
es Y~T performs nearly as well as Y.~I' It is surprising that the
rformance of T in these six cases is excellent. In cases 7 to 12 the

I Population Y.~J T Y~T • Y;'T(L)Y,
10333 9744 10348 10388 . 20752
4438 4185 4453 4400 9511
6676 6491 6672 6797 10138
2904 2811 2904 2945 . 5015
6508 4665 5606 10792 167'462
119634 104506 127733 149169 686578
0.3124 0.6075 0.2822 0.3629 0.2178
0.3124 0.1172 0.2822 0.3629 2.3294
02801 0.4039 0.2376 0.4048 0.7187
03124 0.5466 0.2822 . 0.3629 0.1071
2.1087 1.7695 l.5964 3.0618 0.4833
00589 0.0785 0.0600 0.0879 0.4414

For n = 2 the variance of Y.~I' T, Y;IT' y; and YfIT (L) are provided in
Table 3. Y~T is obtained by using Lahiri's scheme but the
Horvitz-Thompson estimator.
I
ITable 3. Variances for ti,e differentestimators for n = 2 fur ti,e 12 populations.

Population

1 X 59 47 52 60 67 48 44 58 76 58

I Y 124 84 90 110 142 82 101 146 176 ,06

2 I X 59 47 52 60 67 48 44 58 76 58

2 Y 92 63 69 84 105 62 75 107 127 80

3 X 60 52 58 56 62 5 I 72 48 71 58

I Y 76 65 64 72 89 67 101 71 119 107

4 I X 60 52 58 56 62 51 72 48 71 58

2 Y 67 57 58 63 76 58 86 60 97 87

5 X 76 138 67 29 381 23 37 120 61 38

I Y 79 177 79 36 563 32 50 172 84 47

i 6 1 X 76 138 67 29 381 23 37 120 61 38

2 Y 121 338 59 65 1056 73 104 345 171 89
c

6. NUMERICAL COMPARISON

Six population were generated from .the model with y = y, and 1 they

are given in Table 1.

Table I. Values of X and Y for six generated populations with N = 10.

Which is the samc as (5.3). Wc interpret (5.4) as saying that even for
gencral y, Y; has no apparent advantage over Y;{Twhich .11:, = np; . This
is in contrast to the finding of Rao, T. J (1971) who considers choice of
If, proportional toX; . However. Rao, T. 1's context is more general

than ours in that n is not fixed in his study. We also note in passing that
the resulting estimator will not enjoy property A. Thus for fixed sample
Y;'T with If ,= np; provides a general solution for all values of y , when
assessed on the expected variance of the estimators. In particular
E[ var(/. )] is equal to E[ var(y;1T )] for y = y, . It may be noted that the

sampling schemes of Brewer (1963). Durbin (1967) and Sampford (1967)

satisfy 7f, == n~ .

14 Abdul Kadir A. Kat/an and M.,. Iffat Khawaja

When If,= 1I/~ the first part is zero. Also only in this ease property "A"
will be enjoyed by the estimator. In this casc

E[Var(y~T)]= (T '(L X,)'r [L P,'{l~ -IJJ

•
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Six other artificial populations with N = 4 were considered in which the
ratio Y, / X, is D (decreasing). D.F (decreasing fast), I (increasing). 1. F
(increasing fast) and F.L (fluctuating) with X,. These are given in table.2

Table 2. Values of X and Y and Y/x for Six artificial population with N=4

fomparing y~ and y; for population 1 to 6, it is clear that Y;{T
terforms better not only when y = I but also in cases when y = 112. Thist to be expexted because for y =1, y~T is better than Y;where as fortll2 these are equally good as regards their expected variance. In these
es Y~T performs nearly as well as Y.~I' It is surprising that the
rformance of T in these six cases is excellent. In cases 7 to 12 the

I Population Y.~J T Y~T • Y;'T(L)Y,
10333 9744 10348 10388 . 20752
4438 4185 4453 4400 9511
6676 6491 6672 6797 10138
2904 2811 2904 2945 . 5015
6508 4665 5606 10792 167'462
119634 104506 127733 149169 686578
0.3124 0.6075 0.2822 0.3629 0.2178
0.3124 0.1172 0.2822 0.3629 2.3294
02801 0.4039 0.2376 0.4048 0.7187
03124 0.5466 0.2822 . 0.3629 0.1071
2.1087 1.7695 l.5964 3.0618 0.4833
00589 0.0785 0.0600 0.0879 0.4414

For n = 2 the variance of Y.~I' T, Y;IT' y; and YfIT (L) are provided in
Table 3. Y~T is obtained by using Lahiri's scheme but the
Horvitz-Thompson estimator.
I
ITable 3. Variances for ti,e differentestimators for n = 2 fur ti,e 12 populations.

Population

1 X 59 47 52 60 67 48 44 58 76 58

I Y 124 84 90 110 142 82 101 146 176 ,06

2 I X 59 47 52 60 67 48 44 58 76 58

2 Y 92 63 69 84 105 62 75 107 127 80

3 X 60 52 58 56 62 5 I 72 48 71 58

I Y 76 65 64 72 89 67 101 71 119 107

4 I X 60 52 58 56 62 51 72 48 71 58

2 Y 67 57 58 63 76 58 86 60 97 87

5 X 76 138 67 29 381 23 37 120 61 38

I Y 79 177 79 36 563 32 50 172 84 47

i 6 1 X 76 138 67 29 381 23 37 120 61 38

2 Y 121 338 59 65 1056 73 104 345 171 89
c

6. NUMERICAL COMPARISON

Six population were generated from .the model with y = y, and 1 they

are given in Table 1.

Table I. Values of X and Y for six generated populations with N = 10.

Which is the samc as (5.3). Wc interpret (5.4) as saying that even for
gencral y, Y; has no apparent advantage over Y;{Twhich .11:, = np; . This
is in contrast to the finding of Rao, T. J (1971) who considers choice of
If, proportional toX; . However. Rao, T. 1's context is more general

than ours in that n is not fixed in his study. We also note in passing that
the resulting estimator will not enjoy property A. Thus for fixed sample
Y;'T with If ,= np; provides a general solution for all values of y , when
assessed on the expected variance of the estimators. In particular
E[ var(/. )] is equal to E[ var(y;1T )] for y = y, . It may be noted that the

sampling schemes of Brewer (1963). Durbin (1967) and Sampford (1967)

satisfy 7f, == n~ .
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When If,= 1I/~ the first part is zero. Also only in this ease property "A"
will be enjoyed by the estimator. In this casc

E[Var(y~T)]= (T '(L X,)'r [L P,'{l~ -IJJ

•



a.

b.
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performance of Y~f is bad whcre Yi (X, is either I or I.F in which cases
T performs well. The reason presumably is that largcr values of Y, I P,
get greater weights in y;' in this casc which is the other way round. >';'f
perfonns well in cases Y

i
( Xi is F. y;,/ (L) performs extremcly well in

cases where Yi ( Xi is either 0 or O.F. The general conclusions are'

No single estimator performs well in all cases. Note that T IS best
in 7 out of 12 cases but at the samc time one notices its erratic'

behavior for cases 9 to 10.
Y;1T is reasonably stable in all cases. We do not find Its
performance particularly bad in anyone of 12 cases. Besides on
the basis of expected variance. this is not inferior to any otheI

estimator of the class (33).

Thus our finding both on theoretical and empirical evidence goes in favouI

of Y~T '

•

II
, jr,'
I 'I

'31 Rao, T.. J (1971).;rPS sampling designs and the Horvitz-
tf!.9mpson eslima/or J Am. Statist. Assoc., 66 872-875.
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SAMPLING PROBLEMS IN THE EVALUATION OF
AGRICULTURAL DEVELOPMENT PROJECTS

IN PAKISTAN
By

MOHAMMAD ASHRAF CHAUDHARY,
Institute of Statistics,

Punjab University, Lahore-20, Pakistan.

Several projects have been implemented in Pakistan with an aim of
introducing positive changc in various scetors of economy' such as
agriculture, industry, ser"ices etc. Although several bench mark surveys
have been conducted in Pakistan but the main emphasis in this article has
bcen given to the samplmg problems involvcd in surveys carried out to
evaluate the de\ dopmont projects in the field of agriculture. Response
errors and errors introduced due to the bias of interviewers are the major
sources of errors in our sample surveys. However, in these pages attention
has been focussed only to the situations where we fail to capture the real
responses of various inputs of the projects due to the lack of a proper
sampling plan

1. UN- AVAILABILITY OF SAMPLI NG FRAMES

In many of the agricultural sample surveys, sampling frames are not
available. For example in a survey of farming status of villagers of
Punjab, some categories of villagers arc established on the basis of
owners/tentants, sizc of land holding etc., and we wish to do Multistage
Stratified Random sampling with proportional allocation but we do not
havc auxilliary infonnation needed to foml the strata and draw the
sample. Agricultural Census report helps to some extent but all the
catergories are hardly available in the villages of districts and sub-
divisions selected in the process of multistage sampling. Thus the
researcher is forced to take infonnation about certain categories from one
place/village and certain others from other places/villages and in certain
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