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1. INTRODUCTION: | In literature, . contributions appear on
logistic order statistics from Btrbaum and Dudman, Gupta and Shah,
- Shah, Tarter and Clark! Malik and Abraham also investigate the exact
* distribution of quasimedians. The expressions developed by them for.. »
these distributions appear. to have an error *~, and even when corrected
the consequent formulas remain fairly complicated for numerical .

studies. For this pdrpose- as well, in this paper we determine moments of - ~-

Z=a¥+by,, . 1<i<js<n (L)

P 13

" The two authors were members of the Department of Statistics, Garyounis .
Umversnty, Libya. Dr. Daghel djed of brain haemorrhage dunng the last stage of
completion ‘of this paper. Dr. Memon is cmently servmg the Pak-Amencan
Institute of Management Sciences, Lahore.

* The vanable W introduced by Malik and Abraham in their paper for the
integral in Eq. (2.4) is assngned the limits’ form 0 to 1, whereas it cannot be
independent of U.
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'=m(r—1)' iul)"(AU’),,_, 1<m$r - (2.1)-'

Jume=1
=0 ' . m>rp

where

d
(") =— 4(’)

Proof. Expressing A(’)(r)asia,',t', ‘we can get the foilowin_ig

=1
" relation among the coefficients of ¢ in the two polynomials
A () and A(’) (?), on multiplying the former by (t-!-r-l)

a,=a_ ,_,+(r Ba,,, : 2.2)

For any AY(¢), the coefficient a;,; >0 when 1<i</, and is zero

otherwise. In fact
a, ;=@ (4, !

So that the result for the ¢ase m=1 is now obvuous When m>l the proof
follows by the repeated use of Eq. (2.2). -

3 MOMENTSOF Z:  Let us first determine the moment
generating function of Z,
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where ¥, Y, .oenne Y are the order statlsncs based on a a random sample
of n observations from the loglsuc dlsm‘butlon defined in its red»ced
form by the equation

f(x)="“7(1+e-s)z. 0 —w<x<o (12

which has the mean zero and variance / The eonstants a,b may be

assigned relevant numbers to provide for an order statistic, sum of two
order statistics, sample median, quasimedian etc. - i

~ We obtain a general result for E(Z¥ ), k=12,.... . The ﬁrsi

four moments of Z are expressed in terms of y'(x) functions * , used
by Shah, the evaluation of whlch is not dlfﬁCdlt These moments are *
derived for particular statistics such as the order statistics_Y,, sample
medians and quasimedians by substituting the relevant values of aand.b
in (1.1) and the main result. The information on these moments can be
useful in investigating the nature of their distributions and assessing.

-

their departures from normahty

2. LEMMA:  Let A7) donow thepoiynomml (t+r-1)(t-+1'-2)
.{t+1)t in't of degree r. Then ' v

B R

functions are expressed as series in x in Eq. (3.5 ot'th:s paper.
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where )
A (ar) , (at +r~1)at +r-2).....(at + 1)(at’),
and - " o
B.(O=B (B, ®
with
'B'(.r)=|3(ar+r+i,j—i) - 32)
BU()=Ba+bi+r+jn-j-bt+1)
as the beta functions.

The kth moment of Z about zero is

& : o

d
l»‘k drk M(t) |

On carrying out differentiation ¢ times on 4 (at) B (1), and writing

d'A (at a4t ,
Tt()'mn:a _&"Qhofrafl“
and
4Bt
B't()huo Jor (B} | - 63

it is seen that
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On applying the usual formula for the order statistics Y,¥; |

| R ]
when the parent distribution is based on Eq. (12), we have the -
probat-)_ility‘ density g(¥;,Y,) given as ' |

'D—l (e-y, - é-)’; )j—l'-le"h"('f"]*“)yj (1 +e—y; )-j (1+ e“)’; )n-j+1

<Y <t <o

 where B, is the product B (i, j—1).p (j,n—j+1) of two beta
coefficients. The moment generating function of Z, given by

M(t) = ‘].g].[exl-)(at y;+bt yj)] g('yl,yj} dy, dyj
is reduced to the integral
= . 1 o .
G 0—1 Ijum-i-i»lvbl (i _ u)-a' (1 - 'v)n—bl—j (V - u).j_—l—l du dv
L oo
on using the transfonﬁation

e ey

Following now a similar approach as in -Shah {5}, that is,

W

| expanding (1- 1) and integrating w.r.t. uand f:het} v, we get

M0 =B S~ 40 B,0), Gy

r!
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R (z)"”;m(n ¥zo1)

v(2) = (1) ra)Z

am ( -1)‘
-~ With
h=ady =r+i, =0, = j-i,from above for 21
(logB,), =a’ly ' (r+d-y*'(r+ /)] - (3.6)
Similarly,

(ogB,"), =(a +BY Y U+ )+ (-B) y (- j+1)
Yom+r+1) o S ) "

In the summation (3.4), (A4"),,, which is A", has obviously the value
zero for r 21 and one for =0, and (B,), is B,. It may also be noted
that the"notation_ B, sdopted earlier in g(y,,y ;) is in fact the value of
B, for =0,

We can summarize the foregoing results and state the followmg

theorem

THEOREM: Let Z = aY +bY where ¥ < Y Are the order statistics

of a random sample of size n from the logxstlc dlstnbutlon def’med by
Eq(1 2) The kth moment of Z is given as

~
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2 ‘ (R S ;
LA @, B0 = Z@a (A7) (B )s-oBH

The kth moment of Z abouf zero includes the above terms of -all values -
of r from 0 to ¢0. So, the next step is evaluation of the quantities
invol;/ed in the above summation. As regards (A?),, this is readily
available from Lemma 1. For the purpose of calculation of (B, )4, in
(3.4), which is turn depends upon B" and B ** defined in (3.2), we
introduce a beta function P (A?+2A, At + A Ywith A, Ayshs, A, as
constants independent of t. Expressing it in gamma functions and

differentiating £ times with respecttot, it is not difficult to see that

d’ '
E10gB (M A Kt +R) Lo
which may be written as (log B),,comes to

Ay )+ A ) - Oy + ) W T et A G

where

| o -1 +t-1
*1og I'(#) can be expressed as —r(t-D+ 24—~ log{n————)],
n=il T n

where r is Euler’s constant with its value 0.5772157.. Writing

. d’
() for EI‘TIOg(r(t + z))|,=0, it is now easy to get Eq. (3.5)
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(B, =B, Wa+bW (r+ /)=y (n— j+ 1) ~ay*(n+r+1)]
Thus from (4.2) and (4.1)

(B,),=B,k(0) | @4)

. 8o that the first moment is

U = k0(0)+a§ﬁ',|30,
that is,

ko(o)+a2[ﬁ(r+i,n—i+l)/r|3 @, n—i+1)] 4.5)
42  SECOND MOMENT. This inoment requires the value

(4,),,(4,), ,(B,), , (B,), as is evident when k=2 in (3.8). The first
and third values are given by (4.2). By Lemma 1, for r > 2.

(4,), =2(r—1)!§ }{, o (4.6)

which by the argument’ as given at the footnote

=20 - Dy ) -y ()] @.7)
| R ’ °° _'1 . o |
Y ()=~ +“Z_;(_z )q(z+n—1)=_7+‘§%_%z+ﬂ_l))

which, when z is an integer >1, can be expressed in the form —y + 2}/ I
n= i

z=1, we have w'()=—.
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. = &k '
By = B;‘[(ﬁo)k +Z'5_}[J a‘(r!)“(A,),(B,)H}(m

r=1 t=

(4,), and B, being the quantities evaluated in Eqs. (2.1),(3.2)-3.7).

4.  CALCULATION OF MOMENTS: Although the method of
finding moments proposed in the previous section is straight forwafd,
their numerical evaluation is not simple. We consider the_ first four

moments of Z using the following notations.
k(wy=a™'ly (i) -y "(r+ DI+ @+ )"y +J)
+(—-b)"’+'w‘“(n—j+1)—a“'w‘"(n+r+1). 4.1

4.1 FIRST MOMENT. On taking k=1 in Eq. (3.8), the first moment

of Z comes to

u =B +§_“;a(A,). B,1/ 7.
We now evaluate the quantities involved. From (2.1) and (3.2)
4y, =D . B,=8/B

By =(BWB +B (B @2)

Using (3.6) and (3.7) it is easy to see that

B =aB o+ -v e+ 3)
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43 THIRD MOMENT. Calculation of this moment depends upon
(4.)15(4,); ,(4,);.(B,), «(B,); »(B,)s- S0 the  additional

quantities needed for calculation are (4, ), and (B,),. From Lemma 1

(4 =3(~ 1)'2(A n/pt 123

which can be expressed as

3!(r-:1)!8,322(\|J'.’(p)—\v°(1))[ pl or>1 @4.11)

where 8,; is introduced to assume a value 1 if 23, and zero
other-wise. On the lines as for (B,), ,(B,), it can be shows that

(B, =Bk Q+3K M EO+E©). (4.12)

The third moment of Z is now completely given by

(B B.), MZ—[(B b h(%)‘(w () -y (D) + 2%, )fw “(p)- w(l))fp]

(4.13)

44 FOURTH MOMENT. Following similar arguments as for the
first three moments it can be shown that

p.4.=(Ba)4 +4 iﬁr (Br)3 (B )2

B, TiaL 0[ B, B, (w° () -y (1)
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(A,), vanishes for :—1 by Lemma 1, and since it is the case with (4.7) as

well, we can consider the appllcab:llty of 4.7 forr2 1 From (3.2),

(B.).=(B,),B,/ +2(B)(B )|+B(B s

On using (3.6), (3.7) and (4.3) the second order derivatives of B, ,B

are
(B)), =a*B [y +D)—w e+ D +w D=y ¢+ )
(B), = B L@+ by (r+ H—by* (n- j+ D—ay” (nr + DY’

+(a+b)2w‘(r+j)+b2w1(n—j+l)'—a2¢'{n'+j+1)]

" So (ﬁ )2 =8, [k2(0)+k ()] (4.8),

Now using (4.2), the second moment which arises from (3.8) with k=2,

comes to

(B, B[(ﬁ S ]
3 2): 5 o (r) -y (1) 4.9)

and when further simplified after substituting (4.4) and (4.8), it is

B(r+i n—i+1)

BG . noit]) [k, (0) +a(y () —w " ()]

W, = k2(0) +k, (1)+2aZ

(4.10)




r
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To prove (iii) for instanc;g, from (4.12) the third moment comes

o BB, = £,(2)+3k,(0)k, (1) + &} (0)

which by (4.1),

=w’(f)-w’(n—J’+})+3IW°U)~W”(ﬂ—j+l)][w"(j)w'(n—j+l)]+[w°(j)—w‘(n—f+l)]’
And now the use of the last three moments leads to the.required moment
of Y about its mean. ‘

52 SAMPLE MEDIAN. We consider separate cases for even and

odd sample sizes.

Case: (odd n). When a=0, b=1, j=(n+1)/2, it is seen from above that the

statistic ¥, which is sample median, has

E(Y,)=0

: 1
Bt 20 (72
E[(Y,)*1=0

E[a’,.,,,)"1=2w’(%*—lJ+lzw'(%—l)

It is easy to show that our expression for variance coincides with

that given in Tarter and Clark [6], which is

S0/
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6, B v ()-we ) 7
+6038r4[22(w"(p)—w"(l)i/pq]j, ' - (4.14)

where

(B,)s = BTk, (3)+ 4k, (0)k, (2) + 6k; (kD) + 3k2(1)+£; (0))

(4.15)
and 8., =1if r 24, and zero otherwise.
5.  PARTICULAR CASE: 'We consider in this section
moments of particular statistics yielded by Z ‘through relevant |

substitutions.

s1 ORDER STATISTIC ¥,. With a=0. b= we obtain the

following results.

) Itsﬁrstmomentisw"(j)—w“(n—j+l)l -

(i)  Ttsvariance is w!(H+y'(n-j+D).

(iii) Tl'gé third moment about its mean is 2 ( D-v 2 (n—j+1)

(iv)  The fourthmoments about its mean is:

\u3(j)+w’(n—j+1)+3[w‘(j)+w‘(n—j+1)]‘_
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Case: (Even n). For this case the moments are given on taking i=n/2,
j=(n+2)/2, a=b=1/2 in the main results.

53  QUASIMEDIANS.  For Z to be the rth quasimedian, let
a=b=1/2, i=m-r+1, j=m+r+1 if n=2m+1 (odd), and i=m-r, j=m+r+1 if

n=2m; m2r=12 ... .

it is obvious from (4.5) that a quasimedian has zero mean. The

other moments about mean follow form (4.10), (4.13), (4.14). .
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