L Statistics-
1995(1), 01-10

QUASI-LIKELIHOOD AND RELATED METHODS '
BY. |

Dr. Mujahid Rasul®

SUMMARY

It may be difficult to decide what distribution one’s observations
follow, but the form of the mean-variance relationship is often much
easier to postuléte; this is what makes quasi-likelihood useful. In some
of the cases where quasi—lik_e[ihood method is unable to provide
reasonable results, a more general class of estimating functions
(Crowder, 1987) can be applied for better results. In this paper we
describe the performance of these methods and explained it with some

examples.
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1-INTRODUCTION

Many of the ideas about, and procedures for fitting, gen‘era]iiéd,
~linear models can be extehded without difficulty when likelihoods are
replaced by qﬁl_'asi-likelihoods. Wedderburn’s (1974) introduction of
quési-]ikelihood greatly widened the scope of generalized linear models
by allowing the full distributional assumption about the random
component in the modei'.to be replaced by a muich weaker assumption in
whichh‘ Sr_lly the first and second moments were defined. In some cases
maximum "quasi:likelihood estimation, which is at the core of GLIM,
can fail to give reasonable results. A more general class of estimating
functions has been investigated by Crowder (1987) which avoids such
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Where primes denote differentiatiap with respect to - and b"(e ‘) is
called the variance function. Let /(j,$;z) be the log-likelihood and
/(z,9;z) be the maximum likelihood achievable for an exact fit in
which fitted values equal the data.

Then minimizing
Dz;p)=-2[(p.¢:2)~Uz,¢;2)]

which for generalized linear models is called as deviance is equivalent to
maximizing /{1, ¢ ; z). Since the variance function determines the units
of measurement for D(z, 1), differencing these discrepancy measures
aéro;s variance functions is not possible. To assess variance functions it
is nécessary to apply extended quasi-likelihood (Nelder and Pregibon,
1987).

2-QUASI-LIKELTHOOD FUNCTIONS

. To define a likelihood we have to specify the form of distribution of
the observation, but to define a quasi-likelihood function we need only
specify a relation between the mean and variance of the observations and
the quasi'-likei‘ihood' can then be used for estimfition. The least-sqiiares
estimates for the parameters (3, are obtained by solving the estimating
equation. | ' '

2z, - )p, =0 | @
t=i '
Where |i, =a’%g,. Wedderburn (1974) has investigated that the least-

squares equations {2) may be generalized to the quasi-likelihood
equations ‘

Zor_z (Z, - M, ) “':. =0 ’ 3)
i=i
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failure and aiso is not restricted to the partlcular forms of mean and
variance function of GLIM.

‘Suppose observations are taken on independent random variables
Ly ,Z, with

. 4
E(Z)=p, ,g(u,)=ZlBjX,,-

Var(Z,)=¢V(u,),t=12,......n N

Where the constant th’s the link function g(.) and the variance function
V(.} are known. The generalized linear models which is an extension of
classical linear models allow that the distribution of Z may come from
an exponential family and the link function may become any monotonic
differentiable function (McCullagh and Nelder, 1989).

For the exponential family of densities, consider the distribution of
Z in the form

exp{z0 ~- 5 )}
{d(0)+c(z.0 )
for some functions d( ), b( ) and ¢( ). If ¢ is known, this is an exponential

family with canonical parameter ¢. Log-likelihood function of the above
-equation is

f@z0,4)=

0)-b0)
l(e,¢,z)=lnf(z;9a¢)=ﬁ%
with
E(Z)=p=5(®) - and

Var(Z)=b"©) d($)

A

T
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relaxed in the extended quasi-likelihood. Cofisider embeddmg the
variance _function in-a family of: functions-indexed - by “an” unknown
parameter 8, so that Var(z) ¢ Jo(n). If K(z;p) is v:ewed .as.an
approxtmatlon to a discrete dtstnbutlon such as the bmomlal potsson or
negative binomial, then thé problem Ites w1th the sttrlmg s
approximation used for the factorials; which approaches zero for 5 ()
instead of unity. Then Nelder and Pregibon (1987) suggested a modified

form m!= 21 (m+ &)} m™e " which- cany "be used to’ get the better
results. For the discrete dlstr:buttons mentioned above the Bisé of the
modified stirling’s approximation yields the followmg results,* with
V(z k) replacmg V(z) in (4) o

R R | T M L X B POV
e Bmom:al + » . Poisson AtNegative Binomial * -
V(z 0) n z(n zy £ .o v z(z+ v) o
V(z‘lc) (ﬁ%k)“(uk)(n z+k) (z+k) 2(z+v)2(z+k}(v+k)(z+ v+lc)"

The use of V(z k) allows K(z )] to be defined for all sample fets: '
*and will be important if V(.) itself contains unknown parameters'. '

¢
3-0PTIM.AL ESTIMATING FUNCTIONS

In some cases quam llkellhood method is. not sultable to give
reasonable results Given below. are the examples ,in which. quasi-
likelihood breaks down because it concentrates solely on p, for the

information about B i .
LA Y RENR

Wtdely—used GLIM system has main components: -

(:) A known link functlon g relatmg My to parameter B and
explanatory varlables X via x "B = g( 1), »
. “t
(i) aknown variance functlon V such that 0',.- =¢ F(u,) and
(iii) Maximum quasi-likelihood _e_stimation. N

I I L et
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which can be solved to get estimates for the parameters P . The
estimator [3,, is consistent and asymptotically normal with variance

matrix S;)0,0(S;), where S,,=0, = ~Y o7 p . (Crowder,
1987). McCullagh (1983) has also shown that under some conditions

. quasi-likelihood estimates are consistent and asymptotically normal.

For generalized linear models with distributions in the exponential
family, likelihood ratio and score tests are used for testing hypotheses
concerning nested subsets of covariates in the linear predictor and for
assessing hypothesized link function. These methods are also appllcable
with Wedderburn’s from of quasi- -likelihood. However neither of these
methods is suitable for the comparison of different variance functions.

‘Nelder and Pregibon (1987) has introduced an extended quasi-likelihood

function which allows for the comparison of various forms of all the
components of a generalized linear model. For a single observation z
with mean pt and variance ¢ V() this function is defined as

K(Z'|J.):—0510g{21t¢V(z)}——0.5D(2'p)¢_l W

where D(z ) is the deviance and ¢ is the dispersion parameter. The
estimates of P obtained by maximizing K(z; 1) are the same as the
maximum quasi-likelihood estimates. The estimates of ¢ obtained from -

maximizing K(z; p) is ¢ = Diz 0/ n, the mean deviance. For the

-special cases where K(z; ) corresponds to the normal and inverse

‘Gaussian distributions, df is the MLE of $. For the gamma distribution

K(z; p) differs from the log-likelihood by a factor depending only an ¢..

. For discrete distributions, K(z; ) is obtainable from the reSpectivé"
log-likelihood function by repiacing any factorial m! by stirling’s -

approximation m!= (an)% me "

Wedderburn’s original quam-hkellhood model reqmred knowmg
the variance function upto a multiplicative constant. This requirement is
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QM(S,,O) , where
=00 =6, {1, 1,” +1, (0 1 = 20,0y, 1, = 25.)7) .

As among the subclass of linear estimating functions, MQL has the
optimal property. Likewise, Crowder’s optimal ‘method (OPT) has the
corresponding property among fully quadratic estimating funct:ons, but
requires specification of y 1+-and y.5, for its use.

4EXAMPLES

Few -examples are presented in ‘this section to illustrate the
performance of the methods discussed in.previous sections. ‘
Example: 4.1 -(Negative Binomial 'Distribution) Suppose % -1
Poisson (0), and © is Gamma (A, V). then uncondltnonal

P(Z=r)= {7, SN Ry

is negative binomial distribution with p = el _” (Doss, 1979) Thus In8
has mean y(v)—InA and variance w’(v) over the ‘population of
individual counts; here y is the digamma function. To relate the
‘parameters to the explanatory variables ‘let us now take
y(v)-Ini= xTB and v’ (v) homogenous, i.c., independent of x.
In the model thus constructed Z'has negative binomial d:stnbutwn ‘with
parameters (v,p). The moments of Z are

v -l VP, _(l+p _ (+dp+p?y/ .
B =00 = Yoy 1 =" ¥a =N and the
derivatives are ‘ ‘

._[p(l—p)x) - (x) . {1+p)
p’_f 0 Js By =0 Wy ,0‘,‘=A I/V
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Suppose that p, =%/ and.c? = ), with § > 0. If the variance
.fu‘ngtion. is- correctly specified. as V{u)= %L,‘ then the. maximum
quasi-likelihood estimating equation. is B 2.¢7(z, -%)=0,
B, =Xr? and Var(f,) = s> Nowas n—>o0the Var(P,) does
‘not tend to zero and hence I.’;,,. is inconsistent. In this MQLE fails to use
_the information on in the second moment of z,.. To avoid. this problem
one might apply the ‘method . of z} rather than z,. But the variance
. function for. z needs the skewness and Kurtosis of zas known functions
of py. ‘ o
Suppose that p, = Af ,x, +(1 - A)B,x,, comesponding to a mixture
of two populations with linear regression of z on x in each, the slopes
being. B, and P,. If the variance is s in. each population then
‘o) =5'x] +h(1-A)YB, - B,)’%]. Thus o =¢ V(n,),with
V('p)= p‘zhnd ¢ unknown. The. MQL estimating function is
™z, — B, x,(A1=-R)" =0 reduces to single equation. Thus

estimates B, and B, are not obtained. The problem here is that B, and B,
are confounded in p,. MQL does y‘ie_ld a consistent estimator for the
parameteric. function AR} + (1 — 1) 2, but not for B; and B, separately.

A more general class of estimating functions has been investigated
by Crowder(1987) which avoids such failure. The: following optimal
estimating equations: . ‘ o

Hrarmsena} ]
Ty +2YD) o

= )z, wt, =261 ¢ | -
{(z m(;,:g'—pv 3 )} t-wr ot}

is solved to get the estimate of the .Memm B. The resulting estimator
B, is consistent: and- asymptotically normal with variance matrix
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this is that the estimating equations for ; and ,1 both are equivalent to
A, (z, —n, )]30. So we have only one equation for two unknowns.
Hence we can not estimate the parameters 3; and 1] separately by the

method of quasi-likelihood. We may apply Crowder’s optimal method to
estimate the parameters. ' ‘ . ;
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To estimate the parameters By and v, we MWave asymptotlc varlance
matrix for MQL: )

no Qno(Sno = nvp (}1/ ;/ ]h

which is unobtainable becausé the above matrix is smgular The’ Teason '
for this is that we have effectively only one ‘estimating equatlon for two
unknown parameters. Thus estimates for v and By are not possible by

this method. The estlmatcs can be obtamed by usmg Crowder’s optlmal
method. =~ | ’

T

t

Example 4.2: (Welbull Dlstnbunon) The observat;ons N independent

W|th distribution functlon
' < F

F(f)=1—9"“" ,(0,60)
The parameter n is assumed to be homogeneous over individuals
and A, obeys the log-linear form logX ,=x"B . The moments are:

=K'Cu07 =% Gy = C/ Y=

where C, =‘r1,c2 -, -I{, G =T3 =300, + 217,

k!

. - 1":‘+,'"12F]21‘"2 ~4ryT, _3i~§ LéF}* and T :r(l +y) .
i el b T C )

for j=1,2,3,4. To estimate the parameters (B ,'q) we have asymptotlc
vanance matrlx for MQL L

$00.(82)" = Zplo *2(/ . // ]

Where §= B, -y (1+ };). The above matrix is singular so it is not
possible to obtain the estimates of the parameters (5,,1) the reason for




10 _ Dr. Mujahid Rasul

| REFERENCES
Crowder, M.J. (1987) On linear and quadratic estimating functions.
McCullagh, P. (1983) Quasi-likelihood functions. Ann. Statist. 11, 59-67
‘McCullagh, P. and Nelder, J.A (1989) Generalized linear models, 2nd
edn. New York: Chapman and Hall,
Nelder, J.A and-Pregibon, D(1987) An extended quasi-likelihood
function. Biometrika, 74, 221-232 _.
"Wedderburn, R:-W.M. (1974). Quasi-likelihood functions, generalized
linear models, and the' Gauss-Newton method. Biometrika, 61, 439-47 -



	2009-01-01 (01) - Copy
	00000001

	2009-01-01 (01)
	00000001

	2009-01-01 (02) - Copy
	00000001

	2009-01-01 (02)
	00000001

	2009-01-01 (03) - Copy
	00000001

	2009-01-01 (03)
	00000001

	2009-01-01 (04) - Copy
	00000001

	2009-01-01 (04)
	00000001

	2009-01-01 (05) - Copy
	00000001

	2009-01-01 (05)
	00000001

	2009-01-01 (06) - Copy
	00000001

	2009-01-01 (06)
	00000001

	2009-01-01 (07) - Copy
	00000001

	2009-01-01 (07)
	00000001

	2009-01-01 (08) - Copy
	00000001

	2009-01-01 (08)
	00000001

	2009-01-01 (09) - Copy
	00000001

	2009-01-01 (09)
	00000001

	2009-01-01 (10) - Copy
	00000001

	2009-01-01 (10)
	00000001

	2009-01-01 (11) - Copy
	00000001

	2009-01-01 (11)
	00000001

	2009-01-01 (12) - Copy
	00000001

	2009-01-01 (12)
	00000001

	2009-01-01 (13) - Copy
	00000001

	2009-01-01 (13)
	00000001

	2009-01-01 (14) - Copy
	00000001

	2009-01-01 (14)
	00000001

	2009-01-01 (15) - Copy
	00000001

	2009-01-01 (15)
	00000001

	2009-01-01 (16) - Copy
	00000001

	2009-01-01 (16)
	00000001

	2009-01-01 (17) - Copy
	00000001

	2009-01-01 (17)
	00000001

	2009-01-01 (18) - Copy
	00000001

	2009-01-01 (18)
	00000001

	2009-01-01 (19) - Copy
	00000001

	2009-01-01 (19)
	00000001

	2009-01-01 (20) - Copy
	00000001

	2009-01-01 (20)
	00000001

	2009-01-01 (21) - Copy
	00000001

	2009-01-01 (21)
	00000001

	2009-01-01 (22) - Copy
	00000001

	2009-01-01 (22)
	00000001

	2009-01-01 (23) - Copy
	00000001

	2009-01-01 (23)
	00000001

	2009-01-01 (24) - Copy
	00000001

	2009-01-01 (24)
	00000001

	2009-01-01 (25) - Copy
	00000001

	2009-01-01 (25)
	00000001

	2009-01-01 (26) - Copy
	00000001

	2009-01-01 (26)
	00000001

	2009-01-01 (27) - Copy
	00000001

	2009-01-01 (27)
	00000001

	2009-01-01 (28) - Copy
	00000001

	2009-01-01 (28)
	00000001

	back page - Copy
	back page
	front page - Copy
	front page

