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SUMMARY

It may be difficult to decide what distribution one's observations
follow, but the form of the mean-variance relationship is often much
easier to postulate; this is what makes quasi-likelihood useful. In"some
of the cases where quasi-likelihood method 'is unable to provide
reasonable results, a more general cla,ss of estimating functions,
(Crowder, 1987) can be applied for better results. In this paper we
describe the performance of these methods and explained it with some'
examples. •

Keywort4,: Quasi-Likelihood; Generalized linear models;
Exponential family; Optimal estimating function.

I-INTRODUCTION

Many of the ideas about, and procedures for fitting, generalized,
linear models can be extended without difficulty when likelihoods are
replaced by qu'asi-likelihoods. Wedderburn's (1974) introduction of
quasi-likelihood greatly widened the scope of generalized linear models
by allowing the full distributional assumption about the' random
component in the model to be replaced by a much weaker assumption in
which only the first and second moments were defined. In some cases
maximum.quasi'Jikelihood estimation, which is at the ,core of GLIM,
can fail to give reasonable results. A more general class of estimating
functions has been investigated by Crowder (1987) which avoids such
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failure and also is not restricted to the particular forms of mean and
variance function of GUM.

Suppose observations are taken on independent random variables
Z, , ,Z" with

Where primes denote differentiatiQll with respect to ep and b"(8) is

called the variance function. Let l( J.l,ep ;z) be the log-likelihood and

l(z,ep ;z) be the maximum likelihood achievable for an exact fit in
which fitted values equal the data.

k

E(Z/) = J.l/ ,g(J.l,)=L~jXlj
j=1

Then minimizing

D(z; J.l) = -2[l(J.l,ep; z) -/(z,ep; z)]

l(e,ep ,z) = Inj(z;8 ,ep ) = .z(8) - b(8)

j(z,e,ep)= exp{zS -b(e)}
/ , / ,

For the exponential family of densities, consider the distribution of
Z in the form

for some functions d( ), b( ) and c( ). If q, is known, this is an exponential

family with canonical parameter ep. Log-likelihood function of the, above
equation is

(2)
"L(z, - J.l,) J.l; = 0

1=;

2-QUASI-LIKELffiOOD FUNCTIONS

which for generalized linear models is called as deviance is equivalent to

maximizing I( J.l, ep ; z). Since the variance function determines the units

of measurement for D( z, J.l ), differencing these discrepancy measures

acro~s variance functions is not possible. To assess variance functions it

is necessary to apply extended quasi-likelihood (Neider and Pregibon,
1987).

_To define a likelihood we have to specify the form of distribution of
the observation, but to define a quasi-likelihood function we need only

specify a relation between the mean and variance of the observations and

the quasi:likelihood can then be used for estimtlion. The least-squares

estimates for the parameters ~; are obtained by solving the estimating
equation.

(

(I)Var(Z,) = <W( J.l,), t = 1,2, ..... , n

Where the constant Xti's the link function g(.) and the variance function
V(.) are known. The generalized linear models which is an extension of

classical linear models allow that the distribution of Z may come from

an exponential family and the link function may become any monotonic
differentiable function (McCullagh and Neider, 1989).

Where Ii; == "")Ia;". Wedderburn (1974) has investigated that the least-

squares equations (2) may be generalized to the quasi-likelihood
equations

with

E(Z) = J.l = b' (8) and

Va;.(Z) = b" (8) d(ep)
-:~::,-,\.

Il:''',d. "

"
Lcr/"(z, - J.l,) J.l; = 0
1=;

(3)

.. ~:..:: .
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[n some cases quasi-,likelihood method is not suitable to give
reasonable results. Given below.,are the exampl"s ..in which quasi-, ,

likelihood breaks down because it concentrates solely on lit for the
information about 13. . , "

~ ..~ ;" v

Wi'dely-usedGUM system has main compo!1ents:, .' "'"

(i) A known link function' g relating lit to parameter 13and
, I: l' .
explanatory variables x via x ~ = g( Il,),

~ '(ii) a known variance function V such iliat cr/ = cjl

(iii) Maximum quasi-likelihood estimation.
"'.~-_ ... ~~~.~,' j'''''' \_j~ y.

relaxed in the' extended quasi-Iikeiiliood. Consider embedding the
variance .function in. a family of,ftihctioils'indexed by"ari' unkiiown

p~eter;9, so that yar(z),,~,cjlX9 (Il) ..!.f.K(z; Il) is,vie~ed,Jls,an
approximation'to a discrete distribution such as the binomial, poisson, or

,. 1-. . ,

negative binomial, then the problem' lies' with" the ,,'stiriing's
approximation used for the factorials, ~hich app~oiicheszero fot z'~ 0
instead of unity. Then Neider and Pregibon (\987) suggestedainhdified

form m! = {27t (m+ k)}Y.mme-"which"can' be used'to'g~t.ih~ 'better
results. For the discrete distributions mentioned 'above;tlie uS:i,ofthe
modified stirling's approximation yields the following results," with
V(z;~),repl,a~!rgV(~~,~~(4) , , ,I .•' d' ",t"" ' ~,i

, Binomial , "Poissont Negative Binomial' ..I' ,'. r

V(z;O) n-1z(n-z) z • ,.-'z(z+.), ,"
. -".. . ~.. 1

"V(z;k) (n+k)-'(z+k)(n-z+k) (z+k) .-'(z+.)'(z+k)(v+kj(z+v+k)-l
.•••••• ~. ,fl ,.' f .• \' '. .:. . .

".' The use of V(z;k) allows K(z;ll) to be defined for all sample sets
,and will be important ifV(.j itself conlliin'sunknown Param~ter;.' j

- , ., '. ;. ~, -(

'3-0PTIMAL ESTIMATING FUNCTIONS

which can be solved to get estimates for the parameters ~. The
estimator l3n is consistent and asymptotically normal with variance

matrix S~~Qno(S~~l, where So. = Q•• = - LO',-21l; Il;' (Crowder,
1987). McCullagh (1983) has also shown that under some conditions
quasi-likelihood estimates are consistent and asymptotically normal.

For generalized linear models with distributions in the exponential
family, likelihood ratio and'score tests are used for testing hypotheses
concerning nested subsets of covariates in the linear predictor ahd for
assessing hypothesized link function. These methods are also applicable
with Wedderburn's from of quasi"likelihood..However neither of these
methods is suitable for the comparison of different variance functions.
Neider and Pregibon (\987) has introduced an extended quasi-likelihood
function which allows for the comparison of various forms of all the
components of a generalized linear model. For a sin~le observation z
with mean Il and variance cjlV(Il)this function is defined as

,
where D(z; Il) is the deviance and cjlis the dispersion parameter. The
estimates of 13obtained by maximizing K(z; Il) are the same as the
maximum quasi-likelihood estimates. The estimates of cjlobtained from'

maximizing K(z; Il) is cjl-= D(z;jll/ n, the mean deviance. For the
special cases where K (z; Il) corresponds to the normal and inverse

Gaussian distributions, f is the MLE of cjl.For the gamma distribution
K( z; Il) differs ,fromthe log-likelihood by a factor depending only an cjl.,>
For discrete distributions, K(z; Il) is obtainable from the respecti"!,,
log-likelihood function by replacing any factorial m! by stirling's'

approximation m!= (21lm)Y2mme-m

Wedderburn's original quasi-likelihood model required knowing
the variance function uptoa multiplicative constant. This requiremc;ntis

K(z; Il)= -0.51og{27tcjlV(z)}-0.5D(z; Il)cjl-t . (4)

_ ..t--
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.4-EXAMPLES

P(Z= r)= (,.v){..!Tv)} {('%.,)-}

Few examilies are presented in this section to illustrate the
perfonnance of themethods discussed in.previous sections.

Example: 4.1 (Negative Binomial Distribution) Suppose % is
Poisson (G), andG is Gamma (1,v). then unconditional

7Quasi-Likelihood And Rela/ed Me/hods

S;~Qno(S;~l,where
-2 . 'r -1 . • , • TS•• =Q•• = l:o-, .{Il,J.l, +y, (Y.,.Il,-2cr,)(r.,Il,-2cr,) }.

As among the subclass oflinear estimating functions,MQL has the
optimal property. Likewise, Crowder's optimal-method (OPT).has the
corresponding property among fully quadratic estimating functions,. but
requires specification ofy l/and Y2/ for its use.

is negative binomial distribution with p= ••~l (Doss, 1979). ThusinG

has mean ljf(v)--ln1.. and vm:iance Ijf'(v) over .thepopulation of
individual counts; here Ijf is the digammafunction. To relate the
parameters to the explanatory variables .Iet .us now take

Ijf (v) -In A. = x T 13 and Ijf' (v) homogenous, Le.,independent of x.
In the model thus constructed Z'hlis negative binomial distribution with
parameters (v,p). The moments of Z are

Suppose.that Il, = ~/, and _G;2=1., with ~ >0. If the variance

~ction is-.correctly specified as V( 11)=X, then the. maxiinum

quasi-likelihood estimating equation .. is ~-Lr2~,- ~/,)= 0,

If. =rr2 and Var(If.) = fIlEt., Now as n--+oo the Var(If.) does

not tend to zero and hence If.is inconsistent. In this MQLE fails to use
the infonnation on in the second moment ofzt ..To avoid.this problem

one might apply the method. of z? rather than zt. But the variance

function for.z? needsthe'skewness and Kurtosis ofztaS known functions

.ofilt.

Suppose'that 11,= 1..13.x,+(1- 1..)~2X" corresponding to a.mixture
of two populations with linear regression of z on x in each, the slopes. .
!leing. (3) and 132.If the variance is s2 in each population then

G,2= S2X? + A. (1- 1..)(~. - ~ 2)2'X? . Thus G,2=' 4jJ V( 11,),with
V(Il) = 1l2and 4jJ unknown; The MQL estimating. function is

I:(z,-Il,)Il,-2x,(1..,I-1..)T =0 reduces to single equation. Thus
estimates 13.and.132are not obtained. The problem here is that 131and 132
are confounded in 11,.MQL does yield a consistent estimator for the
parameteric.function 1..~1+ (1 - A.) ~ 2, but not for 13.and 132separately.

A more general class of estimating functions has been investigated
by Crowder(1987) which avoids such failure. The following optimal
estimating equations:

q.. My" +2)11;+(2'(" +a;}. 'J-~ . ') . . .
a, (r." +2.-y" =0

,., (z';I1,)+(Y" 11;-20;) kz _,,)' -a'}.
(a,3+2'_YI~) ", r-, t

vp/, 2 vpl (I+pV (1+4p+pl)/11,= /I-p, a, = /(I-p)', YI, = / (yp)X,Y21= 7",
derivatives are

and the

is solved to get the estimate of the .parameters 13.The J:e5ultingestimator
~ n is consistent- and asymptotically nonnal' with variance matrix

. (p(l-P)x) _ (x) . (I+P)
p'. = 0 " 11,=11 I/v ,a,= ~ I/v

'I

11
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To estimate the parameters 131and v, we !ftIve asymptotic variance
. '. '.matrix for MQL: .

(
1 Yv )-1S-IQ '(S-I{ = nvp. 1/ 1/

no no no . 7y./ v2

this is that the estimating equations for 131and, T] both are equivalent to

L{IJ.,(z,- IJ.,)],~O. So we have oniy one ~quation for rn:o unkno",:~s ..•

Hence we can not estimate the ptU'ameters 131and '1 separately by ,the

method of quasi-likelihood. We may apply Crowder's optimal method to
estimate the parameters.

I

I'

which is unobtainable because the above matrix is singular. The reason .
. , . ". . , '';

for this is that we have effectively only one estimating equation for two

unknown parameters. Thus estimates for v and 131are not possible by
this method. The estimates can be obtained by using Crowder's optimal
method ..

',~ • \1

Example 4.2: (Weibull Distribution) The observations Yt independent
with distribution function""; .•

,.

I I .• J ,j"

," , ,'. .
"

1 :"

F(r) = 1- e-(J.z,J' ,(O,ci:»

,

JI.:,

where

The parameter 11 is assumed to be homogeneous over individuals

and '),.,.obeys the log-linear form log'),.,= xT13 . The moments are:

l-'C 2 12C2 e,/ e,/J..1,= '.., i,0', =''1' . 2 , Y 11 = / c: ' 'Y 21 = I cf,
C1",11' C2= 12 -I?, C3= 13-31112 + 211~'

\

. C - -," 2: ' 2' . " . (I+ j /)
I~ . ,.:-1~,~?tS!1~.:41,13-3~2 -611.~drJ=r '/11 .'

for j=1,2,3,4. To estimate the parameters (13 ,11)
variance matrix for MQL

,1' \

"; "1. l'

we have asymptotic
'I"~

Where S = 13I - \(I (1 + X;) . ..The above matrix is singular so it is not

possible to obtain the estimates of the parameters (13,,11) the reason for

!,
I

I,

II

'"•

2 02( X,S~Q.o (S;~)' = LIJ.,cr, _ I.' - 1.,)0'
s'l
h'

f
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ABSTRACT

The superpopulation approach with unrestrictive' assumptions, is
adopted. Asymptotically robust tests for homogeneity of variances; i,e.
standard. error" grouping and jackknife for cluster samples form. finite
populations consisting on separate clusters are obtained., The test
statistics are,extended for stratified cluster samples as well.

Keywords: Asymptotically robust, superpopulation, cluster'
samples, stratified cluster samples, likelihood ratio, Taylor eXJllU1sion,

, ,

central limit law, complexsamples, consistent, stratum.

1, INTRODUCTION.

The {irst approach to the. problem of testing the equality of
variances under normality was made by.Neyman and Pearson (1931)

'using the likelihood ratio statistic. Bartlett (1937) suggested
modifications to the likelihood ratio test which improves the
approximation to the chi"square; Further refinements were discussed by
Bishop and Nair.(/939), Hartley (1940) and Box (l949).Plackett (1946)

, '

is. a good' review paper~ Kendall & Stuart (1967 p. 465,-69; 1968
p. 97-105) and Plackett(I 960;,Chapter 5) are also worth seeing: Cochran
(1941) and Hartley (1950) introduced methods for the purpose. Pearson
(1931), Geary (1947) Finch (1950), Gayen (1950) and,Box (1953)
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