Catalogue of Efficient Minimal Circular Generalized RMDs in Periods of Two Different Sizes

Muhammad Riaz ${ }^{1}$, Farrukh Jamal * ${ }^{1}$, Shakaiba Shafiq ${ }^{1}$, Sadaf Khan ${ }^{1}$, Abid Khan ${ }^{1}$ and Rida Jabeen ${ }^{1}$

Abstract

Repeated measurements design (RMDs) is economical, therefore, often used in several areas like, psychology, medicine, animal sciences, and pharmacology. In RMDs carry over effects arise which become the source of bias to estimate the treatment effects. Minimal strongly balanced RMDs and Generalized strongly balanced RMDs are used to control the carry over effects and to estimate the direct effects and carry over effects. Catalogues of the designs are always useful for the experimenters and practitioners because these provide them the readymade solution. Catalogue of efficient minimal circular generalized strongly balanced RMDs for $v=i p_{1}+2 p_{2}-2, i$ odd, p_{1} odd and p_{2} integer is not available in the literature. In this article, a catalogue of these efficient designs is presented for $v \leq 99,5 \leq$ $p_{1}($ odd $) \leq 11,3 \leq p_{2} \leq 10$.

Keywords

Residual effects, Cyclic shifts, Minimal design, Efficiency of separability.

1. Introduction

The designs in which two or more treatments are applied in an equal time interval on the same experimental unit (subject), in a specific sequence is known as repeated measurements design (RMD). RMDs are cost-effective, therefore, often used in several areas like psychology, medicine, animal sciences, and pharmacology. But major disadvantage of RMDs is that the carry over effects may arise which may become major source of bias to estimate treatment effects, where effect which lasts over up to the next period is known as carryover effect. BRMDs and SBRMDs handle carry over effects at design stage. BRMDs control the carry over effects while SBRMDs control the carry over effects as well as estimate the direct effects and carry over effects independently. RMD is said to be BRMD if every treatment is immediately preceded λ^{\prime} times by each other treatment, excluding itself. RMD is said to be SBRMD if every treatment is immediately preceded λ^{\prime} times by each other treatment, including itself. In other words, pairs of same treatment $(0,0),(1,1), \ldots,(v-1, v-1)$ do not appear in BRMDs while appear in SBRMDs. In a circular SBRMD, if $\lambda^{\prime}=1$ then it is MCSBRMD. MCSBRMDs can easily be constructed through method of cyclic shifts (Rule I) for v odd. Rule II produces the MCNSBRMDs for some of the remaining cases. MCNSBRMDs are the designs in which

[^0]each treatment is immediately preceded once by all other treatments (including itself) except the treatment labelled as $v-1$ which is not preceded with itself. For remaining cases of v odd, either MCSPBRMDs or MCGSBRMDs are constructed through Rule II. MCSPBRMDs are designs in which (i) some ordered pairs of treatments do not appear as their preceded values while the remaining pairs appear once and (ii) pairs $(0,0),(1,1), \ldots$, (v-1, v-1) appear once. MCGSBRMDs are designs in which (i) some ordered pairs of treatments appear twice as their preceded values while the remaining pairs appear once and (ii) pairs (0,0), $(1,1), \ldots,(\mathrm{v}-1, \mathrm{v}-1)$ appear once.

Catalogues of the designs are always useful for the experimenters and practitioners because these provide them the readymade solutions. Catalogue of efficient MCGSBRMDs for $v=i p_{1}+2 p_{2}-2, i$ odd, p_{1} odd and p_{2} integer is not available in the literature. The presentation of such a catalogue will be a novel wok to control the carry over effects. Considering its novelty, therefore, a catalogue of efficient MCGSBRMDs for $v=i p_{1}+2 p_{2}-2,5 \leq p_{1}(\mathrm{odd}) \leq 11,3 \leq p_{2} \leq 10$ with i odd, $v \leq 99$ and $p_{1}>p_{2}$ is presented in the periods of two different sizes. These efficient designs are generated through i sets of shifts for p_{1} and two for p_{2}.

2. Method of cyclic shifts

Method of cyclic shifts introduced by Iqbal (1991) is explained here for the construction of MCGSBRMDs through Rule II. Let $q_{j i}$ and $q_{(i+1) u}$ be values of set(s) of shifts, where j $=1,2, \ldots, i, i=1,2, \ldots, p-1$ and $u=1,2, \ldots, p-2$. If $0 \leq q_{j i}, q_{(i+1) u} \leq v-2$ and each of 0,1 , $2, \ldots, v-2$ appears exactly once in S^{*} for v odd, except $(v+1) / 2$ which appear twice then it will be a MCGSBRMD, where S^{*} contains (i) elements of S_{j} and $S_{(i+1)}$, and (ii) ($v-1$)-[sum of elements $(\bmod (v-1))$ each of $\left.S_{j}\right]$.

Under this logic, procedure can be simplified as: For $v=i p_{1}+2 p_{2}-2$, Divide $\mathbf{A}=[0,1,2, \ldots$, $v-2,(v+1) / 2$] into i (odd) groups of size p_{1} (odd) and one of size p_{2} such that their sum is divisible by ($v-1$). Delete anyone value from these ($i+1$) groups, last group containing $p_{2}{ }^{-}$ 2 values will remain same. These resultant $(i+2)$ sets produce MCGSBRMD for $v(\operatorname{odd})=$ $i p_{1}+2 p_{2}-2$.

2.1 Example

Consider $[0,1,2,3,4,5,6,7,5]$ for $v=9, p_{1}=5$ and $p_{2}=3$.
Group-I: $(2,4,5,6,7)$ Group-II: $(0,3,5), \quad$ Group-III: (1)
Hence $S_{1}=[2,4,5,6], S_{2}=[3,5], S_{3}=[1]$ t produce following MCGSBRMD in Table 1.
In Table 2, take v more subjects for $S_{2}=[2,10,9]$. Get the design in the similar way as taken through S_{1}.

Table 1: Array developed from $S_{1}=[2,4,5,6]$.

Subjects							
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{0}$	1	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	0	1
$\mathbf{6}$	7	0	1	2	3	4	5
$\mathbf{3}$	4	5	6	7	0	1	2
$\mathbf{1}$	2	3	4	5	6	7	0

Table 2: Array developed from $S_{2}=[3,5]$.

Subjects							
$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
$\mathbf{0}$	1	2	3	4	5	6	7
$\mathbf{3}$	4	5	6	7	0	1	2
$\mathbf{0}$	1	2	3	4	5	6	7

Tables 1,2 and 3 jointly produce MCGSBRMD in $p_{1}=5, p_{2}=3$ for $v=9$, through Rule II, using 24 experimental subjects.

3. Efficiency of separability

Following is the modification of Divecha and Gondaliya (2014) for the efficiency of Separability (ES) for CGSBRMDs and CNSBRMDs. Design will be efficient to control the carry over effects if it possesses the high value of ES.

$$
E S=\left[\frac{v \sqrt{v-1}-1}{v \sqrt{v-1}}\right] \times 100 \%, \text { where, } v \text { is the number of treatments. }
$$

4. Catalogue of MCGSBRMDs in two different period sizes with two sets for $\boldsymbol{p}_{\mathbf{2}}$

Table 3: MCGSBRMDs for $v=i p_{1}+2 p_{2}-2,5 \leq p_{1}(o d d) \leq 11,3 \leq p_{2} \leq 10$ with i odd, $v \leq 99$ and $p_{1}>p_{2}$

\boldsymbol{v}	$\boldsymbol{p}_{\mathbf{1}}$	$\boldsymbol{p}_{\mathbf{2}}$	Sets of shifts	Es
$\mathbf{9}$	5	3	$[7,2,5,4]+[5,3]+[1] \mathrm{t}$	0.751
$\mathbf{1 9}$	5	3	$[17,10,2,12]+[5,6,7,8]+[9,16,4,14]+[3,15]+[1] \mathrm{t}$	0.852
$\mathbf{2 9}$	5		$[24,27,3,4]+[6,7,8,12]+[10,11,22,25]+[20,15,14,17]$	0.888
			$+[2,21,9,5]+[13,15]+[1] \mathrm{t}$	
$\mathbf{3 9}$	5	3	$[34,2,3,4]+[5,6,7,8]+[10,11,13,14]+[15,16,17,35]+$	0.907
			$[37,21,32,26]+[25,23,27,9]+[24,19,22,20]+[18,20]+$	
		$[1] \mathrm{t}$		
$\mathbf{4 9}$	5	3	$[44,2,3,4]+[6,7,8,9]+[46,11,12,13]+[15,16,17,29]+$	0.910
			$[32,21,22,45]+[36,25,26,27]+[42,28,40,47]+$	
			$[34,33,31,5]+[39,38,37,10]+[23,25]+[1] \mathrm{t}$	

v	p_{1}	p_{2}	Sets of shifts	Es
59	5	3	$\begin{aligned} & {[54,2,3,4]+[5,6,7,8]+[10,9,12,13]+[15,16,17,18]+} \\ & {[20,21,22,23]+[37,26,27,55]+[56,43,31,11]+} \\ & {[34,35,42,25]+[39,40,44,52]+[41,45,51,47]+} \\ & {[49,19,46,36]+[28,30]+[1] t} \end{aligned}$	0.936
69	5	3	$\begin{aligned} & {[64,2,3,4]+[6,7,8,9]+[18,11,12,13]+[41,16,17,43]+} \\ & {[46,21,22,23]+[25,26,27,28]+[42,31,32,65]+} \\ & {[66,60,36,37]+[47,35,15,29]+[44,45,20,39]+} \\ & {[49,67,51,52]+[54,55,48,57]+[59,40,61,62]+[33,35]+} \\ & {[1] \mathrm{t}} \end{aligned}$	0.935
79	5	3	$\begin{aligned} & {[74,2,3,4]+[5,6,7,8]+[28,11,12,13]+[15,16,10,18]+} \\ & {[66,21,22,23]+[75,48,33,49]+[77,55,35,30]+} \\ & {[32,26,34,25]+[68,40,41,42]+[56,45,46,51]+} \\ & {[17,50,47,67]+[71,58,20,54]+[59,65,61,64]+} \\ & {[62,9,27,60]+[69,70,57,72]+[38,40]+[1] t} \end{aligned}$	0.937
89	5	3	$\begin{aligned} & {[87,2,3,4]+[58,6,7,8]+[38,11,12,13]+[15,16,17,18]+} \\ & {[20,21,19,23]+[25,26,27,28]+[46,31,32,33]+} \\ & {[35,36,37,29]+[52,41,42,85]+[86,45,30,55]+} \\ & {[49,50,51,61]+[64,47,82,57]+[59,68,79,84]+} \\ & {[83,65,66,67]+[69,77,60,72]+[63,75,76,40]+} \\ & {[78,73,81,56]+[43,45]+[1] \mathrm{t}} \end{aligned}$	0.942
99	5	3	$\begin{aligned} & {[90,97,2,3]+[68,6,7,8]+[10,11,12,13]+[15,16,17,18]} \\ & +[84,20,22,24]+[25,26,27,89]+[35,73,19,33]+ \\ & {[96,63,45,40]+[38,41,28,42]+[44,39,34,30]+} \\ & {[95,37,53,55]+[51,67,56,61]+[23,83,60,62]+} \\ & {[91,65,64,69]+[14,58,76,72]+[86,78,71,77]+} \\ & {[79,31,81,82]+[57,85,75,87]+[43,94,70,92]+[48,50]+} \\ & {[1] \mathrm{t}} \end{aligned}$	0.946
11	7	3	$[6,9,7,3,4,5]+[2,8]+[1] t$	0.837
25	7	3	$\begin{aligned} & {[20,23,2,3,4,5]+[14,8,9,10,21,12]+[13,7,6,16,17,18]} \\ & +[11,13]+[1] \mathrm{t} \end{aligned}$	0.886
39	7	3	$\begin{aligned} & {[34,2,3,4,5,6]+[7,8,9,10,11,12]+[14,15,16,23,35,13]} \\ & +[20,21,37,33,24,25]+[27,28,29,26,31,32]+[18,20]+ \\ & {[1] \mathrm{t}} \end{aligned}$	0.887
53	7	3	$\begin{aligned} & {[48,2,3,4,5,6]+[8,9,10,11,12,13]+[47,15,16,17,18,} \\ & 19]+[21,22,23,20,46,26]+[49,45,29,40,31,32]+ \\ & {[33,35,51,37,38,39]+[7,42,43,44,28,30]+[25,27]+[1] t} \end{aligned}$	0.927
29	5		$\begin{aligned} & {[24,27,3,4]+[6,7,8,12]+[10,11,22,25]+[20,15,14,17]} \\ & +[2,21,9,5]+[13,15]+[1] \mathrm{t} \end{aligned}$	0.888
39	5	3	$[34,2,3,4]+[5,6,7,8]+[10,11,13,14]+[15,16,17,35]+$ $[37,21,32,26]+[25,23,27,9]+[24,19,22,20]+[18,20]+$ [1]t	0.907
49	5	3	$\begin{aligned} & {[44,2,3,4]+[6,7,8,9]+[46,11,12,13]+[15,16,17,29]+} \\ & {[32,21,22,45]+[36,25,26,27]+[42,28,40,47]+} \\ & {[34,33,31,5]+[39,38,37,10]+[23,25]+[1] \mathrm{t}} \end{aligned}$	0.910
59	5	3	$\begin{aligned} & {[54,2,3,4]+[5,6,7,8]+[10,9,12,13]+[15,16,17,18]+} \\ & {[20,21,22,23]+[37,26,27,55]+[56,43,31,11]+} \\ & {[34,35,42,25]+[39,40,44,52]+[41,45,51,47]+} \\ & {[49,19,46,36]+[28,30]+[1] t} \end{aligned}$	0.936

v	p_{1}	p_{2}	Sets of shifts	Es
69	5	3	$\begin{aligned} & {[64,2,3,4]+[6,7,8,9]+[18,11,12,13]+[41,16,17,43]+} \\ & {[46,21,22,23]+[25,26,27,28]+[42,31,32,65]+} \\ & {[66,60,36,37]+[47,35,15,29]+[44,45,20,39]+} \\ & {[49,67,51,52]+[54,55,48,57]+[59,40,61,62]+} \\ & {[33,35]+[1] t} \end{aligned}$	0.935
79	5	3	$\begin{aligned} & {[74,2,3,4]+[5,6,7,8]+[28,11,12,13]+[15,16,10,18]+} \\ & {[66,21,22,23]+[75,48,33,49]+[77,55,35,30]+} \\ & {[32,26,34,25]+[68,40,41,42]+[56,45,46,51]+} \\ & {[17,50,47,67]+[71,58,20,54]+[59,65,61,64]+} \\ & {[62,9,27,60]+[69,70,57,72]+[38,40]+[1] t} \end{aligned}$	0.937
89	5	3	$\begin{aligned} & {[87,2,3,4]+[58,6,7,8]+[38,11,12,13]+[15,16,17,18]+} \\ & {[20,21,19,23]+[25,26,27,28]+[46,31,32,33]+} \\ & {[35,36,37,29]+[52,41,42,85]+[86,45,30,55]+} \\ & {[49,50,51,61]+[64,47,82,57]+[59,68,79,84]+} \\ & {[83,65,66,67]+[69,77,60,72]+[63,75,76,40]+} \\ & {[78,73,81,56]+[43,45]+[1] \mathrm{t}} \end{aligned}$	0.942
99	5	3	$\begin{aligned} & {[90,97,2,3]+[68,6,7,8]+[10,11,12,13]+} \\ & {[15,16,17,18]+[84,20,22,24]+[25,26,27,89]+} \\ & {[35,73,19,33]+[96,63,45,40]+[38,41,28,42]+} \\ & {[44,39,34,30]+[95,37,53,55]+[51,67,56,61]+} \\ & {[23,83,60,62]+[91,65,64,69]+[14,58,76,72]+} \\ & {[86,78,71,77]+[79,31,81,82]+[57,85,75,87]+} \\ & {[43,94,70,92]+[48,50]+[1] t} \end{aligned}$	0.946
11	7	3	$[6,9,7,3,4,5]+[2,8]+[1] t$	0.837
25	7	3	$\begin{aligned} & {[20,23,2,3,4,5]+[14,8,9,10,21,12]+[13,7,6,16,17,18]} \\ & +[11,13]+[1] t \end{aligned}$	0.886
39	7	3	$\begin{aligned} & {[34,2,3,4,5,6]+[7,8,9,10,11,12]+[14,15,16,23,35,13]} \\ & +[20,21,37,33,24,25]+[27,28,29,26,31,32]+[18,20]+ \\ & {[1] \mathrm{t}} \end{aligned}$	0.887
53	7	3	$\begin{aligned} & {[48,2,3,4,5,6]+[8,9,10,11,12,13]+[47,15,16,17,18,} \\ & 19]+[21,22,23,20,46,26]+[49,45,29,40,31,32]+ \\ & {[33,35,51,37,38,39]+[7,42,43,44,28,30]+[25,27]+[1] t} \end{aligned}$	0.927
29	5		$\begin{aligned} & {[24,27,3,4]+[6,7,8,12]+[10,11,22,25]+} \\ & {[20,15,14,17]+[2,21,9,5]+[13,15]+[1] t} \end{aligned}$	0.888
39	5	3	$[34,2,3,4]+[5,6,7,8]+[10,11,13,14]+[15,16,17,35]+$ $[37,21,32,26]+[25,23,27,9]+[24,19,22,20]+[18,20]+$ [1]t	0.907
67	7	3	$\begin{aligned} & {[50,2,3,4,5,6]+[64,8,9,10,11,12]+} \\ & {[14,15,16,17,31,19]+[51,22,23,24,25,26]+} \\ & {[28,29,30,13,58,33]+[34,35,36,37,38,39]+} \\ & {[40,42,43,44,61,46]+[48,49,60,21,52,47]+} \\ & {[55,56,57,63,59,65]+[32,34]+[1] t} \end{aligned}$	0.935
81	7	3	$\begin{aligned} & {[76,79,2,3,4,5]+[7,8,9,20,11,12]+} \\ & {[15,16,17,18,19,61]+[21,22,23,24,25,47]+} \\ & {[28,29,30,31,32,33]+[36,37,38,77,70,27]+} \\ & {[41,42,43,44,45,46]+[10,49,50,51,52,53]+} \\ & {[54,56,34,73,75,60]+[74,72,64,69,66,67]+} \\ & {[65,40,6,63,58,62]+[39,41]+[1] \mathrm{t}} \end{aligned}$	0.932

v	p_{1}	p_{2}	Sets of shifts	Es
95	7	3	$[75,93,2,3,4,5]+[7,8,9,10,11,12]+$ $[83,15,16,17,18,19]+[21,22,23,24,25,26]+$ $[82,40,30,31,32,33]+[35,36,13,38,39,80]+$ $[42,43,44,45,91,27]+[48,49,69,51,52,53]+$ $[55,56,57,58,29,60]+[77,63,64,65,66,67]+$ $[81,89,71,72,74,87]+[76,62,78,79,59,88]+$ $[14,92,85,86,50,73]+[46,48]+[1] t$	0.937
13	9	3	$[8,11,2,10,4,5,6,7]+[9,3]+[1] \mathrm{t}$	0.860
31	9	3	$\begin{aligned} & {[26,29,2,3,4,5,6,7]+[9,10,11,12,13,27,15,28]+} \\ & {[17,18,19,20,21,22,23,24]+[14,16]+[1] t} \end{aligned}$	0.912
49	9	3	$[44,47,2,3,4,5,6,7]+[9,37,11,12,13,14,15,16]+$ $[18,19,20,21,22,45,24,46]+[8,43,38,39,30,31,32,33]+$ $[35,36,10,28,29,40,41,42]+[23,25]+[1] \mathrm{t}$	0.905
67	9	3	$\begin{aligned} & {[62,65,2,3,4,5,6,7]+[9,10,11,12,13,14,15,31]+} \\ & {[18,19,20,21,22,23,24,25]+[27,28,29,30,16,63,33,64]} \\ & +[35,60,37,38,39,61,41,42]+[8,45,46,47,48,49,50,51] \\ & +[53,54,55,56,57,58,59,36]+[32,34]+[1] t \end{aligned}$	0.931
85	9	3	$\begin{aligned} & {[80,83,2,3,4,5,6,7]+[55,10,11,12,13,14,15,16]+} \\ & {[72,19,20,21,17,23,24,25]+[79,28,29,30,26,32,33,34]+} \\ & {[36,37,38,39,35,68,42,82]+[78,70,59,47,48,49,50,51]} \\ & +[53,54,60,56,57,58,46,9]+[8,44,64,65,66,67,81,69] \\ & +[71,18,73,74,75,76,77,63]+[41,43]+[1] \mathrm{t} \end{aligned}$	0.942
15	11	3	$[10,13,2,3,4,5,11,7,12,8]+[6,8]+[1] \mathrm{t}$	0.885
37	11	3	$[32,35,2,3,4,5,6,7,31,9]+$ $[11,12,13,14,15,16,33,18,34,30]+$ $[21,22,23,24,25,26,27,28,29,19]+[17,19]+[1] t$	0.911
81	11	3	[76, 79, 2, 3, 4, 5, 6, 7, 8, 9] + $[32,12,13,14,15,16,17,18,19,20]+$ $[22,23,24,25,26,27,28,29,30,31]+$ [53, 34, 35, 36, 37, 38, 77, 40, 78, 10] + [43, 44, 45, 46, 47, 48, 49, 50, 51, 62] + [54, 11, 56, 57, 58, 59, 60, 61, 52, 71] + $[65,66,67,68,69,70,63,72,73,74]+[39,41]+[1] t$	0.942
11	5	4	$[4,2,3,6]+[9,6,7]+[0,1] t$	0.847
21	5	4	$\begin{aligned} & {[19,2,17,4]+[6,7,13,9]+[11,11,12,16]+} \\ & {[15,8,3]+[0,1] t} \end{aligned}$	0.881
31	5	4	$\begin{aligned} & {[23,2,3,4]+[6,7,8,15]+[11,12,13,14]+} \\ & {[16,16,17,19]+[25,21,27,29]+[20,26,9]+[0,1] t} \end{aligned}$	0.942
41	5	4	$\begin{aligned} & {[39,36,3,4]+[6,7,8,14]+[11,12,33,9]+} \\ & {[16,17,18,19]+[20,34,21,22]+[37,35,31,27]+} \\ & {[28,26,24,13]+[25,2,32]+[0,1] t} \end{aligned}$	0.925
51	5	4	$\begin{aligned} & {[42,49,2,3]+[6,7,8,9]+[11,12,13,24]+[16,17,18,19]+} \\ & {[5,21,25,23]+[22,26,47,27]+[15,32,31,33]+} \\ & {[44,35,36,37]+[10,43,38,14]+[29,46,41]+[0,1] t} \end{aligned}$	0.944
61	5	4	$\begin{aligned} & {[59,2,3,4]+[6,7,8,9]+[11,12,13,14]+[16,17,18,19]+} \\ & {[20,31,22,23]+[42,26,27,28]+[21,29,32,33]+} \\ & {[34,35,36,37]+[40,41,25,43]+[45,46,47,58]+} \end{aligned}$	0.927

v	p_{1}		Sets of shifts	Es
			$[49,39,51,48]+[54,55,56]+[0,1] \mathrm{t}$	
71	5	4	$\begin{aligned} & {[65,2,3,8]+[4,5,6,7]+[15,12,13,10]+[26,17,18,19]+} \\ & {[50,21,22,23]+[25,31,27,28]+[53,32,61,34]+} \\ & {[35,36,36,37]+[40,45,42,44]+[41,46,51,63]+} \\ & {[59,14,47,52]+[55,56,57,58]+[16,33,69,43]+} \\ & {[67,11,68]+[0,1] \mathrm{t}} \end{aligned}$	0.941
81	5	4	$[79,2,3,4]+[6,7,8,9]+[11,12,13,34]+[16,17,18,14]+$ $[70,21,22,23]+[25,26,27,28]+[31,32,33,19]+$ $[77,36,37,48]+[41,41,75,43]+[65,46,47,38]+$ $[49,35,51,52]+[78,71,56,57]+[60,76,62,63]+$ $[64,55,66,67]+[69,39,30,29]+[20,61,5]+[0,1] \mathrm{t}$	0.940
91	5	4	$\begin{aligned} & {[89,2,3,4]+[6,7,8,9]+[11,12,13,14]+[16,17,18,24]+} \\ & {[19,21,22,33]+[70,26,27,28]+[31,23,32,35]+} \\ & {[30,36,37,38]+[41,42,43,44]+[46,46,47,48]+} \\ & {[49,65,51,52]+[54,45,56,57]+[50,61,62,63]+} \\ & {[64,5,66,67]+[75,71,72,73]+[55,76,77,78]+} \\ & {[79,87,81,88]+[84,20,86]+[0,1] t} \end{aligned}$	0.939
13	7	4	$[11,9,3,4,5,6]+[7,8,2]+[0,1] \mathrm{t}$	0.901
27	7	4	$\begin{aligned} & {[24,25,2,3,4,5]+[7,8,9,10,11,12]+[14,6,16,17,18,19]} \\ & +[13,22,23]+[0,1] \mathrm{t} \end{aligned}$	0.861
41	7	4	$\begin{aligned} & {[28,29,35,3,4,5]+[7,8,9,10,11,12]+} \\ & {[15,6,27,18,19,21]+[21,22,13,24,34,26]+} \\ & {[37,38,39,30,31,32]+[2,25,36]+[0,1] \mathrm{t}} \end{aligned}$	0.925
55	7	4	$\begin{aligned} & {[53,2,3,4,5,6]+[8,9,10,11,12,13]+} \\ & {[15,16,17,7,19,20]+[22,23,18,25,26,27]+} \\ & {[28,29,30,31,32,38]+[51,36,37,33,39,40]+} \\ & {[42,43,44,52,46,47]+[48,49,41]+[0,1] t} \end{aligned}$	0.929
69	7	4	$\begin{aligned} & {[50,2,3,4,5,6]+[8,9,10,11,20,13]+} \\ & {[7,16,17,18,27,37]+[22,23,24,25,34,19]+} \\ & {[29,30,31,32,33,21]+[35,36,49,38,39,40]+} \\ & {[42,43,44,45,46,59]+[12,67,51,52,56,54]+} \\ & {[53,26,58,47,60,41]+[63,64,15]+[0,1] t} \end{aligned}$	0.939
83	7	4	$\begin{aligned} & {[81,2,3,4,5,71]+[7,20,9,10,11,12]+} \\ & {[15,16,17,18,23,61]+[22,19,24,25,26,27]+} \\ & {[29,30,31,32,62,34]+[54,37,38,39,40,41]+} \\ & {[42,43,44,45,46,66]+[49,50,51,64,53,75]+} \\ & {[56,57,58,59,60,65]+[73,52,8,47,67,48]+} \\ & {[70,6,77,78,74,36]+[72,63,35]+[0,1] t} \end{aligned}$	0.935
97	7	4	$[95,2,3,4,5,6]+[8,9,10,11,12,13]+$ $[15,16,17,18,19,20]+[22,23,48,25,26,27]+$ $[29,30,31,32,7,35]+[36,34,38,42,40,41]+$ $[43,44,45,46,47,24]+[75,50,51,52,53,54]+$ $[56,93,58,59,68,61]+[63,64,65,66,73,60]+$ $[70,71,80,67,74,49]+[94,78,79,86,81,82]+$ $[84,55,92,14,90,62]+[91,72,37]+[0,1] \mathrm{t}$	0.946
15	9	4	$[8,13,2,3,4,5,6,7]+[9,10,11]+[0,1] t$	0.869
33	9	4	$[31,2,3,4,5,6,7,8]+[10,11,12,13,14,15,16,17]+$	0.891

v	p_{1}	p_{2}	Sets of shifts	Es
			$[18,19,9,21,22,23,24,29]+[17,28,25]+[0,1] \mathrm{t}$	
51	9	4	$[49,2,3,4,5,6,7,36]+[10,11,12,13,14,15,16,17]+$ $[19,20,21,22,23,24,25,28]+[27,8,29,30,31,32,33,34]+$ $[46,37,48,39,40,41,9,43]+[45,26,35]+[0,1] \mathrm{t}$	0.932
69	9	4	$\begin{aligned} & {[67,2,3,4,5,6,7,53]+[9,10,11,12,13,14,15,16]+} \\ & {[19,20,21,22,23,24,26,32]+[28,29,30,31,25,33,34,35]} \\ & +[18,37,38,39,40,41,42,50]+[8,46,47,48,49,62,51,52] \\ & +[64,55,56,66,58,59,60,61]+[63,54,44]+[0,1] \mathrm{t} \end{aligned}$	0.933
87	9	4	$[85,2,3,4,5,6,7,62]+[9,11,12,13,14,15,16,17]+$ $[19,20,21,22,23,24,25,26]+[28,29,30,10,32,33,34,35]+$ [37, 38, 39, 40, 41, 69, 43, 44] + [45, 46, 47, 48, 49, 50, 51, 52]+ $[54,55,56,57,58,59,63,61]+[8,60,64,31,66,67,68,72]+$ $[82,83,74,75,76,77,18,36]+[71,44,73]+[0,1] \mathrm{t}$	0.937
17	11	4	$[12,15,2,3,4,5,6,7,8,9]+[11,14,13]+[0,1] \mathrm{t}$	0.866
39	11	4	$\begin{aligned} & {[37,2,3,4,5,6,32,8,9,10]+} \\ & {[12,13,14,15,16,17,18,19,20,35]+} \\ & {[22,23,24,25,26,27,33,29,30,31]+[7,21,20]+[0,1] \mathrm{t}} \end{aligned}$	0.925
61	11	4	$[58,59,2,3,4,5,6,7,8,9]+$ $[12,13,14,15,16,17,18,23,20,21]+$ $[10,24,25,26,27,28,29,30,31,31]+$ $[33,34,35,36,37,38,52,40,41,42]+$ $[44,45,46,47,48,56,50,51,57,53]+[55,49,22]+[0,1] \mathrm{t}$	0.928
83	11	4	[80, 81, 2, 3, 4, 5, 6, 7, 8, 9] + $[12,13,14,15,16,17,18,19,20,27]+$ $[23,24,25,26,58,28,29,30,31,32]+$ [34, 35, 36, 37, 38, 39, 40, 10, 45, 42] + [44, 42, 46, 47, 48, 49, 50, 51, 52, 66] + $[55,74,57,78,59,60,61,62,53,64]+$ $[63,70,68,69,76,71,72,73,56,43]+[65,21,11]+[0,1] \mathrm{t}$	0.936
15	7	5	$[11,1,2,13,4,5]+[7,8,8,9]+[0,12,3] \mathrm{t}$	0.815
29	7	5	$\begin{aligned} & {[25,1,2,3,4,5]+[7,8,9,10,11,12]+} \\ & {[22,15,13,6,17,18]+[20,19,26,23]+[0,14,15] t} \end{aligned}$	0.906
43	7	5	$\begin{aligned} & {[39,1,26,3,4,5]+[7,22,9,10,11,12]+} \\ & {[14,15,16,17,18,19]+[40,41,8,23,24,30]+} \\ & {[20,38,29,25,31,32]+[34,33,36,37]+[0,21,22] \mathrm{t}} \end{aligned}$	0.925
57	7	5	$[53,1,2,3,4,5]+[7,8,9,10,11,12]+$ $[14,15,16,17,18,19]+[21,22,23,24,25,26]+$ $[54,52,29,30,50,32]+[47,35,36,37,38,39]+$ $[41,42,49,6,45,46]+[43,31,34,20]+[0,28,29] \mathrm{t}$	0.914
71	7	5	$\begin{aligned} & {[67,1,2,3,4,5]+[7,8,9,10,11,12]+[14,36,16,17,18,19]} \\ & +[63,22,23,24,25,26]+[21,29,30,31,32,33]+ \\ & {[68,69,59,37,38,39]+[66,42,60,44,45,46]+} \\ & {[48,49,43,51,52,53]+[55,56,57,6,15,50]+} \\ & {[62,28,64,65]+[0,35,36] \mathrm{t}} \end{aligned}$	0.929
85	7	5	$\begin{aligned} & {[81,1,68,3,4,5]+[21,8,9,10,11,12]+} \\ & {[63,15,16,17,18,19]+[7,36,23,24,25,26]+} \\ & {[28,29,65,31,32,33]+[35,22,37,38,39,40]+} \end{aligned}$	0.933

v	p_{1}	p_{2}	Sets of shifts	Es
			$\begin{aligned} & {[82,83,43,44,45,46]+[48,49,50,30,52,53]+} \\ & {[55,56,57,58,59,60]+[62,14,64,51,76,67]+} \\ & {[79,70,71,72,73,78]+[47,74,69,80]+[0,42,43] \mathrm{t}} \end{aligned}$	
17	9	5	$[13,1,11,3,4,5,6,7]+[15,9,10,2]+[0,8,9] \mathrm{t}$	0.855
35	9	5	$[31,1,2,3,4,5,6,7]+[8,10,11,12,13,14,15,21]+$ $[33,18,19,20,16,22,23,24]+[26,27,28,25]+[0,17,18] \mathrm{t}$	0.891
53	9	5	$\begin{aligned} & {[49,1,2,3,4,5,6,7]+[9,10,11,12,13,14,15,22]+} \\ & {[18,19,20,21,41,23,24,25]+[51,8,28,29,30,31,16,33]+} \\ & {[35,36,37,38,39,46,48,42]+[44,45,40,47]+[0,26,27] \mathrm{t}} \end{aligned}$	0.943
71	9	5	$\begin{aligned} & {[67,1,2,3,4,5,6,7]+[9,10,11,12,13,14,15,16]+} \\ & {[18,19,20,21,22,23,24,25]+[65,28,29,30,31,32,33,34]} \\ & +[69,36,37,26,39,17,41,42]+[66,8,46,47,48,49,50,51] \\ & +[27,54,52,56,57,64,59,60]+[62,63,58,53]+[0,35,36] \mathrm{t} \end{aligned}$	0.930
89	9	5	$[85,1,2,3,4,5,6,7]+[9,69,11,12,13,14,15,16]+$ $[18,19,28,21,22,23,24,25]+$ $[27,20,29,30,31,32,26,34]+$ $[36,37,76,39,40,41,42,43]+$ [87, 10, 46, 47, 48, 49, 50, 51] + $[53,54,70,56,57,58,59,60]+$ $[62,33,64,65,66,67,71,45]+$ $[82,81,73,74,75,83,77,80]+[72,68,38,8]+[0,44,45] \mathrm{t}$	0.936
19	11	5	$[15,1,2,3,4,5,6,7,14,16]+[11,12,13,8]+[0,9,10] \mathrm{t}$	0.860
41	11	5	$\begin{aligned} & {[37,1,2,31,4,5,6,7,8,9]+} \\ & {[11,12,13,14,15,16,17,18,3,20]+} \\ & {[21,38,23,24,25,30,27,28,29,36]+[33,34,35,26]+} \\ & {[0,22,19] \mathrm{t}} \end{aligned}$	0.897
63	11	5	$[56,1,2,3,4,5,6,7,8,9]+$ $[11,12,13,14,15,16,17,18,19,30]+$ $[22,20,24,25,26,27,28,29,41,33]+$ [61, 60, 53, 32, 36, 37, 38, 39, 49, 43] + $[10,44,42,46,58,45,55,50,40,52]+$ $[51,59,57,47]+[0,31,32] \mathrm{t}$	0.921
85	11	5	[81, 1, 2, 3, 4, 5, 6, 7, 8, 41] + $[11,12,13,14,15,16,9,18,19,20]+$ $[22,23,24,25,26,27,28,29,69,31]+$ [33, 34, 35, 36, 37, 38, 39, 70, 17, 82] + [80, 67, 45, 46, 47, 48, 49, 50, 51, 52] + [77, 55, 56, 57, 58, 54, 60, 61, 62, 68] + $[65,66,78,63,79,40,71,72,73,74]+$ $[59,44,30,43]+[0,42,43] \mathrm{t}$	0.938
17	7	6	$[11,1,2,3,4,5]+[15,8,9,10,13]+[0,12,14,7] t$	0.827
31	7	6	$\begin{aligned} & {[26,1,2,3,4,5]+[8,9,10,11,12,13]+} \\ & {[15,16,16,17,18,24]+[21,22,23,6,28]+[0,7,25,29] t} \end{aligned}$	0.918
45	7	6	$\begin{aligned} & {[1,2,3,4,5,33]+[7,8,9,10,11,12]+[15,16,17,18,19,20]} \\ & +[34,23,23,24,25,26]+[28,29,30,37,32,6]+ \\ & {[42,36,43,38,39]+[0,41,35,13] \mathrm{t}} \end{aligned}$	0.924

v			Sets of shifts	Es
59	7	6	$\begin{aligned} & {[54,1,2,3,4,5]+[7,14,9,10,11,12]+[8,15,16,17,18,19]} \\ & +[22,29,24,25,26,27]+[48,30,30,31,32,33]+ \\ & {[35,36,37,51,39,40]+[42,43,44,45,46,57]+} \\ & {[49,50,38,34,41]+[0,55,56,6] \mathrm{t}} \end{aligned}$	0.934
73	7	6	$\begin{aligned} & {[1,2,3,4,5,61]+[7,8,9,10,11,12]+} \\ & {[13,16,17,18,19,20]+[21,23,24,25,26,28]+} \\ & {[29,30,31,32,33,34]+[36,37,37,38,39,66]+} \\ & {[42,43,44,45,46,54]+[49,50,51,62,53,47]+} \\ & {[65,57,58,59,60,6]+[63,64,56,40,67]+[0,22,52,71] t} \end{aligned}$	0.940
87	7	6	$[65,1,2,3,4,5]+[8,9,10,11,12,13]+$ $[15,16,17,18,19,20]+[22,7,24,25,26,47]+$ $[29,30,31,32,33,34]+[28,37,38,39,40,41]+$ $[43,44,44,45,46,80]+[36,50,51,52,53,54]+$ $[56,57,58,59,84,61]+[63,75,82,66,14,68]+$ $[70,60,83,73,85,64]+[77,78,79,71,49]+$ $[0,72,27,74] t$	0.949
19	9	6	[14, 1, 2, 3, 4, 5, 6, 7] + [9, 10, 11, 17, 15] + [0, 13, 16, 8]t	0.879
37	9	6	$[32,1,2,3,4,5,6,7]+[9,11,25,13,14,15,16,17]+$ $[19,19,20,21,22,23,30,8]+[27,28,33,35,31]+$ [0, 29, 34, 10]t	0.894
55	9	6	$[50,1,2,3,4,5,6,7]+[10,11,12,13,14,15,16,45]+$ $[19,20,21,22,23,24,25,28]+$ [27, 9, 29, 8, 31, 32, 35, 17] + [36, 37, 38, 39, 49, 41, 42, 43] + $[33,46,47,48,52]+[0,18,40,51] \mathrm{t}$	0.922
73	9	6	$[68,1,2,3,4,5,6,7]+[36,10,11,12,13,14,15,16]+$ $[37,20,21,22,23,24,25,26]+$ $[28,29,30,31,32,33,43,35]+$ [19, 37, 38, 39, 40, 41, 42, 34] + [45, 46, 47, 8, 49, 50, 51, 65] + $[54,55,56,57,58,59,60,52]+$ $[63,64,61,66,44]+[0,69,9,67] \mathrm{t}$	
91	9	6	$\begin{aligned} & {[86,1,2,3,4,5,6,7]+[10,11,12,13,14,15,16,80]+} \\ & {[19,20,21,22,23,24,44,79]+} \\ & {[28,29,30,31,32,33,25,35]+} \\ & {[37,38,39,50,41,42,43,34]+} \\ & {[46,46,47,48,49,40,51,52]+} \\ & {[81,55,56,57,58,54,65,61]+} \\ & {[63,64,60,8,67,73,69,74]+} \\ & {[72,68,70,75,76,82,78,26]+} \\ & {[59,88,45,84,85]+[0,87,77,17] t} \end{aligned}$	0.960
21	11	6	$\begin{aligned} & {[16,1,2,3,4,5,15,7,8,9]+} \\ & {[11,12,13,14,19]+[0,17,18,6] \mathrm{t}} \end{aligned}$	0.899
43	11	6	$[29,1,2,3,4,5,6,7,8,9]+$ $[12,13,28,15,16,17,18,19,20,21]+$ $[22,23,24,25,26,27,14,38,36,37]+$ $[33,34,40,30,41]+[0,39,35,11] \mathrm{t}$	0.907

v	$\boldsymbol{p}_{1} \boldsymbol{p}_{2}$	Sets of shifts	Es
65	116	$[60,1,2,3,4,5,6,7,21,9]+$ $[12,13,14,15,16,17,18,19,20,37]+$ $[23,61,25,26,27,28,29,30,31,59]+$ [33, 34, 35, 36, 8, 38, 39, 40, 41, 47] + [44, 22, 46, 42, 48, 49, 50, 51, 52, 53] + $[63,56,57,58,32]+[0,24,62,43] \mathrm{t}$	0.938
87	116	$[82,1,2,3,4,5,6,7,8,9]+$ $[12,13,10,15,16,17,18,19,20,21]+$ $[70,24,25,26,27,28,29,30,31,32]+$ $[34,35,36,23,38,39,54,53,42,43]+$ [44, 14, 46, 47, 48, 49, 80, 51, 52, 41] + $[55,56,57,58,59,60,61,62,63,72]+$ [66, 67, 68, 69, 81, 71, 64, 73, 74, 76] + $[77,78,79,84,37]+[0,83,50,40] \mathrm{t}$	0.955
21	97	$\begin{aligned} & {[15,1,2,3,4,5,6,7]+[10,11,11,12,13,14]+} \\ & {[0,16,8,18,19] \mathrm{t}} \end{aligned}$	0.922
39	97	$\begin{aligned} & {[33,1,2,3,4,5,6,7]+[9,10,11,12,13,14,8,16]+} \\ & {[18,19,20,20,17,22,23,24]+[37,28,29,35,31,32]+} \\ & {[0,34,30,26,25] \mathrm{t}} \end{aligned}$	0.914
57	97	$\begin{aligned} & {[51,1,2,3,4,5,6,7]+[9,10,11,12,8,14,15,16]+} \\ & {[44,19,20,21,22,23,24,25]+[54,28,29,29,30,31,32,13]+} \\ & {[35,36,37,38,39,40,41,27]+[55,45,42,47,48,49]+} \\ & {[0,52,53,46,18] \mathrm{t}} \end{aligned}$	0.922
75	97	$\begin{aligned} & {[70,1,2,3,4,5,6,7]+[9,10,41,12,13,14,15,16]+} \\ & {[17,19,20,21,22,23,24,25]+[43,28,29,30,31,32,33,34]+} \\ & {[35,37,38,38,39,40,42,57]+[27,67,46,47,48,49,26,8]+} \\ & {[53,54,55,56,58,73,59,65]+[62,63,64,66,60,61]+} \\ & {[0,69,71,72,11] \mathrm{t}} \end{aligned}$	0.946
93	97	$\begin{aligned} & {[87,1,2,3,4,5,6,7]+[9,10,11,12,13,14,15,16]+} \\ & {[18,19,20,21,8,23,24,25]+[91,28,29,30,31,32,33,34]+} \\ & {[36,37,38,39,40,41,42,43]+[45,46,47,47,48,49,50,51]} \\ & +[53,54,55,56,70,58,59,86]+ \\ & {[62,63,64,65,66,67,68,22]+[88,72,73,74,57,76,44,78]} \\ & +[80,81,79,83,17,85]+[0,71,89,90,27] t \end{aligned}$	0.930
23	117	$\begin{aligned} & {[17,1,18,3,4,5,6,7,8,9]+[12,12,20,14,15,16]+} \\ & {[0,2,19,13,11] \mathrm{t}} \end{aligned}$	0.928
45	117	$\begin{aligned} & {[39,1,40,3,4,5,6,7,8,9]+} \\ & {[12,13,14,15,16,17,18,19,20,21]+} \\ & {[42,23,23,24,25,26,27,28,29,30]+} \\ & {[41,34,35,36,37,38]+[0,2,33,22,32] t} \end{aligned}$	0.945
67	117	$[61,1,2,3,4,5,6,7,8,9]+$ $[33,12,13,14,15,16,17,18,19,20]+$ [60, 23, 24, 25, 10, 27, 28, 29, 41, 31] + $[11,34,34,35,36,37,38,39,40,50]+$ [63, 44, 45, 46, 47, 48, 49, 30, 51, 52] + $[64,55,56,57,62,59]+[0,58,22,54,65] \mathrm{t}$	0.943
89	117	$\begin{aligned} & {[83,1,2,3,4,5,6,7,8,9]+} \\ & {[11,12,13,14,15,16,17,18,19,20]+} \end{aligned}$	0.950

v	$\boldsymbol{p}_{1} \quad p_{2}$	Sets of shifts	Es
		[77, 23, 24, 25, 26, 27, 28, 29, 30, 31] + [$55,34,35,36,37,38,39,40,41,42]+$ [80, 45, 45, 46, 47, 10, 49, 50, 51, 52] + [54, 87, 56, 57, 58, 82, 60, 61, 62, 63] + [85, 66, 67, 68, 69, 70, 71, 72, 73, 76] + $[74,22,78,79,44,84]+[0,81,65,86,33] \mathrm{t}$	
23	98	$\begin{aligned} & {[15,2,3,4,5,6,7,8]+[9,10,11,12,12,13,20]+} \\ & {[0,17,18,19,14,21] \mathrm{t}} \end{aligned}$	0.903
41	98	$\begin{aligned} & {[34,1,2,3,4,5,6,7]+[9,10,11,12,13,14,15,16]+} \\ & {[39,17,21,21,22,23,24,25]+[27,28,29,30,31,32,37]+} \\ & {[0,35,36,33,38,19] \mathrm{t}} \end{aligned}$	0.940
59	98	$\begin{aligned} & {[52,1,2,3,4,5,7,8]+[10,11,12,13,14,15,16,26]+} \\ & {[19,20,21,22,23,24,25,43]+[28,29,30,30,31,32,33,50]} \\ & +[36,37,38,39,40,41,46,53]+[45,42,47,48,49,6,56]+ \\ & {[0,17,54,44,51,9] \mathrm{t}} \end{aligned}$	0.920
77	98	$\begin{aligned} & {[70,1,2,3,4,5,6,7]+[10,11,12,13,14,15,16,17]+} \\ & {[19,50,21,22,23,24,25,26]+[28,29,30,31,32,33,34,60]+} \\ & {[37,38,39,39,65,41,42,43]+[58,46,47,48,49,20,51,52]} \\ & +[8,55,56,57,45,59,60,61]+[73,74,40,66,67,68,69]+ \\ & {[0,71,72,63,64,35] \mathrm{t}} \end{aligned}$	0.940
95	98	$[88,1,2,3,4,5,6,7]+[10,11,12,13,14,15,16,17]+$ $[9,20,21,22,23,24,25,26]+[28,29,30,31,32,33,34,38]+$ [37, 35, 39, 59, 41, 42, 43, 44] + [46, 47, 48, 48, 49, 84, 51, 52]+ $[54,55,56,57,58,87,60,61]+[63,64,65,66,67,68,69,40]+$ $+[8,73,50,75,53,77,78,79]+[81,82,83,74,89,86,70]+$ [0, 85, 90, 91, 92, 19]t	0.950
25	118	$\begin{aligned} & {[18,19,2,3,4,5,6,7,8,9]+[11,12,13,14,20,16,21]+} \\ & {[0,1,10,17,22,23] \mathrm{t}} \end{aligned}$	0.886
47	118	[40, 1, 2, 3, 4, 5, 6, 21, 8, 9] + $[12,13,14,15,16,17,18,19,20,29]+$ [23, 24, 25, 26, 24, 27, 37, 7, 30, 31] + $[43,44,35,36,28,38,10]+[0,41,32,33,34,45] \mathrm{t}$	0.913
69	118	[20, 2, 3, 4, 5, 6, 7, 8, 9, 10] + $[12,13,14,15,16,17,18,19,48,21]+$ [23, 24, 25, 1, 27, 28, 29, 30, 31, 32] + $[53,35,35,36,37,38,39,43,41,52]+$ [44, 45, 46, 47, 26, 49, 50, 54, 42, 33] + $[55,56,57,58,59,60,65]+[0,63,64,61,51,34] \mathrm{t}$	0.940
91	118	$[32,2,3,4,5,6,7,8,9,20]+$ $[12,13,14,15,16,17,18,19,24,21]+$ $[23,10,25,26,27,28,29,30,31,1]+$ $[34,35,36,37,38,39,72,41,42,43]+$ [45, 46, 46, 47, 48, 49, 50, 51, 52, 62] + [55, 56, 57, 58, 59, 60, 76, 83, 63, 64] + [66, 67, 68, 69, 70, 71, 22, 73, 74, 75] + $[86,78,79,80,81,85,53]+[0,82,77,87,61,54] t$	0.952
27	119	$\begin{aligned} & {[19,1,2,3,4,5,6,7,8,9]+[11,12,13,14,10,15,16,17]+} \\ & {[0,20,21,18,23,24,25] \mathrm{t}} \end{aligned}$	0.897

v	$\boldsymbol{p}_{1} \quad p_{2}$	Sets of shifts	Es
49	119	$\begin{aligned} & {[41,1,2,3,4,5,6,7,8,9]+} \\ & {[12,13,14,15,16,17,18,19,20,21]+} \\ & {[23,24,25,25,26,11,28,29,30,31]+} \\ & {[33,34,35,46,37,38,39,42]+[0,40,43,44,45,22,47] \mathrm{t}} \end{aligned}$	0.934
71	119	[63, 1, 2, 3, 4, 5, 6, 7, 8, 9] + $[12,13,14,15,16,17,18,19,20,21]+$ [23, 24, 25, 26, 27, 28, 29, 30, 36, 10] + [34, 35, 36, 31, 37, 38, 39, 40, 41, 42] + [44, 11, 46, 33, 48, 49, 60, 51, 52, 53] + $[67,56,57,58,59,69,61,65]+[0,64,62,66,55,54,50] \mathrm{t}$	0.947
93	119	[85, 1, 2, 3, 4, 5, 6, 7, 8, 9] + $[12,13,14,15,16,17,18,19,28,21]+$ [23, 24, 25, 26, 27, 90, 29, 30, 31, 41] + $[34,35,36,37,38,39,40,83,42,43]+$ [45, 46, 47, 47, 48, 49, 50, 51, 52, 53] + [55, 56, 57, 58, 59, 60, 61, 62, 63, 44] + [91, 67, 68, 10, 70, 71, 72, 73, 74, 75] + [77, 78, 79, 80, 81, 82, 86, 84] + [0, 32, 87, 88, 76, 20, 66]t	0.939
29	1110	$\begin{aligned} & {[20,1,2,3,4,5,6,7,8,9]+} \\ & {[12,13,14,15,15,26,17,18,27]+} \\ & {[0,21,22,23,24,25,16,10] \mathrm{t}} \end{aligned}$	0.888
51	1110	$\begin{aligned} & {[42,1,2,3,4,5,6,7,8,9]+} \\ & {[12,37,14,15,16,17,18,19,20,21]+} \\ & {[23,24,25,26,26,27,28,29,30,40]+} \\ & {[33,34,35,36,10,38,39,49,44]+} \\ & {[0,43,41,45,46,47,48,31] \mathrm{t}} \end{aligned}$	0.938
47	118	$\begin{aligned} & {[40,1,2,3,4,5,6,21,8,9]+} \\ & {[12,13,14,15,16,17,18,19,20,29]+} \\ & {[23,24,25,26,24,27,37,7,30,31]+} \\ & {[43,44,35,36,28,38,10]+[0,41,32,33,34,45] \mathrm{t}} \end{aligned}$	0.913
69	118	[20, 2, 3, 4, 5, 6, 7, 8, 9, 10] + $[12,13,14,15,16,17,18,19,48,21]+$ [23, 24, 25, 1, 27, 28, 29, 30, 31, 32] + $[53,35,35,36,37,38,39,43,41,52]+$ [44, 45, 46, 47, 26, 49, 50, 54, 42, 33] + $[55,56,57,58,59,60,65]+[0,63,64,61,51,34] \mathrm{t}$	0.940
91	118	[32, 2, 3, 4, 5, 6, 7, 8, 9, 20] + $[12,13,14,15,16,17,18,19,24,21]+$ $[23,10,25,26,27,28,29,30,31,1]+$ $[34,35,36,37,38,39,72,41,42,43]+$ $[45,46,46,47,48,49,50,51,52,62]+$ [55, 56, 57, 58, 59, 60, 76, 83, 63, 64] + $[66,67,68,69,70,71,22,73,74,75]+$ $[86,78,79,80,81,85,53]+[0,82,77,87,61,54] t$	0.952
27	119	$\begin{aligned} & {[19,1,2,3,4,5,6,7,8,9]+[11,12,13,14,10,15,16,17]+} \\ & {[0,20,21,18,23,24,25] \mathrm{t}} \end{aligned}$	0.897
49	119	$\begin{aligned} & {[41,1,2,3,4,5,6,7,8,9]+} \\ & {[12,13,14,15,16,17,18,19,20,21]+} \end{aligned}$	0.934

v	$p_{1} p_{2}$	Sets of shifts	Es
		[23, 24, 25, 25, 26, 11, 28, 29, 30, 31] + [33, 34, 35, 46, 37, 38, 39, 42] + [0, 40, 43, 44, 45, 22, 47]t	
71	119	$[63,1,2,3,4,5,6,7,8,9]+$ $[12,13,14,15,16,17,18,19,20,21]+$ $[23,24,25,26,27,28,29,30,36,10]+$ [34, 35, 36, 31, 37, 38, 39, 40, 41, 42] + [44, 11, 46, 33, 48, 49, 60, 51, 52, 53] + $[67,56,57,58,59,69,61,65]+[0,64,62,66,55,54,50] \mathrm{t}$	0.947
93	119	[85, 1, 2, 3, 4, 5, 6, 7, 8, 9] + $[12,13,14,15,16,17,18,19,28,21]+$ $[23,24,25,26,27,90,29,30,31,41]+$ $[34,35,36,37,38,39,40,83,42,43]+$ [45, 46, 47, 47, 48, 49, 50, 51, 52, 53] + $[55,56,57,58,59,60,61,62,63,44]+$ $[91,67,68,10,70,71,72,73,74,75]+$ $[77,78,79,80,81,82,86,84]+[0,32,87,88,76,20,66] \mathrm{t}$	0.939
29	1110	$\begin{aligned} & {[20,1,2,3,4,5,6,7,8,9]+[12,13,14,15,15,26,17,18,27]} \\ & +[0,21,22,23,24,25,16,10] \mathrm{t} \end{aligned}$	0.888
51	1110	$\begin{aligned} & {[42,1,2,3,4,5,6,7,8,9]+} \\ & {[12,37,14,15,16,17,18,19,20,21]+} \\ & {[23,24,25,26,26,27,28,29,30,40]+} \\ & {[33,34,35,36,10,38,39,49,44]+} \\ & {[0,43,41,45,46,47,48,31] \mathrm{t}} \end{aligned}$	0.938
73	1110	$[64,1,2,3,4,5,6,7,8,9]+$ $[12,13,14,15,16,17,18,19,60,21]+$ $[23,24,25,26,27,28,20,30,31,32]+$ $[34,55,36,37,37,38,39,40,41,42]+$ [44, 45, 46, 47, 48, 49, 70, 51, 52, 53] + $[10,50,56,58,59,29,61,62,65]+$ [0, 63, 66, 67, 68, 69, 57, 43]t	0.950
95	1110	$[86,2,3,4,5,6,7,8,9,10]+$ $[12,13,14,15,16,17,18,19,32,21]+$ $[23,24,25,26,27,64,29,30,31,75]+$ $[34,35,36,37,38,39,40,41,42,43]+$ $[45,46,47,1,48,44,50,51,52,53]+$ $[55,56,57,58,59,60,61,62,63,73]+$ $[66,76,68,69,70,71,72,28,74,93]+$ [87, 91, 89, 90, 81, 82, 83, 84, 92] + [0, 77, 78, 79, 80, 88, 49, 20]t	0.945

5. Conclusion

Catalogue of efficient MCGSBRMDs for $v=i p_{1}+2 p_{2}-2, i$ odd, p_{1} odd and p_{2} integer is not available in the literature. Considering the importance of these efficient proposed designs, a catalogue for $v=i p_{1}+2 p_{2}-2,5 \leq p_{1}($ odd $) \leq 11,3 \leq p_{2} \leq 10$ with i odd, $v \leq 99$ and $p_{1}>p_{2}$ is presented in two different period sizes which is useful for experimenters and practitioners.

Acknowledgment

Authors are thankful to the reviewers and the Editor for their valuable suggestions and corrections.

List of abbreviations:

RMDs	Repeated measurements designs.
BRMDs	Balanced repeated measurements designs.
CBRMDs	Circular balanced repeated measurements designs.
SBRMDs	Strongly balanced repeated measurements designs.
CSBRMDs	Circular strongly balanced repeated measurements designs.
MCSBRMD	Minimal circular strongly balanced repeated measurements designs.
MCNSBRMD	Minimal circular nearly strongly balanced repeated measurements designs.
MCSPBRMD	Minimal circular strongly partially balanced repeated measurements designs.
MCGSBRMDs	Minimal circular generalized strongly balanced repeated measurements designs.
ES	Efficiency of Separability

References

1. Afsarinejad, K. (1990). Circular balanced uniform repeated measurements designs, II. Statistics and Probability Letters, 9, 141-143. https://doi.org/10.1016/0167-7152(92)90008-S
2. Afsarinejad, K. (1994). Repeated measurements designs with unequal periods sizes. Journal of the Italian Statistical Society, 2, 161-168. https://doi.org/10.1007/BF02589224
3. Bashir, Z., Ahmed, R., Tahir, M. H., Ghazali, S. S. A., \& Shehzad, F. (2018). Some extensions of circular balanced and circular strongly balanced repeated measurements designs. Communications in Statistics - Theory and Methods, 47(9), 2183-2194. https://doi.org/10.1080/24754269.2023.2184607
4. Bate, S. T., \& Jones, B. (2006). The construction of nearly balanced and nearly strongly balanced uniform cross-over designs. Journal of Statistical Planning and Inference, 136, 3248-3267. https://doi.org/10.1016/j.jspi.2004.11.012
5. Bate, S.T., \& Jones, B. (2008). A review of uniform cross-over designs. Journal of Statistical Planning and Inference, 138, 336-351.
6. Cheng, C. S., \& Wu, C. F. (1980). Balanced repeated measurements designs. Annals of Statistics, 8, 1272-1283.
7. Daniyal, M., Ahmed, R., Shehzad, F., Tahir, M. H., \& Iqbal, Z. (2020). Construction of repeated measurements designs strongly balanced for residual effects. Communications in Statistics-Theory and Methods, 49(17), 4288-4297. https://doi.org/10.1080/03610926.2019.1599019
8. Daniyal, M., Ahmed, R., \& Ogundokun, R. O. (2021). Analysis of repeated measurements designs (RMDs) strongly balanced for residual effects in clinical trials. Journal of Natural and Applied Sciences Pakistan, 3(2), 720-727. https://doi.org/10.1016/j.jspi.2004.11.012
9. Divecha, J., \& Gondaliya, J. (2014). Construction of minimal balanced crossover designs having good efficiency of separability. Electronic Journal of Statistics, 8, 2923-2936. https://doi.org/10.1214/14-EJS979
10. Dutta, T. D., \& Roy, B. K. (1992). Construction of strongly balanced uniform repeated measurements designs: A new approach. Sankhya: The Indian Journal of Statistics, 54, 147-153.
11. Hedayat, A., \& Afsarinejad, K. (1975). Repeated measurements designs, I. In a Survey of Statistical Design and Linear Models (J. N. Srivastava, Ed.), pp. 229-242 (North-Holland, Amsterdam). https://doi.org/10.1007/978-1-4612-3662-7_6
12. Iqbal, I. (1991). Construction of experimental designs using cyclic shifts. Ph.D. thesis, University of Kent at Canterbury, UK.
13. Iqbal, I., \& Tahir, M. H. (2009). Circular strongly balanced repeated measurements designs. Communications in Statistics - Theory and Methods, 38, 3686-3696. https://doi.org/10.1080/03610920802642566
14. Iqbal, I., Tahir, M. H., \& Ghazali, S. S. A. (2010). Circular first-and second-order balanced repeated measurements designs. Communications in Statistics-Theory and Methods, 39, 228-240. https://doi.org/10.1080/03610920902941728
15. Jabeen, R., Ahmed, R., Rasheed, H. M. K., \& Shehzad, F. (2019a). Construction of circular strongly partially balanced repeated measurements designs. Journal of King Saud University-Science, 31, 345-351. https://doi.org/10.1016/j.jksus.2019.02.002
16. Jabeen, R., Ahmed, R., Sajjad, M., Rasheed, H. M. K., \& Khan, A. (2019b). Circular strongly partially-balanced repeated measurement designs in periods of two different sizes using method of cyclic shifts (Rule II). Journal of King Saud University-Science, 31, 519-524. https://doi.org/10.1016/j.jksus.2019.02.002
17. Kageyman, S. (1976). Construction of balanced block designs. Utilitas Mathematica, 9, 209-229.
18. Magda, C. G. (1980). Circular balanced repeated measurements designs. Communications in Statistics-Theory and Methods, 9, 1901-1918.
19. Nazeer, Y., Ahmed, R., Jabeen, R.,Daniyal, M., \& Tahir, M. H. (2019). Circular strongly partially-balanced repeated measurements design in periods of two different sizes. Journal of Probability and Statistical Science, 17, 85-95.
20. Pearce, S. C. (1964). Experimenting with blocks of natural size. Biometrics, 18, 699706. https://doi.org/10.2307/2528123
21. Rasheed, U., Rasheed, H. M. K., Rasheed, M., \& Ahmed, R. (2018). Minimal circular strongly balanced repeated measurements designs in periods of three different sizes. Communications in Statistics-Theory and Methods, 47, 4088-4094. https://doi.org/10.53560/PPASA(58-4)633
22. Rasheed, H. M. K., Khan, H., Ahmed, R., \& Jamal, F. (2021). Minimal Circular Nearly Strongly Balanced Repeated Measurements Designs in Unequal Period Sizes. Proceedings of the Pakistan Academy of Sciences: A: Physical and Computational Sciences 58(4): 59-65. https://doi.org/10.53560/PPASA(58-4)633
23. Sharma, V. K. (1975). An easy method of constructing latin square designs balanced for the immediate residual and other order effects, Canadian Journal of Statistics, 3(1), 119-124. https://doi.org/10.2307/3315104
24. Sharma, V. K., Jaggi, S., \& Varghese, C. (2003). Minimal balanced repeated measurements designs. Journal of Applied Statistics, 30, 867-872. https://doi.org/10.1080/0266476032000075958
25. Sharma, V. K. Gharde, Y., \& Varghese, C. (2010). Minimal strongly balanced changeover designs with first residuals. African Journal of Mathematics and Computer Science Research, 3(9), 195-198. http://www.academicjournals.org/AJMCSR
26. Hassan, M.U., Jabeen, R., Ahmed, R., \& Sajjad, M. (2022). Efficient minimal circular strongly partially balanced RMDs in periods of two different sizes. Thailand Statistician, 20(1), 80-97. https://doi.org/10.18576/jsap/120216
27. Williams, E. J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Science and Research, 2(2), 149-168. https://doi.org/10.1071/CH9490149

[^0]: * Corresponding author

 Email: farrukh.jamal@iub.edu.pk
 ${ }^{1}$ Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur - 63100, Pakistan.

