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Abstract  

 

This study investigates the performance of improved estimation of robust estimators for 

the scale parameter of Birnbaum-Saunders distribution integrating sample information 

and unknown previous knowledge (non-sample information) by fixing the shape 

parameter. The three classes of point estimation techniques, linear shrinkage robust 

estimator, preliminary test robust estimator, and shrinkage preliminary test robust 

estimator are suggested for more efficient estimation. It is also recommended to use a 

Wald's test statistic to examine the non-sample data. The asymptotic theoretical 

properties of the recommended estimators are examined through simulation studies. The 

performance of the estimators is being evaluated based on simulated relative efficiency.  

Our simulation results decisively support asymptotic theory. A real data application is 

also carried out to demonstrate how effectively the suggested estimating methods work 

in practice. 
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1. Introduction 

 

The two-parameter Birnbaum-Saunders (BS) distribution was initially developed by 

Birnbaum and Saunders (1969a, 1969b) as a failure time distribution. It is well known 

that the density function of the BS distribution is unimodal and positively skewed at the 

specific value of shape parameter (Lemonte et al., 2006). The BS distribution has gained 

attention because of its appealing characteristics, strong physical theoretical 

justifications, and connection to the normal model. The random variable 
(𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛) is Birnbaum-Saunders distributed with two parameters, denoted by 

ℬ𝒮(𝛼, 𝛽), if its probability density function is given by, 
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where, 𝑦 > 0 and 𝛼, 𝛽 > 0. The 𝛼 is shape parameter, the BS distribution approaches the 

normal distribution if 𝛼 → 0.  In this study we keep the shape parameter (𝛼) fixed while 

we make improved estimation strategies for scale parameter (𝛽) using sample and non-

sample information simultaneously.  

 

Over the past forty years, several papers addressing various inferential approaches for the 

parameters of the BS distribution and their properties have been published. The 

researchers are quite interested in estimating the BS parameters, and this topic has 

recently gained a lot of attention in the literature. Birnbaum and Saunders (1969b) 

discussed about the maximum likelihood estimator (MLE) of 𝛼 and 𝛽. The asymptotic 

joint distribution of the MLEs was derived by Engelhardt et al. (1981). Based on a new 

parameterization, Ahmed et al. (2008) presented the parametric estimation for the BS 

lifetime distribution. Santos-Neto et al. (2014) suggested estimation and inference for the 

parameterization based on maximum likelihood (ML), moment, modified moment, and 

generalized moment methods. Wang et al. (2015) suggested a number of alternative 

estimators for the BS distribution and investigated asymptotic properties of their 

proposed estimators. Kazim and Salih (2022) compared the performance of maximum 

likelihood estimators with the Bayesian estimators on the basis of the mean square error. 

Nevertheless, various estimation aspects of the BS distribution have been developed by 

several authors using the sample information. 

 

Even though the maximum likelihood estimators offer a few desirable qualities, they do 

not show explicit expressions, and are quite vulnerable to model departure, which 

frequently happens in real-world applications. Therefore, we need to replace ML 

estimators with some other alternative estimators in order to avoid nastiest estimation. 

The unrestricted robust estimator (URE) for the scale parameter of the BS distribution is 

suggested by Wang et al.  (2015) is given below. 

 

𝛽̂𝑈𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦1, 𝑦2, … , 𝑦𝑛), (2) 

where, 𝑟 =  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  and 𝑠 =  (

1

𝑛
∑

1

𝑦𝑖

𝑛
𝑖=1 )

−1
are the arithmetic mean and harmonic mean, 

respectively. They also provided asymptotic property of robust estimator 𝛽̂𝑈𝑅𝐸 as given 

below. 

 

√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)
𝐷
→ ℕ (0,

𝜋(𝛼𝛽)2

2
). (3) 

 

The significance of incorporating sample information (SI) and non-samples (NSI) has 

become more widely recognized in recent years. When combining data from multiple 

sources, the preliminary test and shrinkage estimation procedures are quite beneficial. 

Khan and Saleh (2001) proposed a study for determining the mean parameter for a single 

sample using both the SI and the NSI (𝜃 = 𝜃0) of normal distribution. Baklizi and 

Ahmed (2008) estimated the reliability parameter 𝑅(𝑡)of Weibull distribution. Salman et 

al. (2014) suggested a single stage shrinkage estimator using non-sample uncertain prior 

knowledge as value of scale parameter for gamma distribution.  
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This study aims to improve the estimation of a robust estimator of scale parameter of the 

BS distribution. This study follows as in the next section, improved estimation 

methodologies are furnished. Section 3 is reserved for all the asymptotic theoretical 

results. All the simulation and numerical study including a real-life data set example can 

be found in Section 4. Section 5 concludes this study.  

 

2.  Estimation methodologies 

 

In this section some improved estimation strategies are furnished as given below: 

 

2.1 The linear shrinkage robust estimator (LSR) 

 

The linear shrinkage (LSR) estimator is given below. 

 

𝛽̂𝐿𝑆𝑅 = 𝜆𝛽0 + (1 − 𝜆)𝛽̂𝑈𝑅𝐸, (5) 

where 0 ≤ 𝜆 ≤ 1 is a shrinkage factor and 𝛽0 is presumed non-sample uncertain prior 

knowledge. If non sample information is correct, we give more weight on 𝜆 that will 

approach to 1. If the non-sample information is faulty or not selected properly then the 𝜆 

will be closer to zero.  

 

2.2 Preliminary test robust estimator (PTR) 

 

When the available non-sample uncertain prior knowledge is doubtful, it is preferable to 

construct a preliminary test robust (PTR) estimator by performing a pretest on 𝐻0: 𝛽 =
𝛽0. The development of a pretest is mainly dependent on the distance of the test statistic 

from the unrestricted robust estimator (𝛽̂𝑈𝑅𝐸)  and 𝛽0. The large sample Wald’s type test 

statistic to test 𝛽 = 𝛽0  is 

 

ℒ𝑛 =
{√𝑛(𝛽̂𝑈𝑅𝐸−𝛽0)}

2

𝕧∗ , (6) 

 

where, 𝕧∗is the asymptotic variance of the scale parameter mentioned in Equation (5). 

The sampling distribution of the ℒ𝑛converges to a central 𝜒2 distribution with 1 degree 

of freedom. Therefore, we may show preliminary test estimator (PTR) as:  

 

𝛽̂𝑃𝑇𝑅 =   𝛽̂𝑈𝑅𝐸 − 𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)(𝛽̂𝑈𝑅𝐸 − 𝛽0), (7) 

 

where, 𝐼(∙) is an indicator function. Using 𝜒(1)
2 distribution one can obtain critical values 

at level of significance 𝛼∗. The pretest estimator chooses 𝛽0 or 𝛽̂𝑈𝑅𝐸 whether the null 

hypothesis is accepted or rejected by the test statistics.  

 

2.3 The Shrinkage preliminary test robust estimator (SPTR) 

 

The preliminary test estimator can be improved by replacing 𝛽0 with 𝛽̂𝐿𝑆𝑅in (7) to 

construct shrinkage preliminary (SPR) test estimator whose alternative form is 

 

𝛽̂𝑆𝑃𝑅 = 𝛽̂𝑈𝑅𝐸 − 𝜆𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)(𝛽̂𝑈𝑅𝐸 − 𝛽0). (8) 
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If we substitute 𝜆 = 0 the shrinkage preliminary test estimator becomes preliminary test 

robust estimator.  

 

3. Asymptotic results 

 
In this section we will furnish important lemmas, distributional results along and local 

alternatives to develop asymptotic theory of the suggested estimators. For a random 

sample of size 𝑛 for BS distribution with parameter 𝛽, following asymptotic results hold. 

 

Result 1: 𝑙𝑖𝑚
𝑛→∞

𝑋1,𝑛 = 𝑙𝑖𝑚
𝑛→∞

[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)]
𝐷
→ 𝑋1~𝑁(0, 𝕍∗), 

Result 2: 𝑙𝑖𝑚
𝑛→∞

𝑋2,𝑛 = 𝑙𝑖𝑚
𝑛→∞

[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)]
𝐷
→ 𝑋2~𝑁(𝜉, 𝕍∗), 

Where 𝜉 =  √𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0) 

Result 3: 𝑙𝑖𝑚
𝑛→∞

𝑋2,𝑛
∗ = 𝑙𝑖𝑚

𝑛→∞
[𝕍∗−1

2⁄ [√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)]
𝐷
→ 𝑋2

∗~𝑁(𝜉∗, 1)], 

 

where 
𝐷
→  is convergence in distribution and 𝜉∗ =  𝕧1

1/2
𝜉. 

 

3.1 Lemmas 

 

Lemma 1: Let Z is a random variable with mean 𝜉 and variance 1 i.e.,  𝑍~𝒩(𝜉, 1), then 

the following results hold 

 

𝐸[𝑍𝐼(0 < 𝑍2 < 𝑧)] = 𝜉𝑃(𝜒𝜈,Δ
2 < 𝑧) 

 

𝐸[𝑍2𝐼(0 < 𝑍2 < 𝑧)] = 𝑃(𝜒3,Δ
2 < 𝑧) + 𝜉2𝑃(𝜒5,Δ

2 < 𝑧) 

 

where,𝜒𝜈,Δ
2  is chi-square random variable with 𝜈 degree of freedom, and Δ =

𝜉2

𝕍∗ is non-

centrality parameter. 

 

3.2 Local alternatives  

 

The following sequence of local alternatives {𝒦𝑛} can be considered (Baklizi and 

Ahmed 2008). 

 

𝒦𝑛: 𝛽 = 𝛽0𝑛
 , where  𝛽0𝑛

= 𝛽0 +
𝜉

√𝑛
 

𝛽 = 𝛽0 +
𝜉

√𝑛
. 

(9) 

 

Using theses distributional results, lemmas along with local alternatives, we can state the 

asymptotic properties of the suggested estimators.  

 

3.3 Biases of the estimators 

 

Form above discussion, based on results, the biases of the traditional estimator with 

proposed estimators can be presented in following forms. 
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𝒷(𝛽̂𝑈𝑅𝐸) = 0,  

 

 

 

𝒷(𝛽̂𝐿𝑆𝑅) = −𝜆𝜉,   

 

(10) 

 

𝒷(𝛽̂𝑃𝑇𝑅) = −𝜉ℋ3(𝜒1,𝛼∗
2 ; Δ),  

 

with 𝓗𝒗 (𝑥, Δ =
𝜉2

𝕍∗) stands for the non-central chi-square distribution function with 

𝜐 degrees of freedom and the non-centrality parameter Δ with 𝛼∗ level of significance.  

 

𝒷(𝛽̂𝑆𝑃𝑅) =  −𝜆𝜉ℋ3(𝜒1,𝛼∗
2 ; Δ) (11) 

 

Using the sequences of local alternatives in relation (9), derivation of these results is 

straightforward.  

 

3.4 Asymptotic mean square error 

 

The asymptotic mean square error of the URE, LSR and SPTR are 

 

𝐴𝑀𝑆𝐸(𝛽̂𝑈𝑅𝐸) = 𝕍∗, 

 

𝐴𝑀𝑆𝐸(𝛽̂𝐿𝑆𝑅) = 𝜆2𝕍∗𝛥 + 𝕍∗(1 + 𝜆2 − 2𝜆), (12) 

 
𝐴𝑀𝑆𝐸(𝛽̂𝑆𝑃𝑅) = 𝕍∗ − (𝜆)𝕍∗ℋ3(𝜒1,𝛼∗

2 ; Δ)[2 − 𝜆] + 𝜆Δ𝕍∗[2ℋ3(𝜒1,𝛼∗
2 ; Δ)] − {2 − 𝜆}ℋ5(𝜒1,𝛼∗

2 ; Δ) (13) 

The expressions for mean square error for 𝛽̂𝑈𝑅𝐸 and 𝛽̂𝐿𝑆𝑅can be determined easily, while 

mean square error 𝛽̂𝑆𝑃𝑅 can be obtained by doing a straightforward mathematical 

calculation. As a special case, we can get the asymptotic mean square error of the 

preliminary test estimator by plugging the value 𝜆 = 1 in asymptotic mean square error 

expression of the 𝛽̂𝑆𝑃𝑅. The derivations of AMSE of these estimators are furnished in 

Baklizi and Ahmed (2008) after changing some notations and symbols. 

 

4. Simulation and numerical study 

 
The effectiveness of all the aforementioned estimators is evaluated on the basis of 

simulated relative efficiency for various sample sizes, parameter values, shrinkage 

intensity, and degree of significances 𝛼∗= 0.01, 0.05, 0.10, 0.30. The entire simulation 

research is carried out in R language, and the function ‘rbisa’ from the VGAM package is 

used to generate random numbers from the BS distribution by setting the shape 

parameter to 𝛼 = 1 and 𝛽 = 1 (Lemonte et al., 2006).  A random sample with n = 30, 

50, and 100 from the BS distribution is drawn. The entire simulation is run and repeated 

10,000 times. The ratio of simulated mean square errors (SMSE), which is the evaluation 

criterion for the suggested estimators, is used to simulate relative efficiency. 

 

𝑅𝐸(𝛽̂𝑈𝑅𝐸: 𝛽̂∗) =
𝑆𝑀𝑆𝐸(𝛽̂𝑈𝑅𝐸)

𝑆𝑀𝑆𝐸(𝛽̂∗)
, 
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where,  𝛽̂∗is any proposed estimator defined in Section 2. The suggested estimator is 

more efficient than the benchmark if the RE is greater than 1. We introduced an amount 

of shift Ψ∗ =  (β − 𝛽0)in the sample data defined as to assess how far we deviate from 

the uncertain prior information (UPI) to closely observe the behaviour of the estimators. 

The simulation studies are performed with different combinations of the configurations 

such that sample sizes, shrinkage intensity 𝜆 = 0.2, 0.50, 0.70 and 0.95, with different 

levels of significance 𝛼∗ = 0.01, 0.05, 0.10, 0.30. The graphic representations of the 

performances of the estimators are provided. To save some space, we have limited the 

results of this study to the few combinations that are displayed in Tables 1 and 2. A 

visual representation of the numerical outcomes of the simulation experiments presented 

in tables is shown in Figures 1 and 2. The following conclusion may be drawn from the 

simulation studies: 

 

i. For all the cases of sample sizes, at Ψ∗ = 0, 𝛽̂𝑃𝑇𝑅 beats its competitive estimator 

as it has higher simulated relative efficiency at level of significance 1%. Until a 

particular point in the simulation, the relative efficiency of 𝛽̂𝑃𝑇𝑅 declines and 

after that it approaches to 1 with increasing amount of Ψ∗. 

 

ii. As the sample size is increased, the simulated relative efficiency for 𝛽̂𝑃𝑇𝑅 also 

increases, specifically at Ψ∗ = 0, at level of significance 1%. As we increase 

level of significance the efficiency of the said estimator decreases.  

 

iii. When we start to depart from a parameter's true value, 𝛽̂𝑃𝑇𝑅 becomes more 

efficient than any other recommended estimators, but as we continue to increase 

the degree of deviation, it gradually loses efficiency and becomes less efficient 

than 𝛽̂𝑈𝑅𝐸.  

 

iv. The preliminary test estimator performs better than all other estimators in terms 

of the maximum SRE for small region of Ψ∗, but for slightly large values of the 

shift parameter, it loses effectiveness and 𝛽̂𝑆𝑃𝑅 takes control of the scenario.  

 

v. Overall, the best estimator is  𝛽̂𝑃𝑇𝑅 as compared to all others its competitive 

estimators when there is no shift introduced for data generation.  

 

vi. If the shift amount is being increased Ψ∗ ≥ 0.20 in case of sample n = 50, 𝛽̂𝑆𝑃𝑅 

defeats all the other estimators of its class and remained best estimator as 

compared to 𝛽̂𝑃𝑇𝑅regardless the value of Ψ∗. 
 

vii. The efficiency of 𝛽̂𝐿𝑆𝑅 decreases continuously, it does not tend to towards the 1 

as shown from figures as well.  
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Table 1: Simulated Relative Efficiencies of the estimators at 𝛹∗ = 0.50,  

and 𝑛 = 30, 50, 100, 𝜆 = 0.5.  

  

𝒏 𝚿∗ 𝜷̂𝑳𝑺𝑹 𝜷̂𝑷𝑻𝑹 𝜷̂𝑺𝑷𝑻𝑹 

𝛼∗ = 0.01 𝛼∗ = 0.05 𝛼∗ = 0.01 𝛼∗ = 0.05 

 

 

 

 

 

30 

0.00 4.0000 16.643 5.2983 3.3891 2.5539 

0.10 3.8199 5.8841 2.8137 3.6200 2.3713 

0.20 2.9327 1.8483 1.2790 2.8216 1.7477 

0.30 2.3095 0.9939 0.7643 2.1601 1.2524 

0.50 1.4508 0.4568 0.4433 1.2131 0.7917 

0.75 1.0115 0.2826 0.3906 0.7208 0.6540 

1.00 0.7880 0.2306 0.4577 0.5428 0.6869 

2.00 0.4744 0.4655 0.9484 0.6897 0.9762 

3.00 0.3803 0.9276 1.0000 0.9674 1.0000 

4.00 0.3327 0.9980 1.0000 0.9991 1.0000 

 

 

 

 

 

50 

0.00 4.0000 14.3594 4.6202 3.3087 2.4252 

0.10 3.4120 3.2984 1.917 3.0438 1.9548 

0.20 2.3248 1.0599 0.8289 2.0223 1.2593 

0.30 1.6691 0.5484 0.5172 1.2851 0.8806 

0.50 0.9745 0.2857 0.3960 0.6680 0.6577 

0.75 0.6544 0.2477 0.5099 0.5078 0.7217 

1.00 0.4775 0.3238 0.7424 0.5629 0.8706 

2.00 0.2824 0.9859 1.0000 0.9937 1.0000 

3.00 0.2294 1.0000 1.0000 1.0000 1.0000 

4.00 0.1934 1.0000 1.0000 1.0000 1.0000 

 

 

 

 

 

 

 

 

100 

0.00 4.0000 12.5076 3.9816 3.2262 2.2812 

0.10 2.8014 1.6369 1.1909 2.3336 1.5299 

0.20 1.5494 0.5159 0.5233 1.1112 0.8588 

0.30 0.9407 0.2934 0.3936 0.6547 0.6576 

0.50 0.5236 0.2703 0.5538 0.5127 0.7516 

0.75 0.3344 0.5693 0.9151 0.7646 0.9606 

1.00 0.2491 0.9247 0.9937 0.9659 0.9971 

2.00 0.1376 1.0000 1.0000 1.0000 1.0000 

3.00 0.1154 1.0000 1.0000 1.0000 1.0000 

4.00 0.0980 1.0000 1.0000 1.0000 1.0000 
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Figure 1: Simulated relative efficiency of the estimators n= 50, Ψ∗ =0.5, 

 α∗ = 0.01, 0.05. 

 Figure 2: Simulated relative efficiency of the estimators n= 100, Ψ∗ =0.5, 

 α∗ = 0.01, 0.05. 

 

5. Real data application 

 

In this section, we will furnish real data application to evaluate the performance of the 

suggested estimators. 

 

5.1 Ball size for electronic industry 

 

This data is being taken from the book (Leiva, 2015, p.96). This data is being analyzed 

for improved estimation of BS distribution considering shape parameter. The ball size 

(millimetres) for electronic industry data set is consistent of 𝑛 = 100.The bootstrap 

methodology was used to assess how well the proposed estimators performed. The 

shrinkage intensity was taken at 𝜉 =0.5. The summary statistic is provided in Table 2 as 

given below.  
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Table 2:  Summary statistics for ball size of electronic industry. 

𝑛 𝑟 𝑠 𝛽̂𝑈𝑅𝐸 

100 3.0359 2.1483 2.77 

 

Table 3: Simulated Relative Efficiencies based on bootstrap samples. 

𝑏0 𝛽̂𝐿𝑆𝑅 𝛽̂𝑃𝑇𝑅 𝛽̂𝑆𝑃𝑅 

𝛼∗ 𝛼∗ 

0.01 0.05 0.10 0.30 0.01 0.05 0.10 0.30 

2.77 4.00 16.69 6.77 4.23 1.68 3.39 2.77 2.34 1.44 

4.00 0.38 0.18 0.30 0.42 0.76 0.42 0.56 0.66 0.88 

 

i. The preliminary test estimator outperforms all its rival estimators and produces 

the highest simulated relative efficiency. Although the estimator's performance is 

declining as the level of significance rises, it still outperforms the shrinkage 

preliminary test estimator in terms of efficiency when 𝑏0 = 2.77 as its true 

parametric value. 

ii. When UPI is used 𝛽̂𝑆𝑃𝑅 is most efficient estimator in terms of efficiency due to 

deviation from the parametric true value and apply NSI (𝑏0 = 4.00)  

6. Discussion and conclusion 

 

In this present study, the efficiency of the shrinkage preliminary and preliminary test 

estimators was studied when the sample and non-sample information are integrated. We 

compared the asymptotic properties of the three suggested estimators with the 

benchmark unrestricted robust estimator. A graphic illustration of the estimator's 

efficiency as shown by simulated relative efficiency was also provided. In order to 

decide whether the null hypothesis should be accepted or rejected when taking non 

sample information into account, a large sample Wald’s test statistic is also constructed. 

The theoretical support for each finding is provided by the simulation experiments 

performed in this work. The preliminary test estimator has been found to perform better 

than both the linear shrinkage estimator and the shrinkage preliminary test estimator in 

several areas of the parametric space. Regardless of sample sizes and levels of 

significance, the shrinkage preliminary test estimator performs best when a little amount 

of variation from the true value is noticed. But it is clear from this study that in the 

aforementioned circumstances, a preliminary test estimator is recommended.  The 

shrinkage preliminary test estimator is advised as a last resort in the event of divergence 

from the true value. 

 

Appendix 

 

In this appendix, we will give mathematical derivations of results in Sections 3.3 and 3.4 

 
Proof of Equation (10) 

 

𝒷(𝛽̂
𝐿𝑆𝑅

) = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂
𝐿𝑆𝑅

− 𝛽)] = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛{(𝜆𝛽
0

+ (1 − 𝜆)𝛽̂
𝑈𝑅𝐸

− 𝛽)}] 

  = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛{(𝜆𝛽0 + 𝛽̂𝑈𝑅𝐸 − 𝜆𝛽̂𝑈𝑅𝐸 − 𝛽)}] =   𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛{(𝛽̂𝑈𝑅𝐸 − 𝛽) + (𝜆𝛽 − 𝜆𝛽̂𝑈𝑅𝐸)}] 

        = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽) − 𝜆√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)] = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)]  − 𝑙𝑖𝑚
𝑛→∞

𝐸[𝜆√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)] 
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= 𝑙𝑖𝑚
𝑛→∞

 𝐸[𝑋1,𝑛] − 𝑙𝑖𝑚
𝑛→∞

𝐸[𝜆𝑋2,𝑛] = 𝐸[𝑋1]  − 𝜆𝐸[ 𝑋2] 

 

By using the expectation of 𝑋1 and  𝑋2 
= 0 − 𝜆𝜉 = −𝜆𝜉 

 
Proof of Equation (11) 

 

𝒷(𝛽̂
𝑆𝑃𝑅

) = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂
𝑆𝑃𝑅

− 𝛽)] 

 
= 𝑙𝑖𝑚
   𝑛→∞

𝐸[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝜆𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)(𝛽̂𝑈𝑅𝐸 − 𝛽0) − 𝛽)] 

= 𝑙𝑖𝑚
   𝑛→∞

𝐸[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)] − 𝜆𝑙𝑖𝑚
   𝑛→∞

𝐸[√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)] 

 

Using Results 1, 2 and 3 and Lemmas 1 and Equation (9) in Section 3, we may proceed as  

 
= 𝐸[𝑋1,𝑛] − 𝜆𝐸[𝜆2,𝑛𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)] = −𝜆𝐸[𝑋2,𝑛𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)] = −𝜆𝐸[𝑋2𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)] 

= −𝜆 [𝕍∗
1

2𝕍∗
−1

2 𝑋2𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] = −𝜆𝕍∗
1

2 [𝕍∗
−1

2 𝑋2𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] 

As 𝕍∗
−1

2 𝑋2 = 𝑋2
∗ we may get 

= −𝜆𝕍∗
1

2[𝑋2
∗𝐼(𝜒1,Δ

2 < 𝜒1,𝛼∗
2 )] and 𝑋2

∗~ 𝑁 (𝕍
1

2𝜉, 𝕍), therefore we have 

= −𝜆𝕍
1

2𝕍
−1

2 𝜉𝑃(𝜒3,Δ
2 < 𝜒1,𝛼∗

2 ) = −𝜆𝕍
1

2𝕍
−1

2 𝜉𝑃(𝜒3,Δ
2 < 𝜒1,𝛼∗

2 ) = −𝜆𝜉ℋ3 (𝜒1,𝛼∗
2 ; Δ) 

 

After inserting the 𝜆= 1 we get bias of 𝛼̂𝑃𝑇𝑅 

 
Proof of Equation (12) 

 

𝐴𝑀𝑆𝐸(𝛽̂𝐿𝑆𝑅) = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝐿𝑆𝑅 − 𝛽)]
2

= 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝐿𝑆𝑅 − 𝛽0) − (𝛽 − 𝛽0)]
2
 

= 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝐿𝑆𝑅 − 𝛽0)]
2

+ 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽 − 𝛽0)]
2

− 2 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝐿𝑆𝑅 − 𝛽0)√𝑛(𝛽 − 𝛽0)] 

As √𝑛(𝛽 − 𝛽0) = 𝜉 and √𝑛(𝛽̂𝐿𝑆𝐸 − 𝛽) = 𝑋2,𝑛 − 𝜆 𝑋2,𝑛 

= 𝑙𝑖𝑚
𝑛→∞

𝐸[(𝑋2,𝑛 − 𝜆 𝑋2,𝑛)]
2

+ 𝑙𝑖𝑚
𝑛→∞

𝐸 [𝜉]2 − 2 𝑙𝑖𝑚
𝑛→∞

𝐸 [(𝑋2,𝑛 − 𝜉 𝑋2,𝑛)(𝜉)] 

=𝐸 [𝑋2
2 + 𝜆2𝑋2

2 − 2𝜆 𝑋2
2] + 𝜉2 − 2 𝐸[𝑋2 − 𝜆 𝑋2] 𝜉 

= 𝐸 [𝑋2
2] + 𝜆2𝐸[𝑋2

2] − 2𝜆𝐸[𝑋2
2] + 𝜉2

− 2 𝐸[𝑋2]𝜉 + 2𝐸[𝜆 𝑋2] 𝜉 

= (𝕍∗
+ 𝜉2) + 𝜆2(𝕍∗

+ 𝜉2) − 2𝜆(𝕍∗
+ 𝜉2) − 2 𝜉2 + 2𝜆𝜉2 

As, 𝛥 =
𝜉2

𝕍∗ then, 𝕍∗𝛥 = 𝜉2 

= 𝕍∗
+ 𝜉2 + 𝜆2𝕍∗

+ 𝜆2𝜉2 − 2𝜆𝕍∗
− 2𝜆𝜉2 + 𝜉2 − 2 𝜉2 + 2𝜆𝜉2 

= 𝕍∗
+ 𝜆2𝕍∗

+ 𝜆2𝕍∗
𝛥 − 2𝜆𝕍∗

− 2𝜆𝕍∗
𝛥 + 2𝜆𝕍∗

𝛥 

=𝜆2𝕍∗
𝛥 + 𝕍∗

(1 + 𝜆2 − 2𝜆) 
 
Proof of Equation (13) 

 

𝐴𝑀𝑆𝐸(𝛽̂𝑆𝑃𝑅) = 𝑙𝑖𝑚
𝑛→∞

𝐸[√𝑛(𝛽̂𝑆𝑃𝑅 − 𝛽)]
2
 

= 𝑙𝑖𝑚
   𝑛→∞

𝐸[√𝑛{(𝛽̂𝑈𝑅𝐸 − 𝛽) − 𝜆(𝛽̂𝑈𝑅𝐸 − 𝛽0)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)}]
2
 

  

= 𝑙𝑖𝑚
   𝑛→∞

𝐸 [
{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)}

2
+ 𝜆2𝐼2(ℒ𝑛 < ℒ𝑛,𝛼∗){√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)}

2
− 2𝜆√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)

𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)
] 
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= 𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

(𝑋1,𝑛
2 ) + 𝜆2 𝑙𝑖𝑚

   𝑛→∞
{(𝑋2,𝑛

2 )𝐼2(ℒ𝑛 < ℒ𝑛,𝛼∗)}

− 2𝜆 𝑙𝑖𝑚
   𝑛→∞

{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)}] 

= 𝐸[𝑋1
2] + 𝜆2𝐸{(𝑋2

2)𝐼2(ℒ𝑛 < ℒ𝑛,𝛼∗)} − 2𝜆𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)}] 

= 

𝕍∗ + 𝜆2𝕍∗ + 𝐸{𝑋2
∗2𝐼2(ℒ𝑛 < ℒ𝑛,𝛼∗)} − 2𝜆𝐸 [ 𝑙𝑖𝑚

   𝑛→∞
{√𝑛(𝛽̂

𝑈𝑅𝐸
− 𝛽)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)√𝑛(𝛽̂

𝑈𝑅𝐸
− 𝛽

0
)}] 

(A.1) 
 

Now considering the third term from Equation (A.1) 

 

= −2𝜆𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)√𝑛(𝛽̂𝑈𝑀𝐿 − 𝛽0)}] 

 

= −2𝜆𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)}
2

𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)]

+ 2𝜆𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

{√𝑛(𝛽̂𝑈𝑅𝐸 − 𝛽0)√𝑛(𝛽 − 𝛽0)𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)}] 

= −2𝜆𝐸 [ 𝑙𝑖𝑚
   𝑛→∞

(𝑋2,𝑛
2 )𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)] + 2𝜆𝐸 [ 𝑙𝑖𝑚

   𝑛→∞
{𝜉𝑋2,𝑛

2 𝐼(ℒ𝑛 < ℒ𝑛,𝛼∗)}
⬚

] 

= −2𝜆𝐸[(𝑋2
2)𝐼(𝜒1,Δ

2 < 𝜒1,𝛼∗
2 )] + 2𝜉𝜆𝐸[𝑋2𝐼(𝜒1,Δ

2 < 𝜒1,𝛼∗
2 )] 

= −2𝜆𝐸 [(𝕍∗
1

2𝕍∗
−1

2 𝑋2)

2

𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] + 2𝜉𝜆𝐸 [(𝕍∗
1

2𝕍∗
−1

2 𝑋2)

2

𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] 

= −2𝜆𝕍∗
𝐸 [(𝕍∗

−1

2 𝑋2)

2

𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] + 2𝜉𝕍∗
1

2𝐸 [𝕍∗
−1

2 𝑋2𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )] 

           (A.2) 

Putting (A.2) term into Equation (A.1) 

 

= 𝕍∗
+ 𝜆2𝕍∗

[𝑃(𝜒3,Δ
2 < 𝜒1,𝛼∗

2 ) + 𝒱−1/2𝜉2𝑃(𝜒5,Δ
2 < 𝜒1,𝛼∗

2 )] − 2𝕍∗
𝜆𝐸[𝑋2

∗2𝐼(𝜒1,Δ
2 < 𝜒1,𝛼∗

2 )]

+ 2𝜆𝒱
1

2𝜉𝐸[𝑋2
∗𝐼(𝜒1,Δ

2 < 𝜒1,𝛼∗
2 )] 

= 𝕍∗
+ 𝜆2𝕍∗

ℋ3(𝜒1,𝛼∗
2 ; Δ) + 𝜆2𝜉2ℋ5(𝜒1,𝛼∗

2 ; Δ) − 2𝕍∗
𝜆ℋ3(𝜒1,𝛼∗

2 ; Δ) − 2𝜆𝜉2ℋ5(𝜒1,𝛼∗
2 ; Δ)

+ 2𝜆𝜉2ℋ3(𝜒1,𝛼∗
2 ; Δ) 

= 𝕍∗
− 𝜆𝕍∗

ℋ3(𝜒1,𝛼∗
2 ; Δ)[2 − 𝜆] + 𝜆Δ𝕍∗

[2ℋ3(𝜒1,𝛼∗
2 ; Δ)] − {2 − 𝜆}ℋ5(𝜒1,𝛼∗

2 ; Δ) 

 

Putting the value of 𝜆 = 1 we will get 𝐴𝑀𝑆𝐸 (𝛼̂𝑃𝑇𝑅). 
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