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Abstract 

 

The typical linear regression model does this to have some sort of heteroscedasticity in the 

error terms and linear correlation in the regressors. The ordinary least squares estimates 

are significantly impacted by each of these issues. When these assumptions violated in any 

multiple linear regression model then ordinary least square estimator happen to unstable 

and no longer remain best linear unbiased estimator. Therefore, in attempt to tackle the 

issue of Multicollinearity the rigid, Liu and (k-d) regression exist and easily accessible in 

literature. The adaptive estimator was recommended to obtain an efficient estimator in 

comparison to the conventional least square estimator to address the problem of 

heteroscedasticity. This current work suggests the improved method of adaptation for (k-

d) class estimator to get more efficient results when dealing with multicollinearity and 

heteroscedasticity occur at same time. All the numerical work is done by using simulation 

scheme Monte Carlo, with different degrees of collinearity, severity (existence) of 

heteroscedasticity, and sample size to assess the performance of the suggested estimator. 

The simulation results provide best performance of adaptive (k-d) class estimator which is 

our proposed estimator. 
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1. Introduction and preliminaries 

 

Regression analysis is one of the most important fields of study because it is used in almost 

every aspect of life. When dealing with real data, regression modelling has a greater impact 

in business, economics, medicine, and agriculture. The term multicollinearity was firstly 

introduced by Frisch (Frisch, 1934). The collinearity is severe issue for multiple linear 

regression models while the predictors are correlate with each other. The effected 

estimators and variance-covariance matrix exhibit misleading inferences as matrix of XX   

is ill-conditioned as well as determinant of this matrix occasionally singular ( )0=XX . 

This issue too disturbs the property of estimator called best linear unbiased estimator 

(BLUE). Other important assumptions which may be violated is “Homoscedasticity”. Its 

means error term does not constant from one observation to another. Due to violation of 

this assumption of CLRM heteroscedasticity occurs in the data which has very serious 
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impacts on the inference about coefficients of regression model. The traditional ordinary 

least square estimator (OLSE) not remain BLUE when heteroscedasticity is present, which 

is the key consequences. When the existence of heteroscedasticity prevails the estimation 

method ordinary least square (OLS) leads to incorrect inferences about regression 

coefficient as well as (OLSE) becomes inefficient. Thus, the OLSE is not the best solution 

to estimate the coefficients of a regression line. The interested reader can get more detailed 

discussion about the effects of heteroscedasticity (Aslam, 2006; Ahmed et al, 2011;  Aslam 

et al, 2013; Aslam, 2014). In literature, different tests are suggested to detect the presence 

of heteroscedasticity (Ahmed et al, 2011; Aslam, 2014; Park, 1966). 

 

In attempt to combat with multicollinearity (Hoerl and Kennard, 1970; Liu, 1993; 

Kaciranlar, 2003; Kaciranlar and Sakallioglu, 2007) gave the estimation methods in 

existence of multicollinearity in order estimate the regression model coefficients. The first 

time (White, 1980) overcame the challenge of heteroscedasticity by developing the 

heteroscedasticity consistence covariance matrix estimator (HCCME), which gave break 

through and made possible to deal with heteroscedasticity and offer asymptotically valid 

inferences. If the heteroscedasticity error variances (�̂�2) are identified, the weighted least 

squares (WLS) method can satisfy the BLUE property. To estimate variance function 

using non-parametric and parameter approaches is covered in detail in the literature (see, 

Bickel, 1978; Box and Hill, 1974; Carrol, 1982; Fuller and Rao, 1978; Rupert, 1994). The 

weighting strategy fails because heteroscedasticity is rarely discovered in real-world 

performance. As a result, we must discover estimators of this type that perform equally 

well even when the unknown form functional of heteroscedasticity may be regarded as 

estimator is the adaptive estimator (Aslam et al., 2013; Carrol, 1982). The more work done 

by Aslam (2014) who used Carroll's adaptation for regression (Carrol, 1982) and proposed 

an estimator called Adaptive Rigid Regression (ARRE), which is more efficient than 

Ordinary Rigid Regression Estimator (ORRE) and OLSE. In our current study, we follow 

a similar adaptation for the (k-d) regression proposed by (Sadaullah, 2006). We use (k-d) 

regression using variable estimation of the unknown error to construct the equation. 

Therefore, we present the adaptive (k-d) estimator (AKDE). Thus, we proposed an 

adaptive (k-d) estimator (AKDE), in order to get more efficient estimates for regression 

coefficients. 

 

2.  Existing estimation strategies 

 

In this section, we highlight the main estimation strategies to tackle the issue of 

multicollinearity and heteroscedasticity. 

 

2.1 Ordinary least square (OLS) 

 

If we consider following multiple linear regression model, 

 

𝑦 = 𝑋𝜃 +∈𝑖                                                            (1) 

 

where 𝑦 is an 1n  column vector of observations of response variable, X  is an 𝑛 × 𝑘 

design matrix of rank k, θ is an 𝑘 × 1 vector of unknown regression coefficients, ∈𝑖 is 

1n vector of random errors with zero mean and variance 2 ,
n

I =  where 
n

I  is an 

identity matrix of order n. In order to estimate the model (1), there is the most suitable 

choice to use OLSE which may be defined as  
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 𝜃𝑂𝐿𝑆 = (𝑋′𝑋)−1(𝑋′𝑦)                                                          (2) 

𝜃𝑂𝐿𝑆 satisfies the BLUE property of linear regression model. 

 

2.2 The ordinary rigid regression estimator (ORRE) 

 

When the assumption of multicollinearity is violated then it is impossible to estimates by 

equation (2). It paves the way to very grave impacts of the OLSE that may become not 

BLUE and unstable (Gujarati, 2003). Hoerl and Kennard (1970) proposed ORRE which 

overcome the issue after a positive constant is added. (k) into the design matrix's diagonal 

values (𝑋′𝑋) is ill-conditioned matrix. ORRE can be shown as: 

 

𝜃𝑂𝑅𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑦)                                                          (3) 

 

here k ≥ 0 is biased ridge and shrinkage parameter. This shrinkage parameter k indulges 

the value exact 0 then the ORRE transform into OLSE. The choice of k rigid parameter is 

available in literature (Aslam, 2014;  Hoerl et al., 1975;  Khalaf and Shukur, 2005 and 

Kiberia, 2003). We select three rigid parameters from available literature Khalaf and 

Shukur, 2005 and Kiberia, 2003) also same parameters followed by Aslam (2014). 

 

2.3  Liu estimator (LE)  

 

Liu estimator (LE) is proposed (Liu, 1993) to tackle the problem of collinearity between 

regressors after adding an identity matrix into (𝑋′𝑋)  biased and shrinkage constant “d” is 

also added into (𝑋′𝑦) and joining of OLSE. Thus, LE can obtained as    

  

𝜃𝑑 = (𝑋′𝑋 + 𝐼)−1(𝑋′𝑦 + 𝑑𝐼)𝜃𝑂𝐿𝑆                                                                               (4) 

 

LE is the shrinkage estimator of OLSE   
 
𝜃
̂

𝑑
=  𝜃𝑂𝐿𝑆 when d = 1 

 

2.4 The (k-d) estimator (KD) 

 

Sadullah et al. (2008) suggested another biased and shrinkage estimator namely “(k-d) 

estimator”.  

 

𝜃𝑘𝑑 = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑦 + 𝑑𝑜𝑝𝜃𝑂𝑅𝑅)                                  (5) 

 

Where k ≥ 0 and (−∞ < 𝑑 < +∞). (k-d) class estimator is shrinkage estimator towards 

OLSE and ORRE. We choose the optimum value to calculate d as follows. 
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3. Adaptation 

 

If the variance functional form of error term is unidentified, Carrol (1982) gave an 

adaptation for heteroscedasticity when regression model is linear using the core adaptive 

estimator as defined by Bickel (1978). In order to estimate the variance function, Carroll 

(1982) put its name of this adaptive estimator as “kernel estimator”. Carroll supposed the 

error variability to be a smooth function of average value as: 

 

�̂�𝑖
2 = 𝐻(𝑡𝑖 , 𝜃) = 𝑔(𝑡𝑖), 

 

Here “g” is unidentified, and “ti” can be found as: 

OLSii xt ̂


=  

�̂�𝑖
2
Could estimate with the help of kernel estimator, as the computational form of �̂�𝑖

2 is 

presented by Nadaraya (Nadaraya, 1964) as given below.  

 

�̂�𝑖
2 =

∑ 𝐾 (
𝑡𝑗 − 𝑡𝑖

𝑞
) 𝜇𝑖

2𝑛
𝑖=1

∑ 𝐾 (
𝑡𝑗 − 𝑡𝑖

𝑞
)𝑛

𝑖=1

 

 

Where 
2

ˆ
i are residuals attained after estimating OLS coefficients, K(.) is defined to be 

kernel function with q as smoothing parameter. So, the proposed adaptive estimator can 

be shown as: 

 

 𝜃𝐴𝐿𝑆 = (𝑋′�̂�𝑋)
−1

(𝑋′�̂�𝑦)                                                                    (7) 

 

�̂�is regarded as adaptive estimator of W.                                    

 

Aslam (2014) also used this adaptive estimation procedure to fit ridge regression (RR) in 

attempt to get more efficient estimator as “adaptive ridge regression estimator” (ARRE). 

The proposed estimator by [8] is shown below.   

 

  𝜃𝐴𝑅𝑅 = (𝑋′�̂�𝐴𝑅𝑅𝑋 + 𝑘𝐼)
−1

(𝑋′�̂�𝐴𝑅𝑅𝑦)                                                                         (8) 

 

where, �̂�𝐴𝑅𝑅 are weights assigned into diagonal matrix and called it ARR.  

 

�̂�𝐴𝑅𝑅 = 𝑑𝑖𝑎𝑔(
1

�̂�2
𝐴𝑅𝑅1

,
1

�̂�2
𝐴𝑅𝑅2

, … ,
1

�̂�2
𝐴𝑅𝑅𝑛

) 

 

In order to derive the adaptive (k-d) Class Estimator (AKDCE), we extended work of 

Aslam et al. (2013) work by replacing, 𝜃𝑂𝑅𝑅in Equation (5) with 𝜃𝐴𝑅𝑅 which is given in 

Equation (8). Resultantly, we get the adaptive (k-d) estimator (AKDE) as given below: 

  

𝜃𝐴𝐾𝐷 = (𝑋′�̂�𝐴𝐾𝐷𝑋)
−1

(𝑋′�̂�𝐴𝐾𝐷𝑦 + 𝑑𝑜𝑝𝜃𝐴𝑅𝑅)                                                                (9) 

 

where,  
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�̂�𝐴𝐾𝐷 = 𝑑𝑖𝑎𝑔(
1

�̂�2
𝐴𝐾𝐷1

,
1

�̂�2
𝐴𝐾𝐷2

, … ,
1

�̂�2
𝐴𝐾𝐷𝑛

). 

 

In equation (9), �̂�𝐴𝐾𝐷is the matrix of diagonal form called adaptive (k-d) regression 

weights and shrinkage estimator “dc” is calculated with the help of estimator given in 

Equation (6). Resultantly, in Equation (9) the given estimator is suggested estimator to 

deal with the problem of collinearity and heteroscedasticity both occur at same time. The 

estimator proposed in Equation (9) is more efficient because estimated mean square error 

(EMSE) is less than its traditional (k-d) estimator. 

 

4. Evaluation criterion 

 

The performances of the above stated estimators, the EMSE criterion is used as used by 

many researchers, the interested readers can get more detail in Alheety et al. (2009), Aslam 

(2014), Liu (1993), Liu (2003), Manson et al. (2010). On behalf of the specific estimator 

𝜃𝑖  of 𝜃, The EMSE can be numerically find by given mathematical formula in simulation. 

 

𝐸𝑀𝑆𝐸(𝜃) =  
∑ [(𝜃𝑖 −  𝜃)

′
(𝜃𝑖 −  𝜃)]𝑅

𝑖=1
𝑅

⁄  

 

Where 𝜃𝑖 values which are estimated from 𝜃 in ith replication, where R is the cumulative 

sum of all simulation replications. Furthermore, the desirable performance of proposed 

estimator AKDE is assessed in form of relative efficiency, 𝐸𝑀𝑆𝐸(𝜃𝑖)/ 𝐸𝑀𝑆𝐸(𝜃𝐴𝐾𝐷). 

Mean Square Error (MSE) is calculated here as: 

 

𝑀𝑆𝐸 = 𝐸(𝜃𝑖 − 𝜃)2 

 

4.1 Estimating the biasing rigid parameters 

 

Now we finalized the rigid parameter k, Hoerl and Kennard  (1970) suggested an estimator 

to compute biased rigid parameter k which is recognized as the “HKB estimator” and is 

presented as: 

�̂�𝐻𝐾𝐵 =  
𝑟�̂�2

𝜃𝑂𝐿𝑆′𝜃𝑂𝐿𝑆

 

where �̂�
2
 is the mean square error of residuals.  

Another researcher (Kiberia, 2003) suggested a different estimator of ridge parameter k 

�̂�𝐺𝐾 =  
�̂�2

(∏ 𝜃2
𝑂𝐿𝑆)

1
𝑟⁄𝑟

𝑗=1

 

 

The third biased rigid parameter proposed by (Khalaf and Shukur, 2005) for selecting the 

appropriate value of shrinkage ridig parameter k. Therefore, the estimator is shown below: 

�̂�𝐾𝑆 =  
𝜆𝑚𝑎𝑥�̂�2

(𝑛 − 𝑟)�̂�2 + 𝜆𝑚𝑎𝑥�̂�2
𝑂𝐿𝑆𝑚𝑎𝑥

 

�̂�𝐾𝑆 the above stated estimator, where 𝜆𝑚𝑎𝑥is maximum eigen value of XX 
 matrix and 

𝜃2
𝑂𝐿𝑆𝑚𝑎𝑥 is the highest value of 𝜃𝑂𝐿𝑆. For our analysis, we used these three k’s for 

choosing ridge parameter.  
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5. Simulation scheme 

 

The Monte Carlo simulation scheme which we used in order to get empirical results of our 

suggested AKDE is being discussed. Many authors used this simulation scheme can be 

found in the literature, e.g., Aslam (2014), Newhouse et al. (1971), Manson et al. (2010).  

 

5.1 The Monte Carlo scheme  

 

Three parametric cases are covered by the simulation process here. The columns of 

predictors are calculated in accordance with (Aslam, 2014) and the reference cited in 

 

𝑥𝑖𝑗 = (1 − 𝜌2)0.5𝑤𝑖𝑗 + 𝜌𝑤𝑖4                                              𝑖 = 1,2,3, … , 𝑛     𝑗 = 1,2,3 

 

Here the setup is that the 𝜌 is degree of collinearity between any two regressors is 

represented by 𝜌2 and wi1, wi2, wi3, and wi4 are independent standard normal N (0, 1) 

pseudo-random numbers, we used 𝜌 = 0.80, 0.90, 0.95 𝑎𝑛𝑑 0.99 

The array of value in matrix of the response variable can be determined as under 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝑢𝑖;                           𝑖 = 1,2, . . . , 𝑛,                   
             

where 𝑢𝑖 = 𝜎𝑖𝜀𝑖 and
 
𝜀𝑖′𝑠are independent standardized normally distributed N (0,1) and 𝛽0 

is assuming 0. For the first case 𝜌 = 0.80, we keep fix the regression coefficient values 

(𝛽1, 𝛽2, 𝛽3)
 

as 0.5881, 0.5581, 0.5854, respectively [8]. For 𝜌 = 0.90, we fix the 

regression coefficient values (𝛽1, 𝛽2, 𝛽3) as 0.5796, 0.5706 and 0.5818, respectively. For 

𝜌 = 0.95. we fixed the regression coefficients at. 1 2 3( , , )    as 0.5775, 0.5749 and 

0.5797, respectively [8]. Finally, at a high amount of collinearity (𝜌 = 0.99) we keep fix 

the regression coefficient values (𝛽1, 𝛽2, 𝛽3) as 0.5773, 0.5772 and 0.5776, respectively. 

These constants' values must always satisfy the requirement that𝛽′𝛽 = 1. These values are 

selected so that the eigenvector for X X  matrix the next largest Eigen value is normalized 

(Aslam, 2014; McDonald et al, 1975 and Newhouse and Oman 1971) for more details. 

 

Since the performance of error terms, i  is heteroscedastic in nature. Subsequently, iu  

are independent normally distributed with (0, 𝜐𝑖
2). As a result of (Aslam, 2014) and the 

references listed therein, the error variance is obtained as shown below. 

 

𝜐𝑖
2 = 𝑒𝑥𝑝(𝑔1𝑥1𝑖 + 𝑔2𝑥2𝑖 + 𝑔3𝑥3𝑖), 

 

where, gi is being actual scalar for j=1,2,3. Here 𝑔1 = 𝑔2 = 𝑔3. In lieu of 𝜉 = 0, It turns 

into a homoscedastic error term. You can gauge the level of heteroscedasticity by using  
 

Δ = max (𝜐𝑖
2)/min (𝜐𝑖

2) 

 

for every given value of 𝜌, The method described above was selected so that we have Δ = 

1, 4, 36 and 100. When there is mild to severe heteroscedasticity, knowing the degree of 

it will help the estimators perform more effectively. Our study concentrated on Δ =36, 

where Δ = 1 causes the error term to become homoscedastic. In this simulation study we 

used sample size (n) is set at 50 or 100. To maintain the same level of multicollinearity 

and heteroscedasticity across all initial sample sizes, the 50 observations for each 

explanatory variable are created at random, reproduced twice, three times, and four times, 
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and then replicated. The repetition number of Monte Carlo simulation is fixed to be R = 

5000. The Programming routines in well-known R language are used to carry out all the 

computation required for the study's estimators by using “np” package. We concentrate on 

how well various estimators perform such as OLSE, ORRE, KDE ARRE and AKDE. We 

used rigid parameters suggested by three authors mention above and some constant values 

of   k = 0, 0.01, 0.0. 

 

The estimated MSE for each estimator is presented in Tables 1 to 3. The estimators on 

which we have concentrated our research. We started with a sample size of 50 and then 

raised it to 100 for comparison. To compare the different additional metrics and assess 

how well the estimators performed, they are also shown in Tables 1 to 3 (OLSE, RRE, 

KDE and AKDE). As there is moderate level to severe level of heteroscedasticity as the 

amount Δ = 4, 36, 100 is generated in the data set with dissimilar level of multicollinearity 

(ρ =0.80, 0.90, 0.95, 0.99) in the predictors. It is evident that AKDE has a lower MSE as 

compared with all the other estimators for each estimator of rigid parameter (k = 0, 0.01, 

0.05, HK, GK, KS).  

 

When the severity of the existence of heteroscedasticity for example Δ = 4, there is 

moderate level of existence of heteroscedasticity. For all the levels of collinearity the 

AKDE is more efficient as compared to other estimators. With the increase in severity 

level of existence of heteroscedasticity Δ = 36, 100, with all rigid parameters values (k) 

and increasing the sample AKDE own lower MSE. Resultantly, it is established that the 

suggested estimator is more efficient when the problem of multicollinearity and 

heteroscedasticity occur at same time. 

 

Table 1:  Estimated Mean Square Error (EMSE) and Δ = 4. 

n 50 100 

𝝆 K OLSE RRE ARRE KDE AKDE  OLSE RRE ARRE KDE AKDE 

0.80 0 0.1778 0.1778 0.1665 0.1727 0.1617 0.0872 0.0872 0.0782 0.0865 0.0776  
0.001 0.1750 0.1742 0.1621 0.1696 0.1578 0.0881 0.0876 0.0783 0.0871 0.0778  
0.005 0.1757 0.1717 0.1578 0.1690 0.1553 0.0901 0.088 0.0784 0.0883 0.0786  
HK 0.1743 0.1346 0.1243 0.1497 0.1376 0.0879 0.0754 0.0673 0.0801 0.0714  
GK 0.1738 0.1088 0.1026 0.1321 0.1207 0.0873 0.0697 0.0623 0.0763 0.0678  
KS 0.1748 0.1605 0.1498 0.1634 0.1524 0.0883 0.0842 0.0747 0.0854 0.0758 

0.90 K=0 0.1990 0.199 0.1917 0.1896 0.1827 0.1001 0.1001 0.0952 0.0986 0.0938  
0.001 0.2012 0.1992 0.1914 0.1908 0.1836 0.0983 0.0973 0.0923 0.0962 0.0913  
0.005 0.1955 0.1861 0.1812 0.1816 0.1768 0.101 0.096 0.0913 0.0963 0.0915  
HKB 0.1989 0.1366 0.1367 0.1549 0.1438 0.098 0.0778 0.0752 0.0827 0.0797  
GK 0.2000 0.0973 0.0997 0.1248 0.1101 0.0979 0.0691 0.0682 0.0761 0.0746  
KS 0.1993 0.1720 0.1677 0.1760 0.1514 0.1002 0.0917 0.0866 0.0931 0.0878 

0.95 K=0 0.4597 0.4597 0.4546 0.4282 0.4131 0.2378 0.2378 0.2313 0.2311 0.2247  
0.001 0.4651 0.4549 0.4525 0.4315 0.4087 0.2410 0.2357 0.2301 0.2318 0.2262  
0.005 0.4672 0.4195 0.4166 0.4231 0.4096 0.2233 0.2004 0.1968 0.2055 0.2015  
HKB 0.4759 0.2671 0.2682 0.3660 0.3522 0.2373 0.1591 0.1546 0.1859 0.1803  
GK 0.4663 0.1352 0.1416 0.2486 0.2256 0.2312 0.0993 0.0993 0.1365 0.1351  
KS 0.4607 0.3614 0.3585 0.3973 0.3835 0.2321 0.1986 0.1923 0.2074 0.2007 

0.99 K=0 3.0095 3.0095 2.9533 2.8590 2.7025 1.5090 1.5090 1.4341 1.4484 1.3756  
0.001 3.1105 2.7962 2.7175 2.9592 2.8735 1.5223 1.3684 1.2993 1.4496 1.3744  
0.005 3.0992 1.9125 1.8772 2.9288 2.7675 1.5536 0.9598 0.9069 1.4387 1.3565  
HKB 3.0653 1.066 1.0265 2.8446 2.0491 1.4780 0.5532 0.5128 1.2479 1.1779  
GK 3.0143 0.6108 0.6035 2.6815 2.5051 1.5398 0.3142 0.2921 1.1113 1.0290  
KS 3.0137 1.7189 1.6350 2.8343 2.7164 1.5088 0.9692 0.9026 1.3878 1.2973 
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Table 2: Estimated Mean Square Error (EMSE) and Δ = 36. 

n 50 100 

𝝆 K OLSE RRE ARRE KDE AKDE OLSE RRE ARRE KDE AKDE 

0.80 0 0.3490 0.3490 0.1929 0.3367 0.1867 0.1755 0.1755 0.0777 0.1735 0.0769 

0.001 0.3516 0.3500 0.1880 0.3387 0.1826 0.1760 0.1752 0.0789 0.1737 0.0783 

0.005 0.3489 0.3411 0.1832 0.3340 0.1802 0.1767 0.1728 0.0777 0.1730 0.0779 

HK 0.3525 0.2536 0.1292 0.3021 0.1498 0.1755 0.1424 0.06115 0.1571 0.0661 

GK 0.3477 0.1850 0.1071 0.2540 0.1171 0.1756 0.1181 0.0550 0.1422 0.0592 

KS 0.3531 0.3214 0.1685 0.3300 0.1736 0.1774 0.1681 0.0746 0.1712 0.0760 

0.90 K=0 0.2628 0.2628 0.1540 0.2471 0.1464 0.1301 0.1301 0.0699 0.1276 0.0687 

0.001 0.2654 0.2629 0.1532 0.2486 0.1460 0.1284 0.1272 0.0691 0.1251 0.0682 

0.005 0.2608 0.2489 0.1465 0.2405 0.1426 0.1298 0.1239 0.0679 0.1236 0.0678 

HKB 0.2616 0.1652 0.1038 0.1949 0.1183 0.1307 0.0975 0.0554 0.1057 0.0593 

GK 0.2653 0.1216 0.0908 0.1541 0.1018 0.1321 0.082 0.0509 0.0936 0.0559 

KS 0.2618 0.2216 0.1327 0.2275 0.1363 0.1322 0.1197 0.0660 0.1217 0.0670 

0.95 K=0 0.6161 0.6161 0.4730 0.5777 0.4429 0.3077 0.3077 0.2199 0.2986 0.2132 

0.001 0.5993 0.5861 0.4532 0.5580 0.4308 0.3075 0.3008 0.2150 0.2958 0.2111 

0.005 0.6086 0.5462 0.4186 0.5574 0.4259 0.2998 0.2691 0.1915 0.2779 0.1972 

HKB 0.6045 0.3268 0.2437 0.4731 0.3486 0.3059 0.1958 0.1352 0.2406 0.1644 

GK 0.5942 0.1706 0.1322 0.3309 0.2443 0.3060 0.1127 0.0811 0.1725 0.1190 

KS 0.6335 0.4956 0.3688 0.5595 0.4155 0.3050 0.2582 0.1841 0.2744 0.1950 

0.99 K=0 4.3014 4.3014 2.9177 4.1411 2.8074 2.0688 2.0688 1.2534 1.9929 1.2047 

0.001 4.2617 3.8352 2.5285 4.0976 2.699 2.1646 1.9486 1.1678 2.0863 1.2481 

0.005 4.1753 2.5911 1.6800 3.9932 2.5861 2.1227 1.3166 0.7772 2.0077 1.1778 

HKB 4.1349 1.3891 0.8399 3.8991 3.5825 2.0613 0.7580 0.4352 1.8424 1.2298 

GK 4.1435 0.8245 0.4886 3.7967 2.7962 2.1095 0.4481 0.2436 1.5926 1.4161 

KS 4.1923 2.3315 1.4485 4.0086 2.5888 2.0739 1.2997 0.7543 1.9516 1.1740 

 

Table 3: Estimated Mean Square Error (EMSE) and Δ = 100. 

n 50 100 

𝝆 K OLSE RRE ARRE KDE AKDE OLSE RRE ARRE KDE AKDE 

0.80 0 0.5402 0.5402 0.2466 0.5196 0.2388 0.2659 0.2659 0.0823 0.2622 0.0816 

0.001 0.5178 0.5155 0.2363 0.4973 0.2296 0.2645 0.2633 0.0799 0.2603 0.0793 

0.005 0.5469 0.5349 0.2332 0.5237 0.2303 0.2696 0.2637 0.0801 0.2638 0.0804 

HK 0.5481 0.3766 0.1433 0.4744 0.1701 0.2619 0.2025 0.0605 0.2322 0.0661 

GK 0.5291 0.2656 0.1360 0.3955 0.1325 0.2602 0.1559 0.0570 0.2019 0.0564 

KS 0.5275 0.4776 0.2030 0.4947 0.2123 0.2582 0.2437 0.0757 0.2490 0.0774 

0.90 K=0 0.3490 0.3490 0.1437 0.3250 0.1368 0.1708 0.1708 0.0614 0.1666 0.0604 

0.001 0.3526 0.3494 0.1419 0.3274 0.1353 0.1735 0.1719 0.0611 0.1683 0.0602 

0.005 0.3451 0.3300 0.1387 0.3159 0.1349 0.1726 0.1651 0.0601 0.1642 0.06007 

HKB 0.3500 0.2082 0.0957 0.2568 0.1089 0.1806 0.1265 0.0484 0.1416 0.0520 

GK 0.3473 0.1529 0.0916 0.1954 0.0884 0.1748 0.0989 0.0447 0.1139 0.0456 

KS 0.3392 0.2827 0.1184 0.2937 0.1229 0.1740 0.1561 0.0569 0.1593 0.0580 

0.95 K=0 0.7317 0.7317 0.4661 0.6871 0.4373 0.3644 0.3644 0.2072 0.3533 0.2005 

0.001 0.7399 0.7237 0.4545 0.6909 0.4336 0.3743 0.3362 0.1833 0.3493 0.1894 

0.005 0.7255 0.6515 0.4074 0.6683 0.4176 0.3729 0.2293 0.1226 0.2946 0.1548 

HKB 0.7499 0.3913 0.2325 0.5998 0.3491 0.3710 0.1281 0.0749 0.2096 0.1159 

GK 0.7561 0.2137 0.1348 0.4525 0.2720 0.3633 0.3047 0.1698 0.3275 0.1817 

KS 0.7347 0.5647 0.3384 0.6536 0.3896 0.3613 0.3028 0.1674 0.3255 0.1794 

0.99 K=0 5.1473 5.1473 2.7678 4.9735 2.6777 2.6188 2.6188 1.1615 2.5462 1.1281 

0.001 5.0817 4.5760 2.4464 4.8998 2.6247 2.5304 2.2786 1.0011 2.4510 1.0749 

0.005 5.1189 3.1837 1.5520 4.9325 2.4096 2.5426 1.5819 0.6774 2.4362 1.0373 

HKB 5.2175 1.7662 0.8074 5.1500 2.1350 2.5618 0.9339 0.3759 2.3641 1.3214 

GK 5.1331 1.0012 0.4604 4.9553 2.3965 2.5952 0.5514 0.2131 2.0829 1.8561 

KS 5.2056 2.8799 1.3657 5.0375 2.5557 2.5619 1.5776 0.6756 2.4404 1.1070 
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5.2 Graphical presentation 

 

The performance of the estimators can also be presented graphically as shown in Figure 1 

and Figure 2. In both figures the level of heteroscedasticity is kept Δ 100 and we fix rigid 

biased parameter at k = 0.001, with higher degree of multicollinearity e.g. (0.95) portray 

almost the same picture as given in Fig.1. In graphical presentation exhibits the line of 

MSE as increased sample size from 50 to 200 the MSE decreasing and lower line goes 

parallel with ARRE line of MSE.  MSE’s of the ARRE and AKDE estimators fall very 

below than rest of the estimators as shown in the above stated tables. In few cases, the 

ARRE and AKDE seem to be identical in their performance but generally, the AKDE 

becomes more efficient for severe heteroscedasticity and serious degree of collinearity. 

 

 

 
Figure 1: Comparing MSE with different sample sizes at 𝜌 = .90 k = 0.001, for Δ=100. 

 
Figure 2: Comparing MSE with different sample sizes at 𝜌 = .95 k = 0.001, for Δ=100. 
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6. Discussion and conclusion 

 

In this research study, we suggested efficient estimator to solve problem of 

multicollinearity and heteroscedasticity concerns at same time, we examine the 

performance of the suggested estimator (AKDE) and compare it with other existing 

estimators in this work. We took different level of collinearity of predictor variables and 

different level of severity of existence of heteroscedasticity with sample size 50, 100, 150, 

200.  All the numerical work is done following Aslam and Pasha (2009), we used the 

Monte Carlo simulation method in this study. In the preceding section, we stated that our 

proposed estimator is more effective than other available estimators. As a result, when 

assumptions linear regression model (multicollinearity and heteroscedasticity) are being 

violated the AKDE class estimator is the best option over OLSE. When the linear 

regression model suffers from both multicollinearity and heteroscedasticity 

simultaneously, our suggested estimator is an appropriate choice. 
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