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Abstract 

 

This study demonstrated the efficiency of an exponential-type estimator under Ranked Set 

Sampling (RSS) design. For the mathematical expressions, the MSE and Bias had been 

derived up to 1st and 2nd degree approximation respectively. Family of this proposed 

estimator has derived also and for efficiency comparison, mathematical conditions have 

been derived by comparing various existing estimators under RSS design. For the  

efficiency, a numerical comparison was also done by taking 3 real life population data for 

high negative correlation, moderate and high positive correlation. On the basis of this 

proof, it is revealed that exponentially ratio type estimator is most efficient than all other 

existing estimators. 
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1. Introduction 

 

The theory of ranked set sampling is a current development that empowers one to provide 

more structure to the collected sample units, while in the name is a little inaccuracy as it 

is not as much a sampling method as it is a data measurement procedure. Rank set sampling 

needs the judgment of ordered elements to obtain an estimate of the population true value. 

The method works best when measuring or quantifying a particular element is challenging, 

although drawing and ranking the members of a set of a certain size is simple and can be 

done with some success. Only one element is quantified in each set, but all components 

are ranked. A certain amount of quantified items and a mean for each rank are produced 

after processing enough sets. Despite ranking mistakes, the average of these means 

provides a fair assessment of the population mean. The technique of ranked set sampling 

(RSS) was first suggested by McIntyre (1958) as a cost efficient different from simple 

random sampling (SRS) for those conditions where measurements are difficult or costly to 

find but (judgment) ranking of units according to the variable of the study say Y, is quite 

easy and inexpensive. It is acknowledged that the estimation of the population means using 

RSS is more efficient than that the one attained using SRS.  

 

McIntyre (1958) and Takahasi and Wakimoto (1968) anticipated a perfect ranking of the 

elements, that is, there are no inaccuracies in ranking the elements. However, in most 
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circumstances, the ranking could not be done perfectly. Dell and Clutter (1972) 

demonstrated that the sample mean under the RSS is an unbiased estimator of the 

population mean, although there are errors in ranking or not it remains an unbiased 

estimator. Stokes measured the situation where the ranking is done based on a concomitant 

(auxiliary) variable X as an alternative visual judgment of expertise. For example, at a 

risky unwanted, or waste location, it can be possible to rank pollutant levels according to 

the degree of waste. Also, it is used in estimating the size of trees in a forest by ranking 

their widths. In these examples, the variable of interest (pollutant level or size of the three) 

would be highly associated with the associated (auxiliary) variable. 

 

2.  The procedure of the ranked set sampling 

 

To generate ranked sets, we must divide the nominated first phase sample into equal-sized 

sets. To develop an RSS design, we must therefore choose a set size that is obviously 

small, about three or four, in order to minimize ranking error. Call this set size as m, where 

m is the number of sample units assigned to each set. Then, we proceed as follows. 

 

Step 1: Casually select n=m*r sampling items from the population.   

Step 2: Assign the n selected items as randomly as likely into m sets, each of size m.  

Step 3: Up till now without knowing any values for the variable of concern, rank the units 

within each set based on an observation of comparative values for this variable. This may 

be done through personal judgement or by measuring a covariate that is associated with 

the variable of interest. 

Step 4: choose a sample for authentic study by taking the smallest ranked unit in the first 

set, and then the second smallest ranked unit in the second set, and so on until the largest 

ranked unit is chosen in the last set.   

Step 5: Repeat steps 1 to 4 for r cycles until the required sample size, n=m*r, is obtained 

for analysis. Consider the set size m=3 with r=4 cycles as an example. 

 

3. Background theory of estimators 

 

Let 𝑌(𝑖)𝑗 be the independent random variables all having the same cumulative distribution 

function F(x). The estimated mean of the RSS of the population mean 𝑌̅ is 

 

𝑦
𝑅𝑆𝑆

=
1

𝑚∗𝑟
∑ ∑ 𝑌(𝑖)𝑗

𝑚
𝑖=1

𝑟
𝑗=1 = 𝑙11.                                                                                     (1) 

 

According to Chen, Z. (2001),  𝑦
𝑅𝑆𝑆

 is an unbiased estimator. 

The traditional Classical Ratio estimator (2009) for the population mean 𝜇 under simple 

random sampling is: 

  

𝑦̅𝑆𝑅𝑆 = 𝑟̅𝑋̅ = 𝑙12                                                                                                                 (2) 

  

where,  𝑦̅𝑆𝑅𝑆 =
𝑦̅

𝑥̅
𝑋̅.  

 

The Singh and Tailor (2003) type ratio estimators of population mean 𝜇 that is converted 

in RSS expressions by Khan et al. (2016) using the unbiased type of Hartley and Ross 

(HR) in (1954). 

𝑦̅𝑆𝑖𝑛(𝑅𝑆𝑆) = 𝑟̅(𝑖) 𝑋̅ = 𝑙13                                                                                                        (3)                                                     
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The Sisodia and Dwivedi (1981) estimator existing in Simple Random Sampling is 

converted in RSS. 

 

𝑦̅𝑆𝐷(𝑅𝑆𝑆) = 𝑟1
𝑠𝑋̅′ = 𝑙14                                                                                                       (4) 

 

The existing estimator of Kadilar and Cingi (2009) proposed by Khan et al (2016) in 

unbiased Hartley and Ross (HR) type form under RSS is 

 

𝑦̅𝑘𝑐(𝑅𝑆𝑆) =  𝑟2
𝑠𝑋̅′′ = 𝑙15                                                                                                       (5) 

 

The Singh and Taylor (1999) ratio type estimator existing in Simple Random Sampling 

(SRS) and it is converted in Ranked Set Sampling (RSS). 

 

 𝑦̅𝑆𝑇(𝑅𝑆𝑆) =
𝑦̅(𝑖)

(𝑥̅(𝑖)+𝜌)
(𝑋̅ + 𝜌) = 𝑙16                                                                                    (6) 

 

The Bhal and Tuteja (1991) exponential ratio type estimator converted into RSS. 

 

𝑦̅𝐵𝑇(𝑅𝑆𝑆) = 𝑦̅[𝑖] exp [
( 𝑋̅−𝑥̅(𝑖))

(𝑋̅+𝑥̅(𝑖))
] = 𝑙17

𝑒
                                                                                 (7) 

 

The Kadilar and Cingi (2009) estimator is converted in RSS for making comparison with 

the proposed exponential ratio type estimator. 

 

 𝑦̅𝐾𝐶(𝑅𝑆𝑆) = 𝑦̅[𝑖] exp [
(𝑎 𝑋̅+𝑏)−(𝑎𝑥̅(𝑖)+𝑏)

(𝑎 𝑋̅+𝑏)+(𝑎𝑥̅(𝑖)+𝑏)
] = 𝑙18

𝑒
                                                                 (8) 

 

3.1 Some useful notations and expectations 

 

The unbiased estimator of the population mean 𝜇 is given by, 

 

 𝑦̅𝑅𝑆𝑆 =
∑ ∑ 𝑌(𝑖)𝑗

𝑚
𝑖=1

𝑟
𝑗=1

𝑚𝑟
                                                                                                         (9)  

 

𝑥̅𝑅𝑆𝑆 =
1

𝑚𝑟
∑ ∑ 𝑥(𝑖)𝑗

𝑚
𝑖=1

𝑟
𝑗=1                                                                                         (10) 

 

 𝑟̅(𝑖) =
1

𝑚𝑟
∑ ∑ 𝑟(𝑖)𝑗

𝑚
𝑖=1

𝑟
𝑗=1                                                                                (11) 

 

 𝑟1
𝑠 =

𝑦̅[𝑖]

𝑥̅(𝑖)
′                                                                                                             (12) 

 

where,   𝑥̅(𝑖)
′    =  (𝑥̅(𝑖) + 𝐶𝑥), 𝑋̅′ = 𝑋̅ + 𝐶𝑥 

 

 𝑟2
𝑠 =

𝑦̅[𝑖]

𝑥̅(𝑖)
′′                                                                                                                          (13)   

 

where,  𝑥̅(𝑖)
′′ =  (𝑥̅(𝑖)𝐶𝑥 + 𝜌) and   𝑋̅′′ = 𝑋̅𝐶𝑥 + 𝜌. 
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The weighted terms occurred due to ranking the objects and because of the ordered 

distribution in the ranked set sampling are given by              

           

(i) 𝑤𝑦(𝑖)
2 =

1

(𝑚2𝑟)𝑌̅2
∑ (𝜇𝑦[𝑖] − 𝑌̅)

2𝑚
𝑖=1  

(ii) 𝑤𝑥(𝑖)
2 =

1

(𝑚2𝑟)∗𝑋̅2
∑ (𝜇𝑥(𝑖) − 𝑋̅)2𝑚

𝑖=1  

(iii) 𝑤𝑦𝑥(𝑖) =
∑ (𝜇𝑦[𝑖]−𝑌̅)(𝜇𝑥(𝑖)−𝑋̅)𝑚

𝑖=1

(𝑚2𝑟) 𝑌̅𝑋̅
 

 

To obtain Bias and MSE of the estimators, the useful expectations under RSS are: 

 

𝑦̅[𝑖] = 𝑦̅(1 + 𝑒0), 𝑥̅(𝑖) = 𝑋̅(1 + 𝑒1). 

 

E (𝑒0) = E (𝑒1) = 0, E (𝑒0
2) =  𝛾𝑐𝑦

2-𝑤𝑦(𝑖)
2 , E (𝑒1

2) = 𝛾𝑐𝑥
2-𝑤𝑥(𝑖)

2 . 

 

E (𝑒0𝑒1) =𝛾 𝑐𝑦𝑥 −  𝑤, where   𝛾 =
1

𝑚∗𝑟
 . 

 

In the next section the bias and mean square errors of the above estimators are discussed. 

 

3.2  Bias and mean square error expressions 

 

The variance of 𝑙11 by using the above expectations under RSS is obtained as: 

  

 V (𝑙11) =𝑌̅2(𝛾𝑐𝑦
2 − 𝑤𝑦[𝑖]

2 )                                                                                              (14) 

 

The mean square error (MSE) and bias of  𝑙12 up to 1st degree and 2nd degree approximation 

respectively are given as: 

 

𝑀𝑆𝐸𝑦̅𝑆𝑅𝑆
= 𝛼𝑌̅2{𝑐𝑦

2 + 𝑐𝑥
2 − 2𝑐𝑦𝑥}                                                                                 (15) 

where,  𝛼 = 1 −
𝑓

𝑛
 .  

 

𝐵𝑖𝑎𝑠 𝑖𝑛 𝑦̅𝑆𝑅𝑆 = 𝛼𝑌̅{𝑐𝑥
2 − 𝑐𝑦𝑥}                                                                                           (16) 

 

The mean square error (MSE) and bias of  𝑙13 up to 1st degree and 2nd degree approximation 

respectively, under RSS design are given as 

 

𝑀𝑆𝐸𝑙13
= 𝑌̅2[(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + (𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))]                             (17) 

 

Bias in  𝑙13 = −
𝑛(𝑁−1)

𝑁(𝑛−1)
(𝑦̅[𝑖] − 𝑟̅(𝑖)𝑥̅(𝑖))                                                                           (18) 

 

The MSE and Bias of 𝑙14 turned into RSS design using expectations in Section 3.1 

respectively are 

 

𝑀𝑆𝐸𝑙14
= 𝑌̅2{(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + 𝑔2(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2𝑔(𝛾𝑐𝑦𝑥 −  𝑤𝑦𝑥(𝑖))                        (19) 

where,  𝑔 =
𝑋̅

 𝑋̅+𝐶𝑥
 

Bias in 𝑙14 = 𝑔𝑌̅[𝑔( 𝛾𝑐𝑥
2-𝑤𝑥(𝑖)

2 ) − (𝛾𝑐𝑦𝑥 −  𝑤𝑦𝑥(𝑖))]                                                      (20) 
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The MSE and Bias of 𝑙15 turned into RSS design using expectations as well are 

 

𝑀𝑆𝐸𝑙15
= 𝑌̅2{(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + (

𝑋̅𝐶𝑥

 𝑋̅𝐶𝑥+𝜌
)2(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2(

𝑋̅𝐶𝑥

 𝑋̅𝐶𝑥+𝜌
)(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) (21)                      

and                                                                                                                                        

Bias in 𝑙15 = −
𝑛(𝑁−1)

𝑁(𝑛−1)
(𝑦̅(𝑖) − 𝑟2

𝑠𝑥(𝑖)
′′ ).                                                                           (22)   

 

The MSE and Bias of 𝑙16 turned into RSS design to make comparison with the proposed 

are given by 

 

𝑀𝑆𝐸𝑙16
= 𝑌̅2{(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + (

𝑋̅

 𝑋̅+𝐶𝑥
)2(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2(

𝑋̅

 𝑋̅+𝐶𝑥
)(𝛾𝑐𝑦𝑥 −  𝑤𝑦𝑥(𝑖))}     (23)                           

                                        

Bias in 𝑙16 = 
𝑋̅

 𝑋̅+𝜌
 𝑌̅[

𝑋̅

 𝑋̅+𝜌
( 𝛾𝑐𝑥

2-𝑤𝑥(𝑖)
2 ) − (𝛾𝑐𝑦𝑥 −  𝑤𝑦𝑥(𝑖))]                    (24) 

 

The MSE and Bias of an exponential ratio type estimator of 𝑙17
𝑒
 respectively are given as

  

𝑀𝑆𝐸𝑙17
𝑒

 
= 𝑌̅2 [(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) +

1

4
(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − (𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))]                         (25) 

Bias in 𝑙17
𝑒 = 𝑌̅[−

𝛾𝐶𝑦𝑥− 𝑊𝑦𝑥(𝑖)

2
+

3(𝛾𝑐𝑥
2−𝑤𝑥(𝑖)

2 )

8
]                                                              (26) 

 

The MSE and Bias of an exponential ratio type estimator of 𝑙18
𝑒
 respectively are given as 

 

𝑀𝑆𝐸𝑙18
𝑒 = 𝑌̅2[(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + 𝛿(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 )(𝛿 − 2𝐻𝑦𝑥]                                          (27) 

 

Bias in  𝑙18
𝑒 = 𝑌̅{−𝛿(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) + (1 + 𝛿2)(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 )}                                 (28) 

 

where,        𝐻𝑦𝑥 = 𝜌𝑦𝑥

(𝛾𝑐𝑦
2−𝑤𝑦[𝑖]

2 )1/2

(𝛾𝑐𝑥
2−𝑤𝑥(𝑖)

2 )1/2 ,     y≠x,     𝜌𝑦𝑥 =
𝛾𝑐𝑦𝑥−𝑤𝑦𝑥(𝑖)

{(𝛾𝑐𝑦
2−𝑤𝑦[𝑖]

2 )∗(𝛾𝑐𝑥
2−𝑤𝑥(𝑖)

2 )}
1/2,     

and 𝛿 =
𝑎𝑋̅

2(𝑎 𝑋̅+𝑏)
. 

 

In the next section new family of estimators is obtained and shows some estimators 

discussed in section 3 are special case of it. 

 

4. Proposed class of estimators 

 

The proposed estimator is given by 

 𝑦̅𝑅𝑆𝑆
𝑃 = 𝑦̅exp [𝜃{

𝑋̅
1
ℎ−𝑥̅

1
ℎ(𝑖)

𝑋̅
1
ℎ+(𝑎−1)𝑥̅

1
ℎ(𝑖)

}]                                                              (29) 

where 𝜃, 𝑎, ℎ are some auxiliary constants.  These constants are used to make a family of 

estimators by giving some numerical values. By converting above equation in to ei’s, it 

becomes 

 𝑦̅𝑅𝑆𝑆
𝑃 = 𝑌̅(1 + 𝑒0)exp [𝜃 {

𝑋̅
1
ℎ(1−(1+𝑒1)

1
ℎ)

𝑋̅
1
ℎ(1+(𝑎−1)(1+𝑒1)

1
ℎ)

}]                                                 (30) 

 

Expanding up to 1st order and after simplifications it becomes 
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 𝑦̅𝑅𝑆𝑆
𝑃 = 𝑌̅(1 + 𝑒0) exp[−

𝑡

ℎ
𝑒1 +

𝑡

ℎ2 𝑒1
2 −

𝑡

𝑎ℎ
𝑒1

2]                                                (31) 

where,   𝑡 =
𝜃

𝑎
. 

  

𝑦̅𝑅𝑆𝑆
𝑃 = 𝑌̅ + 𝑌̅𝑒0 − 𝑌̅

𝑡

ℎ
𝑒1                                                                     (32) 

Taking expectation on both sides of equation (31) 

 

 𝐸(𝑦̅𝑅𝑆𝑆
𝑃 − 𝑌̅) = 𝑌̅𝐸(𝑒0) − 𝑌̅

𝑡

ℎ
𝐸(𝑒1) 

 𝐸(𝑦̅𝑅𝑆𝑆
𝑃 ) = 𝑌̅ .                                                                                                                (33) 

 

Hence proved from above result that 𝑦̅𝑅𝑆𝑆
𝑃  is an unbiased estimator up to 1st order of 

expansion. For MSE taking square and applying expectation on both sides of (31) 

 

 𝐸(𝑦̅𝑅𝑆𝑆
𝑃 − 𝑌̅)2 = 𝑌̅2𝐸(𝑒0 −

𝑡

ℎ
𝑒1)2 

 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 ) = 𝑌̅2 [(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) +

𝑡2

ℎ2 (𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) − 2
𝑡

ℎ
(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))]                (34) 

 

To obtaining bias expand (29) up to 2nd order after simplification. 

 

𝑦̅𝑅𝑆𝑆
𝑃 − 𝑌̅ = 𝑌̅𝑒0 − 𝑌̅𝜃(2 − 𝑎)

1

ℎ
𝑒1 − 𝑌̅(𝜃)

1

ℎ2 𝑒1
2 − 𝑌̅𝜃(2 − 𝑎)

1

ℎ
(𝑒0𝑒1)                      (35) 

 

After applying expectation on both sides of (34), we get 

 

𝐵𝑖𝑎𝑠 𝑖𝑛  𝑦̅𝑅𝑆𝑆
𝑃 = −𝑌̅(𝜃)

1

ℎ
[

1

ℎ
(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) + (2 − 𝑎)(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))                         (36) 

 

In the next session optimal mean square error is obtained to meet the objective of minimum 

MSE. 

  

4.1  Optimum mean square error 

 

For obtaining minimum MSE it is required to partially differentiate (33) w.r.t the 𝑡, after 

that put equals to zero, we obtain 

 
𝜕(𝑀𝑆𝐸

(𝑦̅𝑅𝑆𝑆
𝑃 )

)

𝜕𝑡
= 𝑌̅2 𝜕

𝜕𝑡
[(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) +

𝑡2

ℎ2
(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2

𝑡

ℎ
(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))]           (37) 

                                                           

 𝑡 = ℎ
(𝛾𝑐𝑦𝑥−𝑤𝑦𝑥(𝑖))

(𝛾𝑐𝑥
2−𝑤𝑥(𝑖)

2 )
 .                                                                                                        (38) 

 

After substituting the (38) in to (34), it becomes 

 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 )𝑜𝑝𝑡 = 𝑌̅2(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 )[1 − 𝜌2]                                                                    (39) 

 

 where, 𝜌 = √
(𝛾𝑐𝑦𝑥−𝑤𝑦𝑥(𝑖))

2

(𝛾𝑐𝑥
2−𝑤𝑥(𝑖)

2 )(𝛾𝑐𝑦
2−𝑤𝑦[𝑖]

2 )
                                                                                (40) 
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4.2  Family of proposed estimator  

 

A family can be determined by giving some numeric values to auxiliary constants. 

 

Remark 1: when  θ = 1 , h=1, a=2 then the proposed estimator turns in to existing 

estimator 𝑙17
𝑒
 mentioned in section 3. 

 

𝑦̅𝑅𝑆𝑆
𝑃 = 𝑦̅exp [ 

𝑋̅− 𝑥̅(𝑖)

𝑋̅+ 𝑥̅(𝑖)
 ]                                                                                                    (41) 

 

By substituting these values in equation (33), 

 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 ) = 𝑌̅2 [(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) +

1

4
(𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − (𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))] .                     (42) 

 

Remark 2: when  𝜃 = 1 , h = 1, a = 1 then the proposed estimator turns in to simple ratio 

estimator mentioned in equation (3) as 𝑙13. By substituting these values in equation (28) 

 

𝑦̅𝑅𝑆𝑆
𝑃 = 𝑦̅exp [ 

𝑋̅− 𝑥̅(𝑖)

𝑋̅
 ]                                                                                                   (43) 

 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 ) = 𝑌̅2[(𝛾𝑐𝑦

2 − 𝑤𝑦[𝑖]
2 ) + (𝛾𝑐𝑥

2 − 𝑤𝑥(𝑖)
2 ) − 2(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))]                       (44) 

 

5. Efficiency comparison    

 

The 𝑦̅𝑅𝑆𝑆
𝑃  is more efficient than existing  𝑙13, 𝑙14, 𝑙15, 𝑙16, 𝑙17

𝑒
 and  𝑙18

𝑒
 if the following 

conditions hold respectively. 

 

i- (𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) (1 −
𝑡2

ℎ2) − 2(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖))(1 −
𝑡

ℎ
) ≥ 0 

ii- (𝑔2 −
𝑡2

ℎ2)(𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) − 2(𝑔 −
𝑡

ℎ
)(𝛾𝐶𝑦𝑥 − 𝑊𝑦𝑥(𝑖)) ≥ 0      

iii- ((
𝑋̅𝐶𝑥

 𝑋̅𝐶𝑥+𝜌
)2 −

𝑡2

ℎ2) (𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) − 2 {(
𝑋̅𝐶𝑥

 𝑋̅𝐶𝑥+𝜌
) −

𝑡

ℎ
} (𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) ≥ 0 

iv- (𝑙2 −
𝑡2

ℎ2)(𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) − 2(𝑙 −
𝑡

ℎ
)(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) ≥ 0 ,   where 𝑙 =

𝑋̅

 𝑋̅+𝜌
 

v- (
1

4
−

𝑡2

ℎ2)(𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) − 2(1 −
𝑡

ℎ
)(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) ≥ 0 

vi- 𝛿(𝛾𝑐𝑥
2 − 𝑤𝑥(𝑖)

2 ) (𝛿 − 2𝐻𝑦𝑥 −
𝑡2

ℎ2
) + 2

𝑡

ℎ
(𝛾𝑐𝑦𝑥 − 𝑤𝑦𝑥(𝑖)) ≥ 0   

 

The estimator 𝑦̅𝑅𝑆𝑆is more efficient than  𝑦̅𝑆𝑅𝑆 if   

 
1

𝑁
(𝑐𝑦

2 + 𝑐𝑥
2 − 2𝑐𝑦𝑥) ≤ (𝑤𝑦[𝑖]

2 + 𝑤𝑥(𝑖)
2 − 2𝑤𝑦𝑥(𝑖)). 

 

6. Numerical illustration 

 

To observe the performances of the estimators we use the following three real life data 

sets. The descriptions are given in the following tables. 
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Table 1: Population sources with characteristics. 

 

Table 2: Different samples and MSE’s results for population 1. 

              n 

   MSE 

9 12 15 30 12 16 20 40 15 20 25 50 

𝑀𝑆𝐸𝑙11
 5.96 0.92 3.59 1.76 3.64 2.72 2.17 1.09 2.50 1.87 1.48 0.75 

𝑀𝑆𝐸𝑙12
 11.14 2.51 6.68 3.34 8.35 6.26 5.01 2.50 6.68 5.01 4.01 2.00 

𝑀𝑆𝐸𝑙13
 1.82 8.49 1.08 0.54 1.35 1.00 0.81 0.40 1.06 0.80 0.64 0.31 

𝑀𝑆𝐸𝑙14
 1.82 4.53 1.08 0.54 1.34 1.00 0.80 0.40 1.06 0.79 0.64 0.31 

𝑀𝑆𝐸𝑙15
 2.20 1.57 1.29 0.64 1.36 1.01 0.80 0.41 0.98 0.72 0.57 0.28 

𝑀𝑆𝐸𝑙16
 1.83 1.37 1.09 0.55 1.36 1.02 0.82 0.41 1.08 0.81 0.65 0.32 

𝑀𝑆𝐸𝑙17
𝑒

 
 2.78 0.15 1.66 0.82 1.82 1.36 1.09 0.55 1.33 0.99 0.79 0.39 

𝑀𝑆𝐸𝑙18
𝑒

 
 3.97 2.90 2.38 1.17 2.49 1.86 1.48 0.74 1.76 1.31 1.04 0.53 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 )𝑜𝑝𝑡 0.99 0.72 0.59 0.29 0.61 0.45 0.36 0.18 0.41 0.31 0.25 0.12 

 

Table 3: Different samples and MSE’s results for population 2. 

n 

    MSE 

12 15 9 12 16 20 15 20 25 

𝑀𝑆𝐸𝑙11
 4.54 3.62 6.21 3.70 2.89 2.24 2.60 1.89 1.53 

𝑀𝑆𝐸𝑙12
 8.29 6.64 11.06 8.29 6.22 4.98 6.63 4.98 3.98 

𝑀𝑆𝐸𝑙13
 6.68 5.34 8.98 6.38 4.83 3.83 4.98 3.70 2.97 

𝑀𝑆𝐸𝑙14
 6.68 5.34 8.98 6.37 4.82 3.83 4.97 3.70 2.97 

𝑀𝑆𝐸𝑙15
 4.30 3.43 5.88 3.52 2.74 2.13 2.48 1.80 1.46 

𝑀𝑆𝐸𝑙16
 6.67 5.34 8.96 6.37 4.83 3.83 4.97 3.69 2.96 

𝑀𝑆𝐸𝑙17
𝑒 5.45 4.36 7.38 4.92 3.77 2.96 3.71 2.74 2.20 

𝑀𝑆𝐸𝑙18
𝑒

 
 4.77 3.81 6.50 4.03 3.12 2.43 2.90 2.12 1.71 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 )𝑜𝑝𝑡 4.25 3.39 5.82 3.47 2.70 2.10 2.44 1.77 1.44 

 P
a

ra
m

et
er

s 

Population 1 Population 2 Population 3 

Source: U.S.  

Environmental Protection 

Agency, 1991 

Source: William.G,Cochran 

Sampling techniques,1909 

Source: Applied Linear 

Statistical Models 2004, 

pg-1348, dataset 1 

X Y X Y X Y 

Weight MPG Weekly family 

income 

Weekly 

expenditure 

Average 

no. of beds 

Average 

no. of nurses 

 N=83 N= 36 N=113 

     𝑌̅ 33.8420 27.4909 173.2480 

   𝑋̅ 31.0494 72.5454 252.1680 

  𝜌 -0.9128 0.2521 0.9155 

 𝑐𝑦 0.2959   0.3629 0.8003 

  𝑐𝑥 0.2617 0.1436 0.7613 

   𝑐𝑦𝑥 -0.0707 0.01314 0.5578 

 𝑉𝑦 100.2432 99.5226 19223.21 

 𝑉𝑥 66.02843 108.4904 36859.2 
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Table 4: Different samples and MSE’s results for population 3. 

                n 

 MSE 

9 12 15 30 12 16 20 40 15 20 25 50 

𝑀𝑆𝐸𝑙11
 1216 922.2 735.5 369.4 751.4 554.9 451.2 228.2 520.1 389.5 309.3 154.7 

𝑀𝑆𝐸𝑙12
 2136 1601 1281 640.8 1602 1202 961.2 480.6 1281 961.2 768.9 384.5 

𝑀𝑆𝐸𝑙13
 345.6 259.2 207.6 103.7 258.8 194.0 155.3 77.7 207.0 155.1 124.0 62.0 

𝑀𝑆𝐸𝑙14
 344.9 258.6 207.1 103.5 258.2 193.6 154.9 77.5 206.5 154.8 123.7 61.9 

𝑀𝑆𝐸𝑙15
 427.4 323.5 260.7 130.0 264.4 194.0 158.8 81.1 186.4 137.5 108.3 54.3 

𝑀𝑆𝐸𝑙16
 344.8 258.5 207.1 103.5 258.1 193.5 154.9 77.5 206.4 154.7 123.7 61.9 

  𝑀𝑆𝐸𝑙17
𝑒

 
 503.2 379.9 304.4 152.3 333.7 247.4 200.3 101.2 246.1 183.6 145.9 73.0 

 𝑀𝑆𝐸𝑙18
𝑒

 
 352.4 264.8 212.6 106.1 252.1 188.1 151.3 76.1 84.2 146.7 116.9 58.5 

𝑀𝑆𝐸(𝑦̅𝑅𝑆𝑆
𝑃 )𝑜𝑝𝑡 196.8 149.3 119.0 59.7 121.6 89.8 73.0 36.9 196.5 62.0 50.1 25.0 

 

 

7. Conclusion 

 

Using all three given populations, the proposed estimator is more efficient due to its 

minimum MSE. It is also concluded that the proposed exponentially ratio type estimator 

is most preferable over its competitive estimators under RSS. Thus, exponentially ratio 

type estimator gives better results than other ratio type under RSS design. In this study, 

ratio type existing estimators by Bhal and Tuteja (1991), Kadilar and Cingi (2009), Singh 

and Tailor (2003), Khan et al (2016) unbiased HR ratio type estimators and Sisodia and 

divedi were experienced with high positive, high negative and moderate correlations. It is 

illustrated by using these three correlation levels that MSE of proposed estimator is 

minimum than all other existing MSE’s under RSS.  Also, it is revealed by above 

numerical results that RSS design gives minimum MSE’s than SRS design, so that RSS 

design is better than SRS design. At the end, it can be said that the proposed estimator can 

give a better practice for more studies.  

Appendix A  

In this section different sample sets with some useful information are given. 

Table A.1: Different 12 sample sets of population 1 with characteristics. 

n 9 12 15 30 12 16 20 40 15 20 25 50 

m 3 3 3 3 4 4 4 4 5 5 5 5 

r 3 4 5 10 3 4 5 10 3 4 5 10 

𝑤𝑥(𝑖)
2  0.0037 0.0028 0.0022 0.0011 0.0034 0.0025 0.0025 0.0011 0.0030 0.0022 0.0018 0.0009 

𝑤𝑦[𝑖]
2  0.0045 0.0035 0.0027 0.0014 0.0041 0.0031 0.0020 0.0012 0.0036 0.0027 0.0022 0.0011 

𝑤𝑦𝑥  0.0041 0.0031 0.0024 0.0012 0.0038 0.0028 0.0022 0.0011 0.0033 0.0025 0.0020 0.0010 
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TABLE A.2. Different 12 sample sets of population 2 with characteristics. 

n 12 15 9 12 16 20 15 20 25 

m 3 3 3 4 4 4 5 5 5 

r 4 5 3 3 4 5 3 4 5 

𝑤𝑥(𝑖)
2  0.0009 0.0007 0.0012 0.0011 0.0008 0.0006 0.0009 0.0007 0.0006 

𝑤𝑦[𝑖]
2  0.0050 0.0040 0.0064 0.0061 0.0044 0.0036 0.0053 0.0041 0.0033 

𝑤𝑦𝑥 0.0021 0.0017 0.0028 0.0025 0.0019 0.0015 0.0022 0.0017 0.0013 

 

TABLE A.3. Different 12 sample sets of population 2 with characteristics. 

n 9 12 15 30 12 16 20 40 15 20 25 50 

m 3 3 3 3 4 4 4 4 5 5 5 5 

r 3 4 5 10 3 4 5 10 3 4 5 10 

𝑤𝑥(𝑖)
2  0.0274 0.0202 0.0160 0.0081 0.0255 0.0193 0.0153 0.0076 0.0230 0.0172 0.0138 0.0069 

𝑤𝑦[𝑖]
2  0.0307 0.0226 0.0000 0.0090 0.0283 0.0215 0.0170 0.0084 0.0254 0.0190 0.0153 0.0077 

𝑤𝑦𝑥 0.0289 0.0214 0.0000 0.0086 0.0269 0.0204 0.0161 0.0080 0.0241 0.0181 0.0145 0.0073 
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