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Abstract  

 

Probability distributions are useful for modeling datasets in several applied areas. 

Recently a new distribution, named transmuted size-biased exponential or 

transmuted moment exponential distribution has been proposed and studied. In this 

article, we derive some more properties of this distribution that have not been 

discussed earlier. The limit behavior of this distribution is studied. Some 

characterizations of transmuted moment exponential distribution are presented 

which are based on truncated moments and failure function. Different estimation 

methods for the estimation of model parameters can give guidelines to a researcher 

in choosing the feasible and appropriate method. An extensive simulation study is 

also performed to classify the best estimation method. The application of TME 

distribution is observed and different estimation methods are compared through a 

real data set.  

 

Keywords:  Moment exponential distribution, Parameter estimation, Estimation 

methods, Simulation. 

 

1. Introduction 

 

In 2012, Dara and Ahmed assigned linear weights to the exponential model and 

developed a moment exponential (ME) distribution. They explained the behavior 

of distribution, its hazard curves, and its interesting properties with a real data 

application. After that, Iqbal et al. (2014), Hasnain et al. (2015) and Hashmi et al. 

(2019) generalized the ME distribution for more flexibility. The ME model attained 

great attention due to its flexibility so various authors studied and further 

generalized it for modeling more complex datasets. For example, generalized 

exponentiated moment exponential (Iqbal, Hasnain, Salman, Ahmad, & Hamedani, 

2014), Marshall-Olkin length biased exponential (Ahsan-ul-Haq et al., 2019), and 

Weibull-Moment Exponential (Hashmi, Ahsan-ul-Haq, & Ozel, 2019).  
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Hussain et al. (2018) proposed a new version of moment exponential distribution, 

called transmuted moment exponential (TME), and derived its basic characteristics 

including method of moments and maximum likelihood for estimation of model 

parameters.  

 

Our objective in this article is to explore the estimation of TME parameters by five 

different estimation methods, i.e., maximum likelihood estimator (MLE), method 

of Anderson-Darling estimation (ADE). Cramér-von Mises Minimum Distance 

estimator (CVME), ordinary least square estimator (OLSE), weighted least square 

estimator (WLSE), and method of maximum product spacing estimator (MPSE). 

We compare the suggested estimators by means of Monto Carlo simulations to 

design a guidance plan for selecting an appropriate estimation procedure which 

gives the best estimates for the model parameters of the TME model. As far as we 

know, there is no study is reported on the comparison of these five estimation 

methods for the estimation of TME parameters. Further, some more mathematical 

properties are also studied. An important feature of the distribution is limiting 

behaviour which is also gone through in this study.  

 

The problem of characterizing a probability distribution is now common in the 

statistical literature and many researchers are interested in it. This research work 

also deals with characterizations that are related to truncated moments and hazard 

function (Glänzel, & Hamedani, 2001). Some well-known estimation techniques 

are utilized to estimate model parameters. The computational study is also 

performed to assess the performances of various estimation methods.   

 

The rest of the article is structured in the following sequence. Section 2 is based on 

the cdf, pdf, survival, and hazard functions of TME distribution. We also discussed 

the limiting behavior of its density and hazard functions. In section 3, a relation is 

developed in which behavior of proposed distribution can be studied by the 

behavior of baseline model and mode is derived. In section 4, characterizations in 

terms of truncated moments and hazard rate function are presented. Different 

estimation methods are derived in section 5. Monte Carlo simulation study is 

performed in section 6. A comparison of different estimation methods is given in 

section 7. In section 8, we illustrated its application to a real data set to show the 

efficiency of TME distribution. Finally, in Section 9, we offer some comments. 

 

2.   Transmuted Moment Exponential Distribution 

 

Hussain et al. (2018) introduced TME distribution with CDF and PDF are given, 

respectively, by 

𝐹(𝑥) = {1 − (1 +
𝑥

𝛽
) 𝑒

−
𝑥

𝛽} [1 + 𝜃 − 𝜃 {1 − (1 +
𝑥

𝛽
) 𝑒

−
𝑥

𝛽}]                                    (1)  

where, x > 0 𝛽 > 0, |𝜃| ≤ 1 with pdf  

𝑓(𝑥) =
𝑥

𝛽2
e−𝑥/𝛽 [1 − 𝜃 + 2𝜃 (1 +

𝑥

𝛽
) e−𝑥/𝛽] ,   𝛽 > 0, |𝜃| ≤ 1.                           (2) 
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Hussain et al. (2018) also derived corresponding survival function and hazard rate 

function (HRF) ℎ(𝑥) of X are specified as 

𝑆(𝑥) = 1 − [1 − (1 +
𝑥

𝛽
) 𝑒

−
𝑥
𝛽] [1 + 𝜃 (1 +

𝑥

𝛽
)𝑒

−
𝑥
𝛽] , 𝑥 > 0                        (3) 

and  

ℎ(𝑥) =

𝑥
𝛽2 e−𝑥/𝛽 [1 + 𝜃 − 2𝜃 {1 − (1 +

𝑥
𝛽
) e−𝑥/𝛽}]

1 − [1 − (1 +
𝑥
𝛽
) e−𝑥/𝛽] [1 + 𝜃 (1 +

𝑥
𝛽
) e−𝑥/𝛽]

, 𝑥 > 0                  (4) 

 

𝑤ℎ𝑒𝑟𝑒 , 𝛽 > 0, |𝜃| ≤ 1, 𝑎𝑛𝑑 β control the scale of the distribution while θ controls 

the skewness of the distribution. The moment exponential is a special case for θ=0. 

The TME distribution is a flexible model, and it generalizes some of the well-known 

distributions. Note that the TME model is used to analyze more complex data sets. 

 

2.1.   The shape of the density function 

 

Figures 1(a) and (b) show graphs of the PDF & hazard rate function of TME 

distribution for some specific values of the parameter 𝛽 𝑎𝑛𝑑 𝜃, respectively. 

  

  

Figure 1 (a). Plots of density of TME (left), (b). h(x) of TME (right) for specified   

                     values of parameters. 
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2.2.   The limiting behaviour of density and hazard functions of TME       

          distribution 

 

Following Lemmas are important for the proofs of theorems 1 and 2: 

Lemma 1: If ‘X’ be a r.v., then for β > 0 

lim
𝑥→∞

(1 +
𝑥

𝛽
) 𝑒−𝑥/𝛽 = 0 

Proof: Applying L’ Hospital rule and result follows. 

Lemma 2: If ‘X’ be a r.v., then for β > 0 

lim
𝑥→∞

𝑥𝑒−𝑥/𝛽 = 0 

Proof: Applying L’ Hospital rule and result follows. 

Theorem 1: The limit of PDF of TME distribution as 𝑥 → ∞ and at 𝑥 → 0 are zero. 

Proof: Using Lemma 1 and 2, (2) becomes 

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

[ 
𝑥

𝛽2
e−𝑥/𝛽 {1 − 𝜃 + 2𝜃 (1 +

𝑥

𝛽
) e−𝑥/𝛽}] = 0                                (5) 

Also 

lim
𝑥→∞

𝑓(𝑥) =
1

𝛽2
lim
𝑥→∞

[𝑥𝑒−𝑥/𝛽 {1 − 𝜃 + 2𝜃 (1 +
𝑥

𝛽
) 𝑒−𝑥/𝛽}] = 0                     (6) 

 

Theorem 2: The limit of HRF of TME model at 𝑥 → 0 is zero & as 𝑥 → ∞ is 1/β. 

Proof: We have  

lim
𝑥→0

ℎ(𝑥) = lim
𝑥→0

[

𝑥
𝛽2 e−𝑥/𝛽 [1 + 𝜃 − 2𝜃 {1 − (1 +

𝑥
𝛽
) e−𝑥/𝛽}]

1 − {1 − (1 +
𝑥
𝛽
) e−𝑥/𝛽} [1 + 𝜃 (1 +

𝑥
𝛽
) e−𝑥/𝛽]

]

= 0                           (7) 

It is forthright to verify the result from above equation Eq. (7) using Lemma 1 and 

Lemma 2. 

Now the limit of TME hazard rate function at infinity after simplification is 

lim
𝑥→∞

ℎ(𝑥) = lim
𝑥→∞

[
 
 
 

𝑒−2𝑥/𝛽𝑥(−𝑒𝑥 𝛽⁄ 𝛽(𝜃 − 1) + 2(𝑥 + 𝛽)𝜃)
𝛽3

𝑒−2𝑥/𝛽(𝑥 + 𝛽)(−𝑒𝑥 𝛽⁄ 𝛽(𝜃 − 1) + (𝑥 + 𝛽)𝜃)
𝛽2 ]

 
 
 

=
1

𝛽
                             (8) 

By applying L’ Hospital rule, the result follows. 

Remarks 1: The PDF of TME distribution has the following characteristics: 

i. The curve is modal for all combinations of parameters β and θ. 

ii. The curve begins from the origin, goes up, decreases after getting the highest 

point, and touches zero as x tends to infinity for all combinations of 

parameters β and θ. 

Remarks 2: The properties related to h(x) of TME distribution are as follows: 



36                                                                                                                  Haq et al. 

  

i. The HRF’s curve initiates from the origin and drives to the point 
1

𝛽
 as x 

approaches ∞ for all values of β and θ. 

ii. The h(x) curve has an increasing trend in the beginning(origin) and touches the 

point 1/𝛽 as x →∞. 

iii. For the same β, hazard curves coincide for different values of the transmuted 

variable. 

 

3.   General Properties 

 

In this section, we study the characteristics of the transmuted variable with relation 

to the baseline random variable. The behaviour of transmuted distribution is 

assessed by the behavior of baseline distribution. The mean of the transmuted-G 

distribution is determined by the relation discussed in the following theorem 

provided the mean of baseline distribution also exists. 

 

Theorem 3: Let 𝜋(𝑥) be a function of r. v. X with pdf (𝑔(𝑥)) and cdf (𝐺(𝑥)) of 

baseline distribution (ME) and pdf (𝑓(𝑥)) and cdf (𝐹(𝑥)) of transmuted distribution 

(TME). If 𝐸𝐹(𝜋(𝑥)) indicates∫𝜋(𝑥)𝑓(𝑥)  𝑑𝑥, then 

𝐸𝐹(𝜋(𝑋)) = (1 + 𝜃)𝐸𝐺(𝜋(𝑋)) − 2𝜃𝐸𝐺[𝜋(𝑋)𝐺(𝑋)]                                                  (9) 

Proof: From (2) 

𝐸𝐹(𝜋(𝑋)) = ∫𝜋(𝑥) [(1 + 𝜃)𝑔(𝑥) − 2𝜃 𝑔(𝑥)𝐺(𝑥)] 𝑑𝑥  

                    = (1 + 𝜃)∫𝜋(𝑥)𝑔(𝑥) 𝑑𝑥 − 2𝜃 ∫𝜋(𝑥) 𝐺(𝑥)  𝑔(𝑥)  𝑑𝑥   

                    = (1 + 𝜃)𝐸𝐺(𝜋(𝑋)) − 2𝜃𝐸𝐺(𝜋(𝑋)𝐺(𝑥))                             

 

3.1.   Mode 

 

The mode of transmuted moment exponential model is obtained as a result of 

following equation  𝑓′(𝑥) = 0  if 𝑓′′(𝑥) < 0.  

The density function of TME is differentiated with respect to x i.e., 𝑓′(𝑥)  and 

equate it to zero. 

𝑓(𝑥) =
𝑥

𝛽2
e
−

𝑥
𝛽 [1 − 𝜃 + 2𝜃 (1 +

𝑥

𝛽
) e

−
𝑥
𝛽] 

𝑓′(𝑥) = [
1

𝛽2
e
−

𝑥
𝛽 −

𝑥

𝛽3
e
−

𝑥
𝛽] [1 − 𝜃 + 2𝜃 (1 +

𝑥

𝛽
) e

−
𝑥
𝛽]

+
2𝜃𝑥

𝛽2
e
−

𝑥
𝛽 (e

−
𝑥
𝛽

1

𝛽
−

1

𝛽
(1 +

𝑥

𝛽
)e

−
𝑥
𝛽) 

𝑒
−

2𝑥
𝛽 (𝑒𝑥 𝛽⁄ (𝑥 − 𝛽)𝛽(−1 + 𝜃) + 2(−2𝑥2 + 𝛽2)𝜃)

𝛽4
= 0                                         (10) 
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𝑓′′(𝑥) =
𝑒

−
2𝑥
𝛽

𝛽4
[𝑒𝑥 𝛽⁄ (𝑥 − 𝛽)(𝜃 − 1) + 𝑒𝑥 𝛽⁄ 𝛽(𝜃 − 1) − 8𝑥𝜃]

−
2𝑒

−
2𝑥
𝛽

𝛽5
(𝑒𝑥 𝛽⁄ (𝑥 − 𝛽)𝛽(𝜃 − 1) + 2(𝛽2 − 2𝑥2)𝜃) < 0 ,  

𝑓𝑜𝑟  𝛽 > 0, |𝜃| ≤ 1. Using (10), the mode of the distribution can be obtained. 

 

4.   Characterizations  

 

Characterizing a distribution is a key feature in distribution theory and it helps the 

researcher in identifying the model. 

 

4.1.   Characterization based on two truncated moments 

 

The characterization of TME distribution is carried out as follows: using the 

theorem proposed by Glänzel (1987) related to two truncated moments. 

Theorem 4.1:  Let X has the pdf given in  (2) and     

𝑞1(𝑥) =
𝛽

𝑥
[1 − 𝜃 + 2𝜃 (1 +

𝑥

𝛽
) e−𝑥/𝛽]

−1

,                                                              (11) 

 𝑞2(𝑥) = 𝑞1(𝑥)e
−

𝑥
𝛽 ,   𝑥 > 0.                                                                                          (12) 

 The r. v. ‘X’ follows TME distribution iff the function η has the following 

expression: 

𝜂(𝑥) =
1

2
e
−

𝑥

𝛽.                                                                                                                   (13)  

Proof: For x>0, we have  

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = e
−

𝑥
𝛽 ,             

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] =
1

2
e
−

2𝑥
𝛽 ,          

then    

𝜂(𝑥) =
1

2
e
−

𝑥
𝛽 . 

It is obvious that 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = 𝑞1(𝑥) {
1

2
e
−

𝑥

𝛽 − e
−

𝑥

𝛽} ≠ 0    for all values of x, the proof 

completes. 

Conversely, for   𝑞1(𝑥) , 𝑞2(𝑥) and 𝜂(𝑥) we have r.v. X has TME distribution. 

now 

𝑠́(𝑥) =
𝜂́(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=

𝜂́(𝑥)

𝜂(𝑥) − 𝑒
−

𝑥
𝛽

                     

𝑠́(𝑥) =
1

β
,    𝑥 > 0                                                           

and so    𝑠(𝑥) =
𝑥

𝛽
,                       𝑥 > 0             (14) 

Now using theorem of Glänzel (1987), the F(x) is  
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= 𝑐 ∫
𝑢

𝛽2
 [1 − 𝜃 + 2𝜃 (1 +

𝑢

𝛽
) e

−
𝑢
𝛽] 𝑒𝑥𝑝 [−

𝑢

𝛽
] 𝑑𝑢

𝑥

0

      

which can be simplified to  

∫𝑓𝑇𝑀𝐸𝐷(𝑢)𝑑𝑢

𝑥

0

= 𝐹𝑇𝑀𝐸𝐷(𝑥)                                

 

4.2.   Characterization based hazard function 

 

Hamedani et al. (2016) obtained characterization related to failure function. Using 

their concept, the characterization of TME model is offered as follows: 

Theorem 4.2: The density function of TME model is (2) if its failure function h(x) 

satisfies the following equation 

h́(x) − 𝑥−1h(x) =
{−ⅇ

2𝑥
𝛽 𝛽2(𝜃−1)2+ⅇ𝑥 𝛽⁄ (𝑥2+4𝑥𝛽+3𝛽2)(𝜃−1)𝜃−2(𝑥+𝛽)2𝜃2}

𝛽(𝑥+𝛽)2{ⅇ𝑥 𝛽⁄ 𝛽(𝜃−1)−(𝑥+𝛽)𝜃}
2 .                   (15)  

Proof: If X has PDF (2), then  

h́(x) − 𝑥−1h(x) =

[ⅇ
2𝑥
𝛽 𝛽3(𝜃−1)2+ⅇ𝑥 𝛽⁄ (𝑥3+𝑥2𝛽−3𝑥𝛽2−3𝛽3)(𝜃−1)𝜃+2𝛽(𝑥+𝛽)2𝜃2]

[𝛽(𝑥+𝛽)2(ⅇ𝑥 𝛽⁄ 𝛽(𝜃−1)−(𝑥+𝛽)𝜃)
2
]

−

                                𝑥−1 (
ⅇ

−
𝑥
𝛽 𝑥 [1+𝜃−2{1−(1+

𝑥

𝛽
)ⅇ

−
𝑥
𝛽}𝜃]

𝛽2[1−(1−(1+
𝑥

𝛽
)ⅇ

−
𝑥
𝛽){1+𝜃−(1−(1+

𝑥

𝛽
)ⅇ

−
𝑥
𝛽)𝜃}]

).      (16) 

 simplification follows (16). Now if (16) exists then  

𝑑

𝑑𝑥
[𝑥−1h(x)]  =

𝑑

𝑑𝑥
(

e
−

𝑥

𝛽[1+𝜃−2𝜃{1−(1+𝑥/𝛽)e
−

𝑥

𝛽}]

𝛽2[1−{1−(1+𝑥/𝛽)e
−

𝑥

𝛽}{1+𝜃(1+𝑥/𝛽)e
−

𝑥

𝛽}]
)                   

and simplification results in Eq. (4). 

 

5.   Parameter estimation  

 

Here in this part of research, we estimate the parameter using maximum likelihood 

estimation (MLE), Anderson Darling estimation (ADE), Cramer von misses 

(CVME), ordinary and weighted least squares estimation (OLSE & WLSE), and 

maximum product spacing estimation (MPSE) methods.  

 

5.1.   Maximum likelihood estimation 

 

The ML method is the most advantageous parametric estimation technique. The 

reason is described by theoretical acceptance of the limiting properties of the 
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estimators, such as consistency, efficiency, and asymptotic normality. Let 

𝑥1, 𝑥2, 𝑥3, …… . . 𝑥𝑛 be a r. sample from transmuted moment exponential model of 

size n with PDF Eq. (2), the ‘log-likelihood’ function (L) of TME is given by 

Hussain et al. (2018), given by 

𝐿 = ∑log 𝑥𝑖 − 2𝑛 log 𝛽 − ∑
𝑥𝑖

𝛽
+ ∑log [1 − 𝜃 + 2𝜃 (1 +

𝑥𝑖

𝛽
) e

−
𝑥𝑖
𝛽 ] 

The MLE of θ and β, as given in Hussain et al. (2018) is the solution of the following 

equations 

 
𝜕𝐿

𝜕𝜃
= ∑

−1+2(1+
𝑥

𝛽
)e

−
𝑥
𝛽

1−𝜃+2𝜃(1+
𝑥

𝛽
)e

−
𝑥
𝛽

= 0                                                                     (17) 

𝜕𝐿

𝜕𝛽
=

−2𝑛

𝛽
+ ∑

𝑥

𝛽2
− ∑

2𝜃
𝑥

𝛽2e
−

𝑥
𝛽

1−𝜃+2𝜃(1+
𝑥

𝛽
)e

−
𝑥
𝛽

= 0.                                                          (18) 

The exact solution of Eq. 17 and 18 is tedious to obtain. So it is recommended to 

utilize non-linear optimization algorithms for example the Newton-Raphson 

algorithm to maximize ‘L’ numerically. It can be solved using statistical software 

R.  

 

5.2.   Method of Anderson-Darling estimation 

 

The Anderson-Darling estimators (ADE) of (θ, β) can be acquired by minimizing 

the following function, with respect to θ and β, as follows 

   𝐴(𝜃, 𝛽) = −𝑛 −
1

𝑛
∑(2𝑖 − 1)[log 𝐹(𝑥(𝑖); 𝜃, 𝛽) + log [1 − 𝐹(𝑥(𝑛+1−𝑖); 𝜃, 𝛽)]]

𝑛

𝑖=1

  

Thus, the ADE of θ can be obtained by differentiating the above equation  

 
𝜕𝐴(𝜃,𝛽)

𝜕𝜃
= −

1

𝑛

(

 
 
 
 
 
 

∑ (−1 + 2𝑖)

(

 
 
 
 
 
 

e
−

2𝑥𝑖
𝛽 (−𝛽(1+e

𝑥𝑖
𝛽 )−𝑥𝑖)(𝛽+𝑥𝑖)

𝛽2

(

 
 
 
 

1+

ⅇ
−

2𝑥𝑖
𝛽 (𝛽+𝑥𝑖)(ⅇ

𝑥𝑖
𝛽 𝛽(−1+𝜃)−𝜃(𝛽+𝑥𝑖))

𝛽2

)

 
 
 
 

+

𝑛

𝑖=1

−𝛽+e

𝑥1−𝑖+𝑛
𝛽 𝛽−𝑥1−𝑖+𝑛

e

𝑥1−𝑖+𝑛
𝛽 𝛽(−1+𝜃)−𝜃(𝛽+𝑥1−𝑖+𝑛)

)

 
 
 
 
 
 

)

 
 
 
 
 
 

            (19) 

Similarly, we can obtain 𝜕𝐴(𝜃, 𝛽) 𝜕𝛽⁄  and get estimates of θ and β by equating 

them to zero. 
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5.3.   Cramer von Misses Minimum Distance Estimation 

 

Another method for gaining estimates is CVME and estimates are obtained by 

minimizing the function with respect to θ and β. It is defined by 

𝐶(𝜃) =
1

12𝑛
+ ∑ [𝐹(𝑥(𝑖); 𝜃) −

2𝑖−1

2𝑛
]
2

𝑛
𝑖=1                                                                                 

             =
1

12𝑛
+ ∑

[
 
 
 
1 −

e
−

2𝑥(𝑖)
𝛽 (𝛽+𝑥(𝑖))(e

𝑥(𝑖)
𝛽 𝛽(𝜃−1)−𝜃(𝛽+𝑥(𝑖)))

𝛽2  −
2𝑖−1

2𝑛

]
 
 
 
2

𝑛
𝑖=1 .             (20) 

The CVME indicates that the bias of this estimator (θ, β) is least when compared 

with the bias of other minimum distance estimators. 

 

5.4.   Methods of least squares and weighted least squares estimation 

 

We now consider the methods of least square estimation (OLSE) and weighted least 

square estimation (WLSE). OLSE method was firstly presented by Swain (1988). 

It is a non-linear method of estimation, especially when the MLEs cannot be 

obtained in an explicit form. The OLSE of (θ, β) can be intended by minimizing the 

least square function SSE, L(θ, β).  

𝐿(𝜃, 𝛽) = ∑(𝐹(𝑥(𝑖); 𝜃, 𝛽) −
i

𝑛 + 1
)
2

𝑛

𝑖=1

                        

w. r. t θ, where x(i), (i=1, 2, 3, …..,n) is the ith element of the ordered observations 

x1, x2,  x3,….., xn and 𝐹̂(.) is empirical CDF of ith observation. i.e., 𝐹̂(. ) =
i

𝑛+1
.  

Using Eq. (1) and  𝐹̂(.), we have 

 = ∑ ({1 − (1 +
𝑥(𝑖)

𝛽
) e−𝑥(𝑖)/𝛽} [1 + 𝜃 − 𝜃 {1 − (1 +

𝑥(𝑖)

𝛽
) e−𝑥(𝑖)/𝛽}]  −

i

𝑛+1
)
2𝑛

𝑖=1
.  

Thus, the OLSE can be obtained by equating the equations to zero, i.e., 

𝜕𝐿(𝜃) 𝜕𝜃⁄ = 0 

𝜕𝐿(𝜃,𝛽)

𝜕𝜃
=

1

𝛽4 𝑒
−

4𝑥(𝑖)

𝛽 𝑛(𝑥(𝑖) + 𝛽)(𝑥(𝑖) + 𝛽 − 𝛽𝑒𝑥(𝑖) 𝛽⁄ ) (−𝑒
2𝑥(𝑖)

𝛽 𝛽2 − 2𝑒𝑥(𝑖) 𝛽⁄ 𝛽(𝑥(𝑖) +

𝛽)(𝜃 − 1) + 2(𝑥(𝑖) + 𝛽)2𝜃).       (21) 

𝜕𝐿(𝜃,𝛽)

𝜕𝜃
=

1

𝛽6 𝑒
−

4𝑥(𝑖)

𝛽 𝑛𝑥(𝑖)
2 (𝑒

3𝑥(𝑖)

𝛽 𝛽3(𝜃 − 1) − 6𝑒𝑥(𝑖) 𝛽⁄ 𝛽(𝑥(𝑖) + 𝛽)
2
(𝜃 − 1)𝜃 + 4(𝑥(𝑖) +

𝛽)3𝜃2 + 2𝑒
2𝑥

𝛽 𝛽2(𝑥(𝑖) + 𝛽)(1 − 3𝜃 + 𝜃2))          (22) 
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The weighted least square estimate (WLSE) of θ and β, are obtained by minimizing 

the weighted least square function (Also called SSE) with respect to θ and β, defined 

by 

𝑊𝐿𝑆(𝜃, 𝛽) = ∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[𝐹(𝑥(𝑖); 𝜃, 𝛽) −

𝑖

𝑛 + 1
]

2𝑛

𝑖=1

         

    = ∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[1 +

e
−

2𝑥(𝑖)

𝛽 (𝛽 + 𝑥(𝑖))(e
𝑥(𝑖)

𝛽 𝛽(𝜃 − 1) − 𝜃(𝛽 + 𝑥(𝑖)))

𝛽2
−

𝑖

𝑛 + 1
]

2
𝑛

𝑖=1

 

∂𝑊𝐿𝑆(𝜃, 𝛽)
𝜕𝜃

⁄ = 0 gives the WLSQE of θ. 

𝜕𝑊𝐿𝑆(𝜃, 𝛽)

𝜕𝜃
=

2

𝑖(1 − 𝑖 + 𝑛)𝛽2
∑e

−
2𝑥(𝑖)

𝛽 (1 + 𝑛)2(2 + 𝑛)(−𝛽 + e
𝑥(𝑖)

𝛽 𝛽 − 𝑥(𝑖))(𝛽

𝑛

𝑖=1

+ 𝑥(𝑖)) (1 −
𝑖

1 + 𝑛
−

e
−

2𝑥(𝑖)

𝛽 (𝛽 + 𝑥(𝑖))(e
𝑥(𝑖)

𝛽 𝛽(𝜃 − 1) − 𝜃(𝛽 + 𝑥(𝑖)))

𝛽2
) 

    (23) 

Similarly, we can get the expression of estimate β by minimizing the function SSE 

(WLS). 

5.5.   Maximum product spacing Estimation 

 

The MPSE method is greatly used for continuous distributions and can be 

considered a powerful substitute for the MLE technique for estimating the 

parameters (see Cheng and Amin [25]).  Let  

𝐷𝑖(𝜃, 𝛽) = 𝐹(𝑥(𝑖); 𝜃, 𝛽) − 𝐹(𝑥(𝑖−1); 𝜃, 𝛽),   𝑖 = 1,2,3, … . . , 𝑛 + 1 

be the uniform spacing of a r. sample from the TME model, where  

𝐹(𝑥(0); 𝜃, 𝛽) = 0, 𝐹(𝑥(𝑛+1); 𝜃, 𝛽) = 1, and ∑ 𝐷𝑖(𝜃, 𝛽)

𝑛+1

𝑖=1

= 1  

The MPS estimator is found from the following function (GM), where GM is 

basically the geometric mean of the spacings. MPS are calculated by maximizing 

 𝐺𝑀(𝜃, 𝛽) = {∏𝐷𝑖(𝜃, 𝛽)

𝑛+1

𝑖=1

}

1
𝑛+1

, (24) 
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w. r. t. θ and β. The MPS estimator of θ and β can alternatively be solved by 

maximizing the logarithm of the GM (sample spacing’s) stated above. There is no 

closed solution exist in Eq. (24), so the numerical method is used to find estimates. 

Note that all estimation methods can be obtained by using numerical methods. 

 

6.   Simulation 

 

A Monte Carlo simulation study is used to review the performance of different 

estimation methods for estimating TME parameters. Numerous sample sizes (n) are 

considered for specific values of parameters. The simulations are achieved as: 

• Samples are generated from 𝐹(𝑥) = 𝑞, where 𝑞~𝑈(0, 1). 

• Consider following values of n=20, 50, 100, 200 and 500. 

• In the experiment N is considered as 10,000 for each ‘n’.  

The performance of these estimators is assessed by the average of ML estimates, 

mean square errors (MSEs) and biases. Therefore these measures are calculated for 

all sample sizes and all parametric values and reported in Tables 1-4.  

The results of simulations specify that both selected criterions of comparison; the 

MSE and bias decreases and approaches towards zero as ‘n’ increases under the 

first-order asymptotic behaviour. The average of estimates of θ and β tends to be 

nearer to the true parametric vales as ‘n’ increases.  

 

Table 1: Simulation results for 𝜃 = 0.5 & 𝛽 = 0.5 
𝑛 𝐸𝑠𝑡. 𝐸𝑠𝑡. 𝑝𝑟𝑎. MLE ADE CVME OLSE WLSE MPSE 

20 

|Bias| 
𝜃̂ 0.01958 0.10931 0.14203 0.06241 0.07317 0.01031 

𝛽̂ 0.01081 0.03977 0.04530 0.02741 0.03118 0.03017 

𝑀𝑆𝐸 
𝜃̂ 0.18823 0.11637 0.13692 0.10877 0.10579 0.09392 

𝛽̂ 0.01630 0.01816 0.02028 0.01742 0.01713 0.01396 

50 

|Bias| 
𝜃̂ 0.00392 0.10797 0.11794 0.06623 0.08352 0.04085 

𝛽̂ 0.01038 0.03244 0.03367 0.02202 0.02682 0.02472 

𝑀𝑆𝐸 
𝜃̂ 0.15397 0.10501 0.12271 0.10309 0.09994 0.08053 

𝛽̂ 0.01038 0.01068 0.01200 0.01076 0.01042 0.00777 

100 

|Bias| 
𝜃̂ 0.01048 0.08810 0.09956 0.06864 0.08067 0.04413 

𝛽̂ 0.00810 0.02713 0.02881 0.02164 0.02548 0.02156 

𝑀𝑆𝐸 
𝜃̂ 0.12873 0.09301 0.10707 0.09251 0.08942 0.07064 

𝛽̂ 0.00799 0.00789 0.00881 0.00791 0.00770 0.00564 

200 

|Bias| 
𝜃̂ 0.02152 0.07046 0.08282 0.05737 0.06337 0.04574 

𝛽̂ 0.00248 0.02005 0.02193 0.01604 0.01840 0.01710 

𝑀𝑆𝐸 
𝜃̂ 0.10080 0.07371 0.08562 0.07785 0.07352 0.05087 

𝛽̂ 0.00559 0.00531 0.00601 0.00551 0.00525 0.00354 

300 

|Bias| 
𝜃̂ 0.04001 0.04314 0.04655 0.02531 0.03863 0.03245 

𝛽̂ 0.00123 0.01494 0.01493 0.01003 0.01399 0.01409 

𝑀𝑆𝐸 
𝜃̂ 0.08702 0.06278 0.07111 0.06680 0.06323 0.04202 

𝛽̂ 0.00469 0.00452 0.00500 0.00468 0.00457 0.00287 
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Table 2: Simulation results for 𝜃 = 0.5 & 𝛽 = 2.0 

𝑛 𝐸𝑠𝑡. 𝐸𝑠𝑡. 𝑝𝑟𝑎. MLE ADE CVME OLSE WLSE MPSE 

20 

|Bias| 
𝜃̂ 0.10164 0.00355 0.02598 0.07296 0.01618 0.07004 

𝛽̂ 0.02507 0.06205 0.03274 0.00752 0.05125 0.05042 

𝑀𝑆𝐸 
𝜃̂ 0.28954 0.19150 0.24284 0.17624 0.15500 0.13772 

𝛽̂ 0.16995 0.20727 0.19263 0.17121 0.20306 0.15818 

50 

|Bias| 
𝜃̂ 0.05111 0.05295 0.05874 0.01733 0.03386 0.00893 

𝛽̂ 0.00187 0.08142 0.08138 0.04384 0.06495 0.05554 

𝑀𝑆𝐸 
𝜃̂ 0.18402 0.12620 0.14557 0.11875 0.12195 0.09322 

𝛽̂ 0.13130 0.13802 0.15491 0.13701 0.13434 0.09490 

100 

|Bias| 
𝜃̂ 0.05075 0.07290 0.08201 0.04727 0.04989 0.01920 

𝛽̂ 0.00179 0.09695 0.10106 0.06888 0.07568 0.06293 

𝑀𝑆𝐸 
𝜃̂ 0.14326 0.09491 0.11227 0.09989 0.09828 0.06627 

𝛽̂ 0.11075 0.11934 0.13242 0.11859 0.11248 0.07069 

200 

|Bias| 
𝜃̂ 0.04974 0.03745 0.05440 0.02829 0.03481 0.02578 

𝛽̂ 0.00651 0.05964 0.07147 0.04716 0.05710 0.05972 

𝑀𝑆𝐸 
𝜃̂ 0.09608 0.07031 0.08212 0.07569 0.07054 0.04364 

𝛽̂ 0.07773 0.08071 0.09481 0.08622 0.07955 0.04577 

300 

|Bias| 
𝜃̂ 0.02636 0.03871 0.04543 0.02372 0.03242 0.03177 

𝛽̂ 0.00931 0.05801 0.06152 0.04153 0.05230 0.05787 

𝑀𝑆𝐸 
𝜃̂ 0.08306 0.06362 0.07252 0.06855 0.06383 0.04038 

𝛽̂ 0.07260 0.07344 0.08246 0.07750 0.07258 0.04238 

 

Table 3: Simulation results for 𝜃 = 0.8 & 𝛽 = 0.5 

𝑛 𝐸𝑠𝑡. 𝐸𝑠𝑡. 𝑝𝑟𝑎. MLE ADE CVME OLSE WLSE MPSE 

20 

|Bias| 
𝜃̂ 0.01063 0.09893 0.07588 0.16820 0.13676 0.14800 

𝛽̂ 0.00229 0.01583 0.01138 0.02909 0.02236 0.01818 

𝑀𝑆𝐸 
𝜃̂ 0.05041 0.09612 0.07971 0.13776 0.11551 0.12310 

𝛽̂ 0.00888 0.01813 0.01528 0.02666 0.02152 0.01955 

50 

|Bias| 
𝜃̂ 0.05041 0.09612 0.07971 0.13776 0.11551 0.12310 

𝛽̂ 0.00888 0.01813 0.01528 0.02666 0.02152 0.01955 

𝑀𝑆𝐸 
𝜃̂ 0.08716 0.09631 0.10440 0.11856 0.10310 0.07791 

𝛽̂ 0.00680 0.00791 0.00866 0.00912 0.00829 0.00586 

100 

|Bias| 
𝜃̂ 0.05601 0.10328 0.09605 0.13922 0.10907 0.09811 

𝛽̂ 0.00557 0.01579 0.01444 0.02317 0.01676 0.01245 

𝑀𝑆𝐸 
𝜃̂ 0.07884 0.09661 0.10721 0.11898 0.09833 0.06573 

𝛽̂ 0.00500 0.00603 0.00656 0.00691 0.00608 0.00415 

200 

|Bias| 
𝜃̂ 0.05983 0.08193 0.07181 0.10077 0.07686 0.07280 

𝛽̂ 0.00879 0.01400 0.01199 0.01785 0.01276 0.01099 

𝑀𝑆𝐸 
𝜃̂ 0.06847 0.07881 0.08574 0.09339 0.07484 0.04969 

𝛽̂ 0.00394 0.00449 0.00486 0.00514 0.00442 0.00297 

300 

|Bias| 
𝜃̂ 0.05503 0.07510 0.07124 0.09642 0.07462 0.05804 

𝛽̂ 0.00932 0.01422 0.01348 0.01856 0.01396 0.00995 

𝑀𝑆𝐸 
𝜃̂ 0.05977 0.06697 0.07472 0.08334 0.06672 0.03909 

𝛽̂ 0.00320 0.00360 0.00395 0.00426 0.00360 0.00225 
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Table 4: Simulation results for 𝜃 = −0.5 & 𝛽 = 2.0 

𝑛 𝐸𝑠𝑡. 𝐸𝑠𝑡. 𝑝𝑟𝑎. MLE ADE CVME OLSE WLSE MPSE 

20 

|Bias| 
𝜃̂ 0.00078 0.10231 0.02291 0.19170 0.16868 0.31508 

𝛽̂ 0.07204 0.17073 0.11317 0.27096 0.24319 0.40120 

𝑀𝑆𝐸 
𝜃̂ 0.22614 0.25256 0.24100 0.30039 0.28727 0.37227 

𝛽̂ 0.21496 0.25238 0.24082 0.34340 0.32619 0.50264 

50 

|Bias| 
𝜃̂ 0.02359 0.06480 0.02335 0.11157 0.08523 0.24392 

𝛽̂ 0.05926 0.09534 0.06534 0.14437 0.11588 0.28153 

𝑀𝑆𝐸 
𝜃̂ 0.16152 0.15654 0.15691 0.18551 0.16946 0.29145 

𝛽̂ 0.14217 0.14159 0.13335 0.17025 0.15805 0.32910 

100 

|Bias| 
𝜃̂ 0.01355 0.02656 0.00258 0.05200 0.03022 0.14544 

𝛽̂ 0.02395 0.03437 0.02024 0.06350 0.03768 0.15256 

𝑀𝑆𝐸 
𝜃̂ 0.08701 0.07383 0.07959 0.09434 0.07457 0.16093 

𝛽̂ 0.06809 0.05340 0.05709 0.07376 0.05391 0.15841 

200 

|Bias| 
𝜃̂ 0.00121 0.00999 0.00038 0.02320 0.01057 0.06045 

𝛽̂ 0.01091 0.01905 0.01346 0.03233 0.01917 0.06509 

𝑀𝑆𝐸 
𝜃̂ 0.03952 0.03660 0.03847 0.04113 0.03533 0.05583 

𝛽̂ 0.03116 0.02769 0.02775 0.03133 0.02559 0.05065 

300 

|Bias| 
𝜃̂ 0.00272 0.00179 0.00495 0.00980 0.00154 0.03463 

𝛽̂ 0.00411 0.00901 0.00628 0.01818 0.00876 0.03716 

𝑀𝑆𝐸 
𝜃̂ 0.02479 0.02343 0.02761 0.02849 0.02367 0.02933 

𝛽̂ 0.01625 0.01477 0.01757 0.01870 0.01490 0.02098 

 

 

7.   Data Analysis 

 

Here we show the flexibility of the TME distribution. For this purpose, we used one 

real data set. The data set was analyzed by Lee (1992) and also by Hamedani, 

(2013). It consists of 121 observations of survival duration of patients. The 

following are the observations: 0.3, 0.3, 4, 5, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 

10.3, 11, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 

17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21, 21, 21.1, 23, 23.4, 23.6, 24, 24, 27.9, 

28.2, 29.1, 30, 31, 31, 32, 35, 35, 37, 37, 37, 38, 38, 38, 39, 39, 40, 40, 40, 41, 41, 

41, 42, 43, 43, 43, 44, 45, 45, 46, 46, 47, 48, 49, 51, 51, 51, 52, 54, 55, 56, 57, 58, 

59, 60, 60, 60, 61, 62, 65, 65, 67, 67, 68, 69, 78, 80, 83, 88, 89, 90, 93, 96, 103, 105, 

109, 109, 111, 115, 117, 125, 126, 127, 129, 129, 139, 154. 

 

The exponential distribution is proposed by (Epstein, 1958) 

𝑔(𝑥; 𝛽) =
1

𝛽
e
−

𝑥

𝛽. 

The Moment exponential (ME) distribution is given by (Iqbal, 2012) 

𝑔(𝑥; 𝛽) =
𝑥

𝛽2 e
−

𝑥

𝛽. 

The exponentiated Moment exponential (EME) distribution is proposed by 

(Hasnain, 2015) 

𝑓(𝑥) =
𝛼

𝛽2 𝑥𝑒
−𝑥

𝛽 {1 − (
𝑥+𝛽

𝛽
) 𝑒

−𝑥

𝛽 }
𝛼−1

. 
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The Kumaraswamy Moment exponential (KwME) distribution is given by Hashmi 

et al. (2017) 

𝑓(𝑥) =
𝑎𝑏𝑥

𝛽2
𝑒

−𝑥
𝛽 {1 − (

𝑥 + 𝛽

𝛽
) 𝑒

−𝑥
𝛽 }

𝑎−1

[1 − {1 − (
𝑥 + 𝛽

𝛽
) 𝑒

−𝑥
𝛽 }

𝑎

]

𝑏−1

,          𝑥 > 0 

The Exponentiated Inverse Weibull (EIW) distribution is derived by (Flaih, 2012) 

𝑓(𝑥) = 𝛾𝜆 𝑥−𝛾−1  [𝑒−𝑥−𝛾
]
𝜆
, 𝑥 > 0 

The transmuted exponentiated Weibull (TEW) distribution is given by (Saboor, 

2015) 

𝑓(𝑥; λ, β, 𝛾, a) = −
1

𝑥
𝑒−2(𝛽𝑥𝛾+𝑥𝜆)(𝛾𝛽𝑥𝛾 + 𝑥𝜆) ((𝑎 − 1)𝑒𝛽𝑥𝛾+𝑥𝜆 − 2𝛼) 

 

Table 5: Descriptive statistics 

Min. Q1 Median Q3 Mean Max. 

0.3 17.5 40 60 46.3289 154.0 

 

Table 6: MLEs for real data sets 

Model Parameter Estimates −𝑙 A* W* 

𝑇𝑀𝐸 (𝛽̂, 𝜃̂) 25.1676 0.22479 - - 582.81 1.0924 0.1180 

𝑀𝐸 (𝛽̂) 23.1645 - - - 583.15 1.3380 0.1450 

𝐸 (𝛽̂) 0.02158 - - - 585.13 2.7083 0.4606 

𝐾𝑤𝑀𝐸(𝑎̂, 𝑏̂, 𝛽̂) 0.86960 4999.99 4999.99 - 588.35 17.795 3.1798 

𝐸𝑀𝐸(𝑎̂, 𝛽̂) 0.95981 20.0001 - - 585.79 3.4181 0.4766 

𝐸𝐼𝑊(𝛾, 𝜆̂) 0.66602 6.81582 - - 636.61 9.8468 1.6015 

𝑇𝐸𝑊(𝑎̂, 𝛾, 𝛽̂, 𝜆̂) 8.45*10-9 0.13193 2.543*10-11 0.02158 585.13 2.7083 0.4606 

 

In Table 6, different measures of goodness of fit are presented, and based on these 

measures, we have compared the TME distribution with some other distributions. 

These accuracy measures include AIC, BIC, Anderson-Darling statistic (A*) and 

Cramer-von Mises (W*), and log-likelihood. These measures show that TME 

distribution gives a better fit to this data set when compared with other distributions. 

The lower the values, the better the model is. 

  

Figure 2: The fitted TME density and other densities for the first data set (left) and 

cdf (right). 
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Because one of the main goals of this study is to find the best estimators for the data 

set, a variety of estimating approaches have been used. Table 7 shows the various 

estimators for the data set that are based on various estimating methods. 

 

Table 7. Estimation and Goodness for data set. 

𝐌𝐞𝐭𝐡𝐨𝐝 ↓   𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 → 𝜽 𝜷 KS P-value 

MLE 0.2248 25.168 0.075 0.50 

ADE 0.3299 26.135 0.072 0.60 

CVME 0.2955 25.799 0.072 0.60 

OLSE 0.3005 25.881 0.073 0.50 

WLSE 0.3258 26.158 0.072 0.50 

MPSE 0.2725 25.891 0.076 0.50 
 

 

It is noted that all the estimation techniques are well for assessing the data set, 

however, the ADE and CVME are the most effective. 

 

8.   Conclusion 

The two-parameter TME distribution is a generalized distribution of ME 

distribution, and the shape PDF and hazard curves of the proposed model are 

studied at two important points; that is, origin and infinity. The density of TME 

distribution is modal and its hazard curve assumes increasing or upside-down 

bathtub behaviour. We obtain its characterizations based on truncated moments and 

hazard functions. A simulation study is also done, and it shows that mean square 

error decreases as sample size increases and ML estimators are efficient estimators. 

The application of the TME model to a data set shows that it gives a better fit. Since 

the TME model is a parsimonious model among other competitor models and 

hopefully is a simple model, it would provide wider applications in different fields 

of science and reliability. 

 

Appendix A. R code 

 

# Probaility density curves 

rm(list=ls()) 

x=seq(0,10,length=1000) 

Haq=function(par,x){ 

beta=par[1] 

theta=par[2] 

((x/beta^2)*(exp(-x/beta)))*(1- theta +2* theta *((1+(x/beta))*exp(-x/beta))) 

} 

y=3 

plot(x,Haq(c(1.5,1.0),x),type="l",ylab="f(x)",ylim=c(0,y)) 

lines(x,Haq(c(1.5,-0.8),x),lwd=2,lty=1,col="red") 

lines(x,Haq(c(1.5,-0.7),x),lwd=2,lty=1,col="purple") 

lines(x,Haq(c(1.5,-0.5),x),lwd=2,lty=1,col="cyan") 
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lines(x,Haq(c(1.5,-0.25),x),lwd=2,lty=1,col="green") 

lines(x,Haq(c(1.5,-0.1),x),lwd=2,lty=1,col="black") 

lines(x,Haq(c(1.5,0.0),x),lwd=2,lty=1,col="blue") 

colors <- c("red","purple","cyan", "green","black","blue") 

labels <- c(expression(paste(beta," = 1.5 ",theta," = 1.0 ")), 

expression(paste(beta," = 1.5 ", theta," = -0.8 ")), 

expression(paste(beta," = 1.5 ", theta," = -0.7 ")), 

expression(paste(beta," = 1.5 ", theta," = -0.5 ")), 

expression(paste(beta," = 1.5 ", theta," = -0.1 ")), 

expression(paste(beta," = 1.5 ", theta," = 0.0"))) 

legend("top", inset=.03,labels, lwd=2, lty=c(1), col=colors) 
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