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Abstract

Probability distributions are useful for modeling datasets in several applied areas.
Recently a new distribution, named transmuted size-biased exponential or
transmuted moment exponential distribution has been proposed and studied. In this
article, we derive some more properties of this distribution that have not been
discussed earlier. The limit behavior of this distribution is studied. Some
characterizations of transmuted moment exponential distribution are presented
which are based on truncated moments and failure function. Different estimation
methods for the estimation of model parameters can give guidelines to a researcher
in choosing the feasible and appropriate method. An extensive simulation study is
also performed to classify the best estimation method. The application of TME
distribution is observed and different estimation methods are compared through a
real data set.

Keywords: Moment exponential distribution, Parameter estimation, Estimation
methods, Simulation.

1. Introduction

In 2012, Dara and Ahmed assigned linear weights to the exponential model and
developed a moment exponential (ME) distribution. They explained the behavior
of distribution, its hazard curves, and its interesting properties with a real data
application. After that, Igbal et al. (2014), Hasnain et al. (2015) and Hashmi et al.
(2019) generalized the ME distribution for more flexibility. The ME model attained
great attention due to its flexibility so various authors studied and further
generalized it for modeling more complex datasets. For example, generalized
exponentiated moment exponential (Igbal, Hasnain, Salman, Ahmad, & Hamedani,
2014), Marshall-Olkin length biased exponential (Ahsan-ul-Hagq et al., 2019), and
Weibull-Moment Exponential (Hashmi, Ahsan-ul-Hag, & Ozel, 2019).
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Hussain et al. (2018) proposed a new version of moment exponential distribution,
called transmuted moment exponential (TME), and derived its basic characteristics
including method of moments and maximum likelihood for estimation of model
parameters.

Our objective in this article is to explore the estimation of TME parameters by five
different estimation methods, i.e., maximum likelihood estimator (MLE), method
of Anderson-Darling estimation (ADE). Cramér-von Mises Minimum Distance
estimator (CVME), ordinary least square estimator (OLSE), weighted least square
estimator (WLSE), and method of maximum product spacing estimator (MPSE).
We compare the suggested estimators by means of Monto Carlo simulations to
design a guidance plan for selecting an appropriate estimation procedure which
gives the best estimates for the model parameters of the TME model. As far as we
know, there is no study is reported on the comparison of these five estimation
methods for the estimation of TME parameters. Further, some more mathematical
properties are also studied. An important feature of the distribution is limiting
behaviour which is also gone through in this study.

The problem of characterizing a probability distribution is now common in the
statistical literature and many researchers are interested in it. This research work
also deals with characterizations that are related to truncated moments and hazard
function (Glanzel, & Hamedani, 2001). Some well-known estimation techniques
are utilized to estimate model parameters. The computational study is also
performed to assess the performances of various estimation methods.

The rest of the article is structured in the following sequence. Section 2 is based on
the cdf, pdf, survival, and hazard functions of TME distribution. We also discussed
the limiting behavior of its density and hazard functions. In section 3, a relation is
developed in which behavior of proposed distribution can be studied by the
behavior of baseline model and mode is derived. In section 4, characterizations in
terms of truncated moments and hazard rate function are presented. Different
estimation methods are derived in section 5. Monte Carlo simulation study is
performed in section 6. A comparison of different estimation methods is given in
section 7. In section 8, we illustrated its application to a real data set to show the
efficiency of TME distribution. Finally, in Section 9, we offer some comments.

2. Transmuted Moment Exponential Distribution

Hussain et al. (2018) introduced TME distribution with CDF and PDF are given,
respectively, by

F(x) ={1—(1+%)e_%} [1+0—0{1—(1+%)e_%}] 1)
where, x > 08 > 0,]0]| < 1 with pdf
Flx) = %e-x/ﬁ [1 —0+20 (1 +%) e-x/ﬁ], B>0,10] < 1. 2)
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Hussain et al. (2018) also derived corresponding survival function and hazard rate
function (HRF) h(x) of X are specified as

S(x)=1—[1—(1+%)e_%”1+9(1+%>e_%], x>0 3)
and

X ex/B [1 +6—20 {1 - (1 + %) e-x/ﬁ}]

1- [1 - (1 + %) e—x/ﬁ’] [1 +6 (1 + %) e—x/ﬁ]'

h(x) = x>0 4)

where, 8 > 0,|0| < 1, and B control the scale of the distribution while 6 controls
the skewness of the distribution. The moment exponential is a special case for 6=0.
The TME distribution is a flexible model, and it generalizes some of the well-known
distributions. Note that the TME model is used to analyze more complex data sets.

2.1. The shape of the density function

Figures 1(a) and (b) show graphs of the PDF & hazard rate function of TME
distribution for some specific values of the parameter 8 and 6, respectively.
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Figure 1 (a). Plots of density of TME (left), (b). h(x) of TME (right) for specified
values of parameters.
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2.2. The limiting behaviour of density and hazard functions of TME
distribution

Following Lemmas are important for the proofs of theorems 1 and 2:
Lemma 1: If X’ be ar.v., then for § > 0
X
lim (1 + —) e™™F =0
X—00 ﬁ
Proof: Applying L’ Hospital rule and result follows.
Lemma 2: If ‘X’ be ar.v., then for § > 0
limxe */B =0

X—00

Proof: Applying L’ Hospital rule and result follows.
Theorem 1: The limit of PDF of TME distribution as x — oo and at x — 0 are zero.
Proof: Using Lemma 1 and 2, (2) becomes

lim £ (x) = lim [%e-x/ﬁ {1 —6+20 (1 + %) e-x/ﬁ}] =0 (5)
Also
llmf(x) F lim [xe */B {1 —0+260 (1 + ,8) _x/ﬁ}] =0 (6)

Theorem 2: The limit of HRF of TME model at x — 0 is zero & as x - o is 1/p.
Proof: We have

X ex/B [1 +6—20 {1 — (1 + %) e—x/ﬁ}]
llm h(x) = lim

>0 - {1 - (1 + 5) e-x/ﬁ} [1 +6 (1 + 5) e-x/ﬁ]
B B
=0 (7)
It is forthright to verify the result from above equation Eq. (7) using Lemma 1 and
Lemma 2.
Now the limit of TME hazard rate function at infinity after simplification is

e 2%/Bx(—e*/Bp(6 — 1) + 2(x + B)B)

. L g3
MmO = I | =78 (¥ By (= PR (8 = 1) + (x + 5)0)
B

By applying L’ Hospital rule, the result follows.
Remarks 1: The PDF of TME distribution has the following characteristics:
i. The curve is modal for all combinations of parameters [ and 6.

ii. The curve begins from the origin, goes up, decreases after getting the highest
point, and touches zero as x tends to infinity for all combinations of
parameters f3 and 0.

Remarks 2: The properties related to h(x) of TME distribution are as follows:
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I. The HRF’s curve initiates from the origin and drives to the point % as x

approaches oo for all values of § and 6.

ii. The h(x) curve has an increasing trend in the beginning(origin) and touches the
point 1/f as x —oo0.

iii. For the same B, hazard curves coincide for different values of the transmuted
variable.

3. General Properties

In this section, we study the characteristics of the transmuted variable with relation
to the baseline random variable. The behaviour of transmuted distribution is
assessed by the behavior of baseline distribution. The mean of the transmuted-G
distribution is determined by the relation discussed in the following theorem
provided the mean of baseline distribution also exists.

Theorem 3: Let m(x) be a function of r. v. X with pdf (g(x)) and cdf (G(x)) of
baseline distribution (ME) and pdf (f (x)) and cdf (F (x)) of transmuted distribution
(TME). If Ex(r(x)) indicates [ m(x)f(x) dx, then

Er(m(X)) = (1 + O)E(n(X)) — 20E[m(X)G(X)] (9)
Proof: From (2)

Ep(n(X)) = f (0 [(1+ 0)g(x) — 20 gGIG()] dx

=1+ H)fn(x)g(x) dx — 29fn(x) G(x) g(x) dx
= (1+ 0)Eg(m(X)) — 20E;(m(X)G(x))

3.1. Mode

The mode of transmuted moment exponential model is obtained as a result of
following equation f'(x) =0 if f""(x) < 0.

The density function of TME is differentiated with respect to x i.e., f'(x) and
equate it to zero.

flx) = ﬁie"% [1 —0+26 (1 +%) e_%]
f'x) = [%e_% - %e_%] [1 —6+26 (1 + %) e_%]
3 (eH )

e_%x(ex/ﬁ(x — BB(=1+6) +2(=2x> + BHB) _
p* -

0 (10)
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2x

e B
'34

[e*/F (x — )(8 — 1) + e*/PB(6 — 1) — 8x6)]
Ze_%x
g (/PG = BB — 1) +2(6° - 2x*)6) <0,

for B >0,]|6] < 1. Using (10), the mode of the distribution can be obtained.

') =

4. Characterizations

Characterizing a distribution is a key feature in distribution theory and it helps the
researcher in identifying the model.

4.1. Characterization based on two truncated moments

The characterization of TME distribution is carried out as follows: using the
theorem proposed by Glanzel (1987) related to two truncated moments.
Theorem 4.1: Let X has the pdf given in (2) and

g, (x) =§[1—9+29 <1+%) e‘x/ﬁ]_l, (11)

X
q2(x) = q1(x)e £, x> 0. (12)
The r. v. ‘X’ follows TME distribution iff the function n has the following
expression:

1 X

n(x) =se P (13)

Proof: For x>0, we have
X

(1-F()E[q1(X)|X =x] =e B,

2x
(1~ FG)Elg (01K = 1] =3¢ P,
then
nx) = Ee_ﬁ-

It is obvious that
n(x)q,(x) — q,(x) = q,(x) {% e F— e_E} # 0 forall values ofx, the proof

completes.
Conversely, for q,(x),qg,(x) and n(x) we have r.v. X has TME distribution.
now

() = W) 1G) _
1(x)q1(x) = g2(x) n(x)—e F
$(x) = %, x>0
and so s(x) = %, x>0 (14)

Now using theorem of Glanzel (1987), the F(X) is
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:CI% [1—9+29(1+%)e_%]exp[—%]du

which can be simplified to

f frmep(Wdu = Frygp(x)
0

4.2. Characterization based hazard function

Hamedani et al. (2016) obtained characterization related to failure function. Using
their concept, the characterization of TME model is offered as follows:

Theorem 4.2: The density function of TME model is (2) if its failure function h(x)
satisfies the following equation

2Xx
{—e7ﬁ2(9—1)2+ex/3(x2+4xﬁ+3ﬁ2)(9—1)9—2(x+ﬁ)292}

h(x) —x *h(x) = . 15
() = x""h(x) Blx+B)eX/BB(6-1)~(x+PB)6} (15)
Proof: If X has PDF (2), then
h(x) — x 1h(x) =
2X
[37ﬁ3(9—1)2+ex/5(x3+x2[)’—3x[)’2—3[)’3)(9—1)9+2[3(x+ﬁ)292]
[E(x+ﬁ)2(ex/ﬁﬁ(e—l)—(x+ﬁ)9)2] B
) e Bx 1+9—2{1—(1+%)3_F}9]
X (16)

pefi-(1-(1:2)e P Yfaro-(1-(1+)e o]

simplification follows (16). Now if (16) exists then

i[x‘lh(x)] :i< e_ﬁ[1+9—29{1—(1+x/ﬂ)e_3}] )

. ax ﬁz[1—{1—(1+x/ﬁ)e7}{1+9(1+x/ﬁ)e7”
and simplification results in Eq. (4).

5. Parameter estimation

Here in this part of research, we estimate the parameter using maximum likelihood
estimation (MLE), Anderson Darling estimation (ADE), Cramer von misses
(CVME), ordinary and weighted least squares estimation (OLSE & WLSE), and
maximum product spacing estimation (MPSE) methods.

5.1. Maximum likelihood estimation

The ML method is the most advantageous parametric estimation technique. The
reason is described by theoretical acceptance of the limiting properties of the
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estimators, such as consistency, efficiency, and asymptotic normality. Let
X1, X2, X3, o .. X D€ @ 1. SAMple from transmuted moment exponential model of
size n with PDF Eq. (2), the ‘log-likelihood’ function (L) of TME is given by
Hussain et al. (2018), given by

Xi X\ =M
L=210gxi—2nlogﬁ—zﬁl+210g[1—9+29<1+El>e B

The MLE of 6 and B, as given in Hussain et al. (2018) is the solution of the following
equations

X

—142(1+%)e P
7% = e iy (17)
1—9+29(1+%)e7
L _ -2n x Zeﬁ%e_ﬁ
—=—4+)y=-% = 0. (18)
oF B p? 1—9+29(1+%)e_%

The exact solution of Eq. 17 and 18 is tedious to obtain. So it is recommended to
utilize non-linear optimization algorithms for example the Newton-Raphson
algorithm to maximize ‘L’ numerically. It can be solved using statistical software
R.

5.2. Method of Anderson-Darling estimation

The Anderson-Darling estimators (ADE) of (6, B) can be acquired by minimizing
the following ﬁmction with respect to 0 and B3, as follows

A(6,B) = —n——Z(Zl — D[log F(x(; 6, 8) +1og [1 = F (x(ns1-0; 6, B)]]

Thus, the ADE of 6 can be obtained by differentiating the above equation

n 2% X
B -B(1+ef |-x; |(B+x)
2408 _ _1 ) < ( > > :
% = . (-1 +20) = = +
- e B (B+x;)| eP B(-1+6)-6(B+x;)
i=
B?| 1+ 7
x1—ﬁi+n
x1—i_+i+e B—Xi_i+n (19)

e B B(-1460)-0(B+x1_j1n)

Similarly, we can obtain dA(8,£)/0p and get estimates of 0 and by equating
them to zero.
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5.3. Cramer von Misses Minimum Distance Estimation

Another method for gaining estimates is CVME and estimates are obtained by
minimizing the function with respect to 6 and . It is defined by

i—112
C(O) = o=+ Xy [F(xay; 0) - 2]

2n
) *@) 2
1 e P (ﬁ+x(i))<e B ﬁ(9—1)—9(ﬁ+x(i))> i1
_ n _ _
T 12n + 21:1 1 B2 on | (20)

The CVME indicates that the bias of this estimator (0, B) is least when compared
with the bias of other minimum distance estimators.

5.4. Methods of least squares and weighted least squares estimation

We now consider the methods of least square estimation (OLSE) and weighted least
square estimation (WLSE). OLSE method was firstly presented by Swain (1988).
It is a non-linear method of estimation, especially when the MLEs cannot be
obtained in an explicit form. The OLSE of (6, B) can be intended by minimizing the
least square function SSE, L(0, j).

n

L(6.B) = Z (Fror0.8) = i 1)

i=1

2

w. r. t 6, where X, (=1, 2, 3, .....,n) is the ith element of the ordered observations
X1, X2, X3,.... Xn and F(.) is empirical CDF of ith observation. i.e., £(.) = ﬁ

Using Eq. (1) and F(.), we have

= ijl ({1 - (1 + %) e-x(i)/ﬁ} [1 +6-0 {1 — (1 + %) e‘x(i)/ﬁ}] 3 ﬁ)2

Thus, the OLSE can be obtained by equating the equations to zero, i.e.,
d0L(8)/06 =0

2x (i

4X i
aL@p 1 —@ . i} .
o5 =gie P nl+pxq + - pero’F) (‘e P B2 = 2e"0/PB(xg +

,8) 0 —1)+2(x + B)?0). (21)

4x(; 3x(q
aL(o, 1 ——@ —0 , 2
0D 1~ 50— 1) — 600/ + B)' (0 — DO + 4Gy +

B)36% + Ze%xﬂz(x(i) +B)(1—36 +62)) (22)
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The weighted least square estimate (WLSE) of 0 and 3, are obtained by minimizing
the weighted least square function (Also called SSE) with respect to 0 and 3, defined

by

N+ 12 +2) _ i 7
WLS(H'ﬁ)_; in—i+1) [F(x(i)’e"g)_n+1]

2x(; X(i
_  (n+ 12+ 2) e_%(ﬁ’ + x(i))(e%ﬁ(f) -1 -0 +xu)) i
- im—i+1) B2 n+1

i=1

OWLS(8,5)/ 9p = 0 gives the WLSQE of 6.

n

IWLS(6, 2 é 2@ X))
aé 2 = i(1—i+n)p? e F(1+ n)z(z +n)(—B+ef B— x(i))(ﬂ

i=1

o G0}
i e P (B+xp)(Eef pO-1)-600+xy)

o)\ 1o B2

(23)

Similarly, we can get the expression of estimate § by minimizing the function SSE
(WLS).

5.5. Maximum product spacing Estimation
The MPSE method is greatly used for continuous distributions and can be

considered a powerful substitute for the MLE technique for estimating the
parameters (see Cheng and Amin [25]). Let

D;(6,B) = F(x;0,8) — F(xg-1:6,B), i=123,....,n+1

be the uniform spacing of a r. sample from the TME model, where

n+1

F(x:6,8) =0,  F(xmsn;6,8) = 1,and Z D;(6,8) = 1
i=1

The MPS estimator is found from the following function (GM), where GM is
basically the geometric mean of the spacings. MPS are calculated by maximizing

1

GM(6,p) = {]_[ Di(e,ﬁ)} ,(24)
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w. r. t. & and f. The MPS estimator of # and f can alternatively be solved by
maximizing the logarithm of the GM (sample spacing’s) stated above. There is no
closed solution exist in Eq. (24), so the numerical method is used to find estimates.

Note that all estimation methods can be obtained by using numerical methods.
6. Simulation

A Monte Carlo simulation study is used to review the performance of different
estimation methods for estimating TME parameters. Numerous sample sizes (n) are
considered for specific values of parameters. The simulations are achieved as:

o Samples are generated from F(x) = q, where g~U (0, 1).

o Consider following values of n=20, 50, 100, 200 and 500.

. In the experiment N is considered as 10,000 for each ‘n’.

The performance of these estimators is assessed by the average of ML estimates,
mean square errors (MSESs) and biases. Therefore these measures are calculated for
all sample sizes and all parametric values and reported in Tables 1-4.

The results of simulations specify that both selected criterions of comparison; the
MSE and bias decreases and approaches towards zero as ‘n’ increases under the
first-order asymptotic behaviour. The average of estimates of 0 and  tends to be
nearer to the true parametric vales as ‘n’ increases.

Table 1: Simulation results for8 = 0.5&f = 0.5
n  Est. Est.pra. MLE ADE CVME OLSE WLSE MPSE

Bias| 6 001955 010931 014208 0.06241 007317 001031

2 001081 003977 004530 002741 008118 003017
ViSE 6 018823 011637 01369 0.10877 010579 009392
001630 001816 002028 001742 001713 0.01396

Bias| 6 000392 010797 011794 006623 0.08352 0.04085

0 001038 003244 003367 002202 0.02682 002472
VisE 6 015397 010501 012271 010309 009994 0.08053
001038 001068 001200 0.01076 0.01042 0.00777

Bias| 6 001048 008810 009956 0.06864 0.08067 0.04413

100 000810 002713 002881 002164 002548 002156
8 012873 009301 0.10707 009251 0.08942 0.07064

MSE 5 000799 000789 000881 000791 0.00770 0.00564
Bias| 6 00215 007046 008262 0.05737 006337 0.04574

- 000248 002005 002193 001604 001840 0.01710
6 010080 007371 008562 007785 007352 0.05087

MSE 7 000559 000531 0.00601 0.00551 0.00525 0.00354

, 8 004001 004314 004655 002531 0.03863 0.03245

200 [Bias| ; 0.00123 001494 0.01493 0.01003 0.01399 0.01409
VSE 6 008702 006278 007111 006680 0.06323 0.04202

g 000469 000452 0.00500 0.00468 0.00457 0.00287
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Table 2: Simulation results for8 = 0.5& S = 2.0

43

n  Est. Est.pra. MLE  ADE CVME OLSE WLSE MPSE
\Bias| 0 0.10164 0.00355 0.02598 0.07296 0.01618 0.07004

20 B 0.02507 0.06205 0.03274 0.00752 0.05125 0.05042
MSE 0 0.28954 0.19150 0.24284 0.17624 0.15500 0.13772

B 0.16995 0.20727 0.19263 0.17121 0.20306 0.15818

\Bias| 0 0.05111 0.05295 0.05874 0.01733 0.03386 0.00893

- B 0.00187 0.08142 0.08138 0.04384 0.06495 0.05554
MSE 0 0.18402 0.12620 0.14557 0.11875 0.12195 0.09322

B 0.13130 0.13802 0.15491 0.13701 0.13434 0.09490

\Bias| 0 0.05075 0.07290 0.08201 0.04727 0.04989 0.01920

100 B 0.00179 0.09695 0.10106 0.06888 0.07568 0.06293
MSE 0 0.14326 0.09491 0.11227 0.09989 0.09828 0.06627

B 0.11075 0.11934 0.13242 0.11859 0.11248 0.07069

\Bias| 0 0.04974 0.03745 0.05440 0.02829 0.03481 0.02578

200 B 0.00651 0.05964 0.07147 0.04716 0.05710 0.05972
MSE 0 0.09608 0.07031 0.08212 0.07569 0.07054 0.04364

B 0.07773 0.08071 0.09481 0.08622 0.07955 0.04577

\Bias| 0 0.02636 0.03871 0.04543 0.02372 0.03242 0.03177

300 B 0.00931 0.05801 0.06152 0.04153 0.05230 0.05787
MSE 0 0.08306 0.06362 0.07252 0.06855 0.06383 0.04038

B 0.07260 0.07344 0.08246 0.07750 0.07258 0.04238

Table 3: Simulation results for8 = 0.8 & = 0.5

n  Est. Est.pra. MLE  ADE CVME OLSE WLSE MPSE
IBias| 0 0.01063 0.09893 0.07588 0.16820 0.13676 0.14800

20 B 0.00229 0.01583 0.01138 0.02909 0.02236 0.01818
MSE 0 0.05041 0.09612 0.07971 0.13776 0.11551 0.12310

B 0.00888 0.01813 0.01528 0.02666 0.02152 0.01955

IBias| 0 0.05041 0.09612 0.07971 0.13776 0.11551 0.12310

- B 0.00888 0.01813 0.01528 0.02666 0.02152 0.01955
MSE 0 0.08716 0.09631 0.10440 0.11856 0.10310 0.07791

B 0.00680 0.00791 0.00866 0.00912 0.00829 0.00586

IBias| 0 0.05601 0.10328 0.09605 0.13922 0.10907 0.09811

100 B 0.00557 0.01579 0.01444 0.02317 0.01676 0.01245
0 0.07884 0.09661 0.10721 0.11898 0.09833 0.06573

MSE i 0.00500 0.00603 0.00656 0.00691 0.00608 0.00415
\Bias| 0 0.05983 0.08193 0.07181 0.10077 0.07686 0.07280

i 0.00879 0.01400 0.01199 0.01785 0.01276 0.01099

200 MSE Q 0.06847 0.07881 0.08574 0.09339 0.07484 0.04969
i 0.00394 0.00449 0.00486 0.00514 0.00442 0.00297

IBias| Q 0.05503 0.07510 0.07124 0.09642 0.07462 0.05804

i 0.00932 0.01422 0.01348 0.01856 0.01396 0.00995

300 6 0.05977 0.06697 0.07472 0.08334 0.06672 0.03909
MSE 2 0.00320 0.00360 0.00395 0.00426 0.00360 0.00225
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Table 4: Simulation results for 6 = =0.5& f = 2.0
n  Est. Estpra. MLE ADE CVME OLSE WLSE MPSE

|Bias| 61 0.00078 0.10231 0.02291 0.19170 0.16868 0.31508

20 @ 0.07204 0.17073 0.11317 0.27096 0.24319 0.40120
MSE 61 0.22614 0.25256 0.24100 0.30039 0.28727 0.37227

B 0.21496 0.25238 0.24082 0.34340 0.32619 0.50264

|Bias| 6? 0.02359 0.06480 0.02335 0.11157 0.08523 0.24392

50 @ 0.05926 0.09534 0.06534 0.14437 0.11588 0.28153
MSE 61 0.16152 0.15654 0.15691 0.18551 0.16946 0.29145

B 0.14217 0.14159 0.13335 0.17025 0.15805 0.32910

|Bias| 6? 0.01355 0.02656 0.00258 0.05200 0.03022 0.14544

100 @ 0.02395 0.03437 0.02024 0.06350 0.03768 0.15256
MSE 61 0.08701 0.07383 0.07959 0.09434 0.07457 0.16093

B 0.06809 0.05340 0.05709 0.07376 0.05391 0.15841

|Bias| 6? 0.00121 0.00999 0.00038 0.02320 0.01057 0.06045

200 [E 0.01091 0.01905 0.01346 0.03233 0.01917 0.06509
MSE 61 0.03952 0.03660 0.03847 0.04113 0.03533 0.05583

B 0.03116 0.02769 0.02775 0.03133 0.02559 0.05065

|Bias| 6? 0.00272 0.00179 0.00495 0.00980 0.00154 0.03463

300 [E 0.00411 0.00901 0.00628 0.01818 0.00876 0.03716
MSE 61 0.02479 0.02343 0.02761 0.02849 0.02367 0.02933

B 0.01625 0.01477 0.01757 0.01870 0.01490 0.02098

7. Data Analysis

Here we show the flexibility of the TME distribution. For this purpose, we used one
real data set. The data set was analyzed by Lee (1992) and also by Hamedani,
(2013). It consists of 121 observations of survival duration of patients. The
following are the observations: 0.3,0.3, 4,5, 5.6, 6.2,6.3,6.6,6.8,7.4, 7.5, 8.4, 8.4,
10.3, 11, 11.8,12.2,12.3, 13,5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8,
17.2,17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21, 21, 21.1, 23, 23.4, 23.6, 24, 24, 27.9,
28.2,29.1, 30, 31, 31, 32, 35, 35, 37, 37, 37, 38, 38, 38, 39, 39, 40, 40, 40, 41, 41,
41,42, 43, 43, 43, 44, 45, 45, 46, 46, 47, 48, 49, 51, 51, 51, 52, 54, 55, 56, 57, 58,
59, 60, 60, 60, 61, 62, 65, 65, 67, 67, 68, 69, 78, 80, 83, 88, 89, 90, 93, 96, 103, 105,
109, 109, 111, 115, 117, 125, 126, 127, 129, 129, 139, 154.

The exponential distribution is proposed by (Epstein, 1958)

g B) = %67-

The Moment exponential (ME) distribution is given by (Igbal, 2012)
9 B) =z P,

The exponentiated Moment exponential (EME) distribution is proposed by
(Hasnain, 2015)

fx) = %xe%{l — (%) e%}a_l.
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The Kumaraswamy Moment exponential (KwME) distribution is given by Hashmi

etal. (2017)
a-1 _yoaqb-1
f(X)=%e%{1—(x;ﬁ)e%x} ll—{l—(x;'g>67}l ) x>0

The Exponentiated Inverse Weibull (EIW) distribution is derived by (Flaih, 2012)
flx)=yAxv1 [e‘x_y]/l,x >0

The transmuted exponentiated Weibull (TEW) distribution is given by (Saboor,
2015)

1
fOGABY,a) = —;e‘Z(ﬁx”x’D (yBxY + x2) ((a — 1)ePxT A _ Za)

Table 5: Descriptive statistics
Min. Q1 Median Q3 Mean  Max.
0.3 17.5 40 60 46.3289 154.0

Table 6: MLEs for real data sets

Model Parameter Estimates ~l A wW*
TME (,0) 25.1676  0.22479 - - 582.81 1.0924 0.1180
ME (B) 231645 - - - 583.15 1.3380 0.1450
E (B) 0.02158 - - - 585.13 2.7083 0.4606
KwME(a,b,f) 0.86960  4999.99 4999.99 - 588.35 17.795 3.1798
EME(&, ) 0.95981  20.0001 - - 585.79 3.4181 0.4766
EIW(9,2) 0.66602  6.81582 - - 636.61 9.8468 1.6015
TEW(a,7,,4) 845%10-9 0.13193 2.543*10"* 0.02158 585.13 2.7083 0.4606

In Table 6, different measures of goodness of fit are presented, and based on these
measures, we have compared the TME distribution with some other distributions.
These accuracy measures include AIC, BIC, Anderson-Darling statistic (A”) and
Cramer-von Mises (W), and log-likelihood. These measures show that TME
distribution gives a better fit to this data set when compared with other distributions.
The lower the values, the better the model is.
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Figure 2: The fitted TME density and other densities for the first data set (left) and
cdf (right).
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Because one of the main goals of this study is to find the best estimators for the data
set, a variety of estimating approaches have been used. Table 7 shows the various
estimators for the data set that are based on various estimating methods.

Table 7. Estimation and Goodness for data set.

Method | Statistics — 0 B KS P-value
MLE 0.2248 25.168 0.075 0.50
ADE 0.3299 26.135 0.072 0.60
CVME 0.2955 25.799 0.072 0.60
OLSE 0.3005 25.881 0.073 0.50
WLSE 0.3258 26.158 0.072 0.50
MPSE 0.2725 25.891 0.076 0.50

It is noted that all the estimation techniques are well for assessing the data set,
however, the ADE and CVME are the most effective.

8. Conclusion

The two-parameter TME distribution is a generalized distribution of ME
distribution, and the shape PDF and hazard curves of the proposed model are
studied at two important points; that is, origin and infinity. The density of TME
distribution is modal and its hazard curve assumes increasing or upside-down
bathtub behaviour. We obtain its characterizations based on truncated moments and
hazard functions. A simulation study is also done, and it shows that mean square
error decreases as sample size increases and ML estimators are efficient estimators.
The application of the TME model to a data set shows that it gives a better fit. Since
the TME model is a parsimonious model among other competitor models and
hopefully is a simple model, it would provide wider applications in different fields
of science and reliability.

Appendix A. R code

# Probaility density curves

rm(list=Is())

x=seq(0,10,length=1000)

Hag=function(par,x){

beta=par[1]

theta=par[2]

((x/beta”2)*(exp(-x/beta)))*(1- theta +2* theta *((1+(x/beta))*exp(-x/beta)))
}

y=3
plot(x,Haqg(c(1.5,1.0),x),type="1",ylab="f(x)",ylim=c(0,y))
lines(x,Haq(c(1.5,-0.8),x),lwd=2,Ity=1,col="red")
lines(x,Haq(c(1.5,-0.7),x),lwd=2,Ity=1,col="purple")
lines(x,Haq(c(1.5,-0.5),x),lwd=2,lty=1,col="cyan")
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lines(x,Haq(c(1.5,-0.25),x),lwd=2,lty=1,col="green")
lines(x,Haq(c(1.5,-0.1),x),Iwd=2,Ity=1,col="black")
lines(x,Haq(c(1.5,0.0),x),lwd=2,lty=1,col="blue")

colors <- c("red","purple”,"cyan”, "green™,"black"”, "blue™)
labels <- c(expression(paste(beta,” = 1.5 ",theta,” = 1.0 ™)),
expression(paste(beta,” = 1.5 ", theta," = -0.8 ")),
expression(paste(beta,” = 1.5 ", theta," = -0.7 ")),
expression(paste(beta,” = 1.5 ", theta,” = -0.5 ")),
expression(paste(beta,” = 1.5 ", theta,” = -0.1 ")),
expression(paste(beta,” = 1.5 ", theta," = 0.0")))
legend("top”, inset=.03,labels, lwd=2, Ity=c(1), col=colors)
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