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Abstract 

 

The paired comparison technique is used to rank stimuli on the basis of preference 

data obtained through presenting stimuli to some respondents in the form of pairs 

and asking them to record their preferences of the stimuli based on sensory 

evaluations. In this study, the Kuk (1995) model for paired comparisons, which 

accommodates home-ground advantage (equivalent to the order effect) and 

draws/ties in the paired comparison experiments, is considered for analysis in the 

Bayesian framework. Worth as well as tie parameters are estimated for both at 

home-ground and away-from-home matches. The entire estimation procedure is 

illustrated using a real dataset. 

 

Keywords: Bayesian Analysis, Home-ground and away-from-home effects, Kuk’s 

Model, Paired comparisons, Performance ranking, Ties/draws; Uninformative 

priors 

 

Mathematical Subject Classification: 62J15, 62F07; 62F10; 62E15. 

 

 

1. Introduction 

 

In the method of paired comparisons, respondents are presented with stimuli in 

pairs and are asked to prefer one on the basis of sensory evaluations. If allowed, 

they may declare ties rendering the two stimuli equal in worth. By repeating this 

experiment, a fixed number of times under balanced or un-balanced patterns, 

preference datasets are generated and expressed in preference matrix. The 

preference matrix is then analyzed using the paired comparison models, which 

quantify these qualitative observations into ranks which are used to order the 

stimuli under study on the basis of their worth. The applications of the paired 

comparison method can be witnessed in different spheres of life ranging from 

consumers’ behaviour in Psychology to ranking of universities and sport-teams. 
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Bayesian inference is a technique widely used in the analysis of different types of 

datasets. The major difference between the classical and the Bayesian methods is 

that the former considers parameters as constant quantities and base their entire 

inference only on the current information (data) and do not utilize prior information 

about the unknown parameters; whereas the later incorporates prior information 

about the population parameters gathered through some reliable methods. The 

Bayesians treat population parameters as random quantities which thus has 

probability distributions. The data in the form of the likelihood function and the 

prior distribution are then merged together to yield posterior distribution where the 

current information is updated by the prior information. The posterior distribution 

is the workbench of the Bayesian statisticians, and they base all types of inferences 

on the posterior distribution.  

 

The recent developments made in this field comprise construction of different 

paired comparison models and their extensions to include different factors affecting 

the preferences declared by the respondents about the competing stimuli as well as 

different estimation techniques like EM algorithm, method of moments, least 

squares, maximum likelihood, etc. David (1988) provides a nice review of the 

literature pertaining to the topic. Bradley and Terry (1952) and Thurstone (1927) 

assume the responses of the respondents to follow respectively the logistic and 

normal distributions. Bradley (1976) gives in detail the review of the work done on 

the method of paired comparisons considering different approaches to construct the 

paired comparisons models, their extensions for accommodating ties and inclusion 

of time factor to construct more dynamic models. He also discusses multiple 

comparisons along with certain relevant models along with certain other methods, 

like circular triads and the coefficient of concordance, quantification or scaling 

similar to discriminant analysis, ANOVA and iterative scoring system in paired 

comparisons. Glenn and David (1960), Joe (1990), Henery (1992) and Kuk (1995) 

consider the Thurstonian model to extend it for ties and home ground (order) 

effects. Stern (1990) considers the gamma distribution in devising the paired 

comparison models. Rao-Kupper (1967) and Davidson and Beaver (1977) attempt 

to accommodate ties and order effects in the Bradley-Terry model. Abbas and 

Aslam (2011) accommodate quantitative weighs in qualitative paired comparisons 

via the Bradley-Terry model. Different models for the paired comparisons have 

been studied in Bayesian paradigm by a large number of authors (Leonard, 1977; 

Chen and Smith, 1984; Aslam, 2002, 2003 & 2005). The recent developments 

regarding the study of the paired comparison models in Bayesian framework maybe 

seen in Abbas and Aslam (2009, 2010, 2012). 

 

The Kuk (1995)’s model accommodates the home-ground and away-from-home 

effects on the strength and tie parameters of the teams under study. Whereas, we 

have also considered the effect of toss-results (winning or losing a toss) on the 

strength and tie parameters of the teams under study. Moreover, an attempt has also 

been made to incorporate prior information and the analysis is carried out in the 

Bayesian framework. Section 2 elaborates the Kuk (1995) model. The Bayesian 

analysis of the Kuk (1995) model under study has been carried out in Section 3. 
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Section 4 illustrates the entire estimation procedure using a real dataset. Section 5 

concludes and discusses the entire study. 

 

2. The Kuk’s model for paired comparisons 

 

Kuk (1995) considers an extension of Glenn and David (1960) model for paired 

comparison which itself is an extension of the famous Thurstone-Mosteller model, 

which assumes that the judges’ responses follow the normal distribution. Glenn and 

David consider tie or draws by accommodating an additional parameter for this 

having a non-negative value. Kuk (1995) considers the effect of home-ground on 

the strength and tie parameter the teams of soccer. He splits the tie parameter into 

two parts, and each part is attributed to the home-ground and away-from-home 

effects. Kuk (1995) model is defined as follows: 

 

 

𝑝𝑖.𝑖𝑗 = Φ(𝜃𝑖
𝐻 − 𝜃𝑗

𝐴 − 𝜏𝑖𝑗)

𝑝𝑜.𝑖𝑗 = Φ(𝜃𝑖
𝐻 − 𝜃𝑗

𝐴 + 𝜏𝑖𝑗) − Φ(𝜃𝑖
𝐻 − 𝜃𝑗

𝐴 − 𝜏𝑖𝑗)

𝑝𝑗.𝑖𝑗 = 1 − 𝑝𝑖.𝑖𝑗 − 𝑝𝑜.𝑖𝑗

}  

 

where 𝛷(. ) denotes the cumulative distribution function of the Gaussian 

distribution, 𝑝𝑖.𝑖𝑗 denotes the winning probability of team 𝑖 (playing at home-ground 

H ) against team 𝑗  (playing away-from-home A ), 𝜏𝑖𝑗 stands for the tie parameter 

and is split  into two parts 𝜏𝑖
𝐻and 𝜏𝑗

𝐴

 
representing the tie values for the teams 𝑖 

(playing at home ground 𝐻) and 𝑗 (playing away-from-home 𝐴) respectively, 

𝜃1
𝐻, 𝜃2

𝐻, . . . , 𝜃𝑡
𝐻 represent the worth/strength of  𝑡 teams when playing at home 

grounds and 𝜃1
𝐴, 𝜃2

𝐴, . . . , 𝜃𝑡
𝐴, the worth of the 𝑡 teams when playing away-from-

home. Also 𝜏1
𝐻 , 𝜏2

𝐻 , . . . , 𝜏𝑡
𝐻 and 𝜏1

𝐴, 𝜏2
𝐴, . . . , 𝜏𝑡

𝐴 denote the tie parameters for the 𝑡 

teams playing respectively at home and away-from-home. The first subscript 

denotes the team playing at his home-ground and 𝜃𝑖
𝐻 − 𝜃𝑖

𝐴 denotes the home-

ground effect. 

 

3. Bayesian analysis of the Kuk’s model 

 

Now for the estimation of the model parameters in the Bayesian framework, we use 

the likelihood function which needs a regular distribution being followed by the 

observed data. And as far as the present situation is concerned, there are total three 

categories of the outcomes for each trial, i.e., winning, losing and drawing the match 

and hence follow the multinomial distribution with three categories of outcomes. 

 

Before proceeding further, we first explain the notations used in this study. Of the 

total 𝑎𝑖𝑗 and 𝑎𝑗𝑖 matches played respectively at team 𝑖’s and 𝑗’s home-ground, 

𝑎𝑖.𝑖𝑗and 𝑎𝑗.𝑖𝑗 be the respective number of matches won and lost by team i played at 

his home grounds, whereas 𝑎𝑖.𝑗𝑖 and 𝑎𝑗.𝑗𝑖 respectively denote the number of matches 

won and lost by team 𝑖 played at team 𝑗’s home grounds, 𝑎𝑜.𝑖𝑗 and 𝑎𝑜.𝑗𝑖 
be the 

respective number of tied matches played respectively at 𝑖’s and 𝑗’s home grounds 

and obviously 𝑎𝑖𝑗 = 𝑎𝑖.𝑖𝑗 + 𝑎𝑗.𝑖𝑗 + 𝑎𝑜.𝑖𝑗 and 𝑎𝑗𝑖 = 𝑎𝑖.𝑗𝑖 + 𝑎𝑗.𝑗𝑖 + 𝑎𝑜.𝑗𝑖. Similarly, 
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𝑝𝑖.𝑖𝑗, 𝑝𝑗.𝑖𝑗and 𝑝𝑜.𝑖𝑗 
denote team 𝑖’s corresponding probabilities for winning, losing 

and drawing a match played at the team 𝑖’s home grounds and 𝑝𝑗.𝑖𝑗, 𝑝𝑖.𝑗𝑖 
and 𝑝𝑜.𝑗𝑖 

represent respectively the team 𝑗’s probabilities of winning, losing and drawing a 

match played at 𝑗’s home grounds. As a rule of thumb, the first subscript of ‘𝑝’ 

before the dot (.) indicates the winner team at home ground. Also 𝑛𝑖𝑗 = 𝑎𝑖𝑗 + 𝑎𝑗𝑖 

be the total matches played between the teams 𝑖 and 𝑗 irrespective of the grounds. 

Then of the total 𝑛𝑖𝑗 matches played between the teams 𝑖 and 𝑗 at 𝑖’s home grounds, 

the probability that 𝑎𝑖.𝑖𝑗 are won by team i , 𝑎𝑗.𝑖𝑗 are won by team 𝑗 and 𝑎𝑜.𝑖𝑗 
matches 

are tied between the teams𝑖 and 𝑗, is given by 

 

𝑃𝑖𝑗 = 𝑐𝑖𝑗(𝑝𝑖.𝑖𝑗)𝑎𝑖.𝑖𝑗(𝑝𝑗.𝑖𝑗)𝑎𝑗.𝑖𝑗(𝑝𝑜.𝑖𝑗)𝑎𝑜.𝑖𝑗,         for all 𝑖 ≠ 𝑗,    

 

where 𝑐𝑖𝑗 = 𝑎𝑖𝑗!/(𝑎𝑖.𝑖𝑗! 𝑎𝑗.𝑖𝑗! 𝑎𝑜.𝑖𝑗!) is the normalizing constant. The similar 

probability between the teams 𝑖 and 𝑗 while playing at team𝑗’s home is 

  

𝑃𝑗𝑖 = 𝑐𝑗𝑖(𝑝𝑖.𝑗𝑖)𝑎𝑖.𝑗𝑖(𝑝𝑗.𝑗𝑖)
𝑎𝑗.𝑗𝑖(𝑝𝑜.𝑗𝑖)

𝑎𝑜.𝑗𝑖,           for all𝑖 ≠ 𝑗,   

 

where the normalizing constant 𝑐𝑗𝑖 = 𝑎𝑗𝑖!/(𝑎𝑖.𝑗𝑖! 𝑎𝑗.𝑗𝑖! 𝑎𝑜.𝑗𝑖!).  

 

Now for the Bayesian estimation of the worth parameters, the home-ground 

advantage and the tie parameters both at home grounds and away-from-home, we 

need the posterior distribution of all the unknown parameters, which combines the 

likelihood function L  based on the sample data X  and a prior distribution via the 

Bayes theorem. So, the likelihood function 𝐿 is defined as 

 

𝐿(𝑿|𝜽) = ∏ 𝑃𝑖𝑗,
𝑡
𝑖≠𝑗                             for all 𝑖(≠ 𝑗) = 1,2, … , 𝑡,   

 

where 𝜽 = (𝜃𝑖
𝐻, 𝜃𝑗

𝐴, 𝜏𝑖
𝐻 , 𝜏𝑗

𝐴)
 
for all 𝑖(≠ 𝑗) = 1,2, . . . , 𝑡. For the Bayesian analysis of 

the model, we may use some distribution with well-behaved form as an informative 

prior. We may analyze the data using the Jeffreys’ prior as well as the uniform prior. 

However, Aslam (2002) shows that the Bayesian estimates using the uniform prior 

and the Jeffreys’ prior significantly agree. Hence, we use the uniform distribution 

as the non-informative, defuse or flat prior which is proportional to a constant not 

depending on the value of the unknown parameters θ and may be written as   

𝜋(𝜽) ∝ 1 , for all −∞ ≤ 𝜃 ≤ ∞. 
     

The posterior distribution ( | )P θ X under this uniform prior U (- ∞, ∞) is given by 

  

𝑃(𝜽|𝑿) ∝ 𝜋(𝜽). 𝐿(𝑿, 𝜽)    

or                                                                                                                            (1)               

𝑃(𝜽|𝑿) = 𝑐𝜋(𝜽)(𝑿, 𝜽) 

  

 

where c is known as the normalizing constant and is independent of the unknown 

parameters 𝜽. Now, the consequent analysis of the data will be carried out on the 



28                                                                                                Abbas et al. 

  

basis of the posterior distribution given in (1). The computational algorithm may be 

described as follows for the ease of the readers: 

(i) Collect dataset from multinomial distribution that meets the needs of the 

study. 

(ii) Define and derive likelihood function. 

(iii) Define suitable prior distribution. 

(iv) Merge likelihood function with prior distribution via the Bayes theorem 

to derive posterior distribution. 

(v) Differentiate the posterior distribution with respect to the unknown 

parameter(s) and equate them to zero to get as many equations as the 

number of parameters. 

(vi) Solve the equations for the unknowns to get the desired estimates. 

 

4. An illustrative numerical example 

 

Here five cricket teams, namely Australia, England, India, Pakistan and New 

Zealand, have been compared with regards to their strength/worth both at their 

home grounds and away-from-home. We have used the current real dataset for the 

aforesaid five teams for the years 2000 onwards for the analysis, which can be 

accessed through the website www.howstat.com. The data are given in Table 1. 

 

Table 1: Home wins, losses and ties data for five cricket teams 

Pairs(𝑖, 𝑗) 𝑎𝑖𝑗 𝑎𝑖.𝑖𝑗 𝑎𝑗.𝑖𝑗 𝑎𝑜.𝑖𝑗 

(1, 2) 6 6 0 0 

(2, 1  11 2 7 2 

(1, 3) 10 9 1 0 

(3, 1) 9 3 6 0 

(1, 4) 6 2 4 0 

(4, 1) 13 2 10 1 

(1, 5) 14 10 4 0 

(5, 1) 0 0 0 0 

(2, 3) 7 3 3 1 

(3, 2) 12 7 5 0 

(2, 4) 2 0 2 0 

(4, 2) 5 3 2 0 

(2, 5) 6 2 4 0 

(5, 2) 8 5 3 0 

(3, 4) 3 1 2 0 

(4,3) 7 5 2 0 

(3, 5) 7 2 5 0 

(5, 3) 10 3 7 0 

(4, 5) 9 6 3 0 

(5, 4) 8 8 0 0 

 

In Bayesian inference we usually use the mathematical expectation or mode of the 

posterior distribution assuming respectively the squared error loss and the absolute 

error loss functions. We may find/use the means as the estimates of the unknown 

http://www.howstat.com/
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parameters, but it is accomplished through the quadrature method of cumbersome 

numerical integration which involves evaluation of multiple integrals of very high 

dimensionality (18-dimensional integration is needed for the current study with two 

constraints on the parametric values). So, we resort to finding the posterior modes 

which involves the solution of 20 simultaneous equations obtained by equating to 

zero the first derivatives about all unknown parameters of the logarithm of the 

posterior distribution. This is accomplished through developing a computer 

program in SAS software using the PROC SYSNLIN command5 to get the Bayesian 

estimates in the form of posterior modes along with their standard errors. The 

resulting estimates, along with their sstandard errors (in brackets), are reported in 

Table 2. 

 

Table 2: The model estimates of the parameters 

Teams 𝜃𝑖
𝐻

 𝜃𝑗
𝐴

 𝜏𝑖
𝐻 𝜏𝑗

𝐴 
Home-ground 

Effect 

Australia 
0.139942 

(0.43090) 

0.206024 

(0.52015) 

-1.233382 

(2.67487) 

-1.122180 

(2.04689) 
-0.066082 

England 
-0.121743 

(0.42288) 

-0.111402 

(0.40652) 

-1.002964 

(3.10129) 

-1.168759 

(1.95400) 
-0.010341 

India 
-0.025917 

(0.17262) 

-0.055597 

(0.29894) 

-1.288520 

(1.83401) 

-1.352645 

(1.88204) 
0.081514 

New 

Zealand 

0.028055 

(0.25092) 

0.006530 

(0.02695) 

-1.193209 

(2.14401) 

-1.0966531 

(1.83186) 
0.021525 

Pakistan 
0.146668 

(0.85235) 

-0.018695 

(0.11009) 

-1.95936 

(1.56207) 

-1.302672 

(1.67892) 
0.165363 

 

From these results, it becomes quite obvious that the five teams may be ranked as: 

Australia → Pakistan → New Zealand → India → England, 

where the symbol ‘→’ may be read as ‘precedes’. Moreover, the results shown in 

Table 2 also assign the same ranks to Australia and Pakistan and render the rest of 

the teams as almost equal in worth.  

 

5. Conclusions 

 

From the results shown in Table 2, it becomes well-evident that the five teams may 

be ranked on the basis of their strength/worth/merit as Australia being the number 

one, Pakistan the second, New Zealand the third, India the forth, and England being 

the fifth one. It is interesting to note that same the order of ranks is exhibited both 

at home grounds and the away-from-home. As far as the nature of the home-ground 

effect is concerned, the last column of Table 2 makes it quite evident that the home 

ground advantage has different adverse/favourable effects on the teams. The home 

ground is advantageous for the last three teams, i.e., India, New Zealand, and 

Pakistan, which means that the home grounds have added to their worth and they 

have done well in these grounds as compared to that in the away-from-home 

grounds. Pakistan is the highest in getting benefit of this factor and India and New 

Zealand being respectively the second and third ones. From the current data, it is 

 
5 The SAS codes are not provided here to save space but may be had from the author on request. 
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also noticed that of the five competing teams, Australia is the highly affected by the 

home-ground effect and England with second in suffering from this factor. It is clear 

from the results that all the tie parameters at home and away-from-home are 

negative. Perhaps, it might be due to the fact that there is very small probability of 

drawing a one-day-match and the dataset under study shows that only four matches 

are drawn out of total 153 matches. So, the negative values of the tie parameter may 

indicate that there is no significance of tie parameters for the current dataset, and it 

may be declared as the nuisance parameter. The sums of the tie parameters for the 

home grounds as well as the away-from-home grounds are approximately equal as 

assumed by Kuk (1995).  

 

We have conducted the Bayesian analysis using just the non-informative prior. 

However, the informative priors may use to incorporate the expert opinions in the 

analysis. Further dimensions of the important factors affecting the strength and tie 

parameters may also be modelled via the Kuk (1995) model or the other models 

existing in the literatures. 
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