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A Bivariate Mixture of Chi- Normal Distribution and Bounded
Student’s t-Distribution

G.S. David Sam Jayakumar™, A. Sulthan® and Bejoy John Thomas®
Abstract

A bivariate mixture of Chi and Normal distribution is introduced by using Jacobian
transformation and rescaling the scale, shape parameters of existing Mckay’s Bi-
variate Gamma distribution which is considered to be the chi-normal distribution
and its marginals are univariate chi and normal distribution respectively.
Conditional distribution, various generating functions and its constants are shown.
Similarly, the authors explored a new Bounded student’s t-distribution in the
sampling literature based on chi-normal mixture and studied its characteristics,
computed the percentage points at 5% and 1% level by using Maple version 16.
Three-dimensional probability surfaces are visualized the shape of chi-normal
densities and two-dimensional probability curves shown the shape of Bounded
student’s t density heuristically. Finally, the authors confirmed the limiting
distribution of bounded student’s t distribution is the standard normal and the
application of Bounded student’s t distribution was also numerically illustrated.

Keywords: Mckay’s Bivariate Gamma distribution, bivariate mixture, chi-normal
distribution, Generating functions, Bounded student’s t distribution, three
dimensional probability surfaces, Two dimensional probability curves, limiting
distribution
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0. Some Preliminaries

Explicit expressions for the PDF of chi-normal distribution, Bounded-t distribution
and the Calculation of constants, generating functions involves several special
functions (Prudnikov et al. (1986) & Gradshteyn and Ryzhik (2000)) and they are
given as follows:

I.  The Hyper geometric function of two variables defined by
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The rising factorial or Pochammer symbol is given as

(@) =ala+1D(a+2).... (a+k—-1)

The integral representation of the Gamma and the lower incomplete
Gamma function are defined by

I'(a) =f x3 le X dx
0

and

X

v(a,x) =f ta-le7tdt,
0

respectively.

The integral representation of the Beta function, Incomplete Beta function

and Regularized Incomplete Beta function are defined as
1
B(a,b) = f t4 (1 - t)P~1de,

0
x

B(x;a,b) = f ta1(1 - t)P~1dt
0
and

L.(a,b) =

1 x
a—1 _ b—1
Bab) fo t* 11 —-t)?1dt,

respectively.
The integral representation of the Tricomi’s Confluent hyper geometric
function is defined by

1 ]
U(a,b,x) = mj ta_l(l + t)b—a—le—xt dt
0

The integral representation of the Digamma function due to Gauss is defined
by

0 e—x e—zx
W(Z)=JO ( X _1—e‘x) dx
The Bessel function of the first Kind is defined by

(-1D"

Ja(2) = LkTk+a+1)
The Modif_iedooBesseI function of the first kind is defined by

—a 1 +a
la(x) =1 ’; KTk +a+1) (x/2)**

(x/2)2k+a

Introduction

The finest works of Titterington et. al (1985), McLachlan and Basford (1988),
McLachlan and Peel (2000) provided a comprehensive import of finite mixture
distributions and the application, inference of finite mixture models. Balakrishnan
(2009) examined varied forms of bivariate gamma distributions. Jensen’s (1970)
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generalization of Kibble’s distribution resulted in Jensen’s Bivariate Gamma
Distribution where density function has as a diagonal expansion in terms of
Laguerre polynomials and Orthogonal polynomials. McKay (Mckay,1934)
proposed the bivariate gamma distribution and its joint pdf given by

aPta

p=1, 4 nNg—1_.—ay’ ’ ’
—_—x (y—x"H)te™®™; 0<x'<y" apq>0~1
T (q) y y' a,pq (D

fx’,y’(x’»y’) =

From (1)ifx = Vx', y = \/7, p=1/2, p+q=v/2and a = 1/2,then using
one dimensional Jacobian of transformation, (1) becomes the joint density function
of bivariate mixture of chi-half normal distribution. Now change the limits of X as
—y < x < +y and then the joint density becomes the bivariate mixture of chi-
normal distribution. The introduction of this proposed distribution makes us to
explore a new Bounded student’s t distribution in the sampling literature and the
proposed features of distributions were considered in the following sections.

1.1. Bivariate mixture of Chi-normal distribution

Definition 1.1: Let X and Y be the random variables that follow Bivariate Chi-
normal distribution with degrees of freedomV, then its density function is defined
as

_2(1/2)7?
Vrr((v—-1)/2)
where —y <x < +y.

Result 1.2: The following probability surfaces of (2) for the selected values of
degrees of freedom V are visualized below:

fxy (%, ¥) (y? - xZ)((v—l)/Z)—le—yz/z )

0.8
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(i) v=20 (j) v=25

Figure 3. probability surfaces of (2) for different values of degrees of freedom v

Theorem 1.3: The cumulative distribution function of (3) is defined by

T w-n/2)
_ v—1)/2) -1\,
Far(67) = s 2 S IC L
xR+ 4 2kt k=0
( — )y(((v—l)/Z)k,yzz) (3)

where y(.,.) is the lower incomplete Gamma function.
Proof: Let the cumulative distribution function of a bivariate distribution is

Fyy(x,y) = f_xy f:f(U, V) dUudv

—M e 2 _ 12y(w-1)/2)-1,-V?/2
Fyy(x,y) = Var(w-1)/2) f_yfo vy U<) e audv

2(1/2)v/? *yoo _ 1 _yp2
- ﬁr((v—n/z')f Jo veEA - Un R Rt R duydy S
y

Now using Binomial expansion in (4) for

- - - - -1)/2)-1
(1- UZ/VZ)((” 1)/2)-1 — 25((:0 1)/2)-1 (((V 3{/ ) ) (—Dk(1/V2)kU?)*
Set S =V ?/2and integrate it, then the final expression of CDF as

((v-1)/2)-1
_ 1 (v-1)/2) -1
P ) = - 172 ;) )

x2k+1+y2k+1

x (—1/2)* (=2 )y (v - 1)/2) — k,y?/2)
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2
where y(((v — 1)/2) — k,y*/2) = foy /2 $(@=1/2-k-165 45 is the lower

incomplete gamma function.
2. Marginal and conditional distributions

Theorem 2.1: The MGF of (2) is

fx(x) = \/T_ﬂe‘xz/z where —o0< X< +00 (5

Proof: The marginal distribution of chi-normal mixture of X exists when the limits
of Yis |x| < y < oo. Therefore, marginal distribution of X is derived as

2(1/2)v/?
Var((v—1)/2)

|x]
g [

(yz _ x2)((v—1)/2)—1e—y2/2 dy

By setting S = y% — x%and the result is found to be

X) = —e~X*/2 where —oo < X< 40
X N

Theorem 2.2: The marginal distribution of Y of (2) is

(/2>
fr) =Wy” 1e=¥/2 where 0<y<oo,v>0 (6)

Proof: The marginal distribution of chi-normal mixture of Y exists when the limits
of X is—y < x < +y. Therefore, marginal distribution of Y is computed as
+y

fry) = j fX,Y(x»J’)d

-y
+y
NG iEE/Z)T)Z/z)y 0% —a?)(@mRrmme e
T v —
S
4(1/2)v/?

( 2 _ x2)((v—1)/2)—1e—y2/2 dx

Vrl'((v —1)/2)
0

_ (1/2)@/2-1 P j r/2)

(1/2)-1(_¢)((v-1)/2)-1
rw/2) rare-nm° Y ds

0
By Setting S = x2/y? , the final result is found to be
(1/2)(1;/2)—1

Q) =—F—F55—

rw/2)
Theorem 2.3: The PDF of conditional Chi-normal distribution of X on Y 1is

v=1p-y?/2 where 0 < y < o, v > 0.
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= 1 — x2/y2)((v-1)/2)-1 7
fx iy (x/y) YB(1/2, (v — 1)/2)( x*/y*®) )
where —y <x < +y.

Proof: It is derived from fy vy (x/y) = f_’;yg')”

Y
Theorem 2.4: The PDF of Conditional Chi-normal distribution of Y on X 1is
2(1/2)(17—1)/2 _ L aa

Frix /%) = o5 Y0° — x2)(@-1/2)-1,-(y?-x2)/2 ®)
where |x| <y < 0.

Proof: It is derived from fy /X(y /x) = s X'Y(x'y)_

fx()

3. Constants of Conditional and Bivariate Chi-normal distribution

Theorem 3.1: The »" odd moments of the conditional bivariate mixture of Chi-
normal distribution of X on Y does not exist, and the " even moments is shown
as:

- B(r+(1/2),(v - 1)/2)

2r —
Ex;y(x*[y) =y B2 (—D/2) where v >1 9)
Proof: The ' even moments of a distribution is
+y
EX/Y(xZT/Y) :f xZTfX/y(x/y) dx
-y
+y x2r
— x (1 = x2 /y2)(v-1/2)-1 4,
f_y yB/2 -1/
y 2x%"
= x (1 — xZ 2 ((v—l)/z)—l dx
fo yB(/2,0-172) L TF
B(r+((1/2),(v—1)/2
Ex;y(x*"[y) = (r+(1/2)( )/2) 2" where v>1.

B(1/2,(v—-1)/2)

If r=1, then the second moment is Ey v (x*/y) = y?/v.
If r=2, then the fourth moment is Ey,(x*/y) = 3y*/v(v + 2).

If r=3, then the sixth moment is Ey/y(x®/y) = 15y°/v(v + 2)(v + 4).

Theorem 3.3: The " conditional moment of the conditional bivariate mixture of
Chi-normal distribution of Y on X is

Ey ;x(y"/x) = (1/2)0 V257730 ((v = 1)/2,(r/2) + 1+ (v — 1)/2,x2/2)

(10)
where v>1 and U(.,.) is the Tricomi’s confluent hyper geometric function.
Proof: The '"moment of a distribution is
EY/X()’T/X) = f yrfY/X (y/x) dy
|x|
(v-1)/2 (o
— 2(1/2) yr+1(y2 _ xZ)((v—l)/z)—le—(yz—xz)/z dy (11)

- r((w-1)/2) )y
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Then set S = y2? — x2 in (11) and change the limits, then

(1/2)(17—1)/2 foo
E T Ix) = x2+S r/ZS((v—l)/Z)—le—S/Z ds
Y/X(y /%) F((v—l)/Z) . ( )
(1/2)(v—1)/2xr 0
- r(w-1/2) Jo
Again from (12) set W = S/x? and integrate it, then the r"order conditional
moment of the distribution is given as

r _ LT+v-3 1 " (v-1)/2)-1
Ey;x(y"/x) = x <F((v — 1)/2).1; w (1

(1 + S/x2)r/25(=1)/2)-1¢-5/2 4g (12)

+ W)T/2+1+(0-0/2)=(w-1)/2)-15-(x*/2)W dW) 4

Finally, (13) can be written in terms of Tricomi’s Confluent hyper geometric
function as

Ey;x(7/x) = (1/2)0D2xv+ =3y ((v = 1)/2, (r/2) + 1 + (v — 1)/2,x%/2)
(14)

where v > 1 and
1 © _ _
U(v—1)/2,(r/2)+1+ (@w—1)/2,x%/2) = =D Jy w(w-D/2)-1(1 4
W)(r/2)+1+((v—1)/2)—((v—1)/2)—1e—(xz/Z)WdW

is the Tricomi’s confluent hyper geometric function.

From (14), if »=1, then the Conditional expectation is
Eyyx (/%) = (1/2)¥~D72x720((v — 1)/2, (v + 2)/2,x/2)

If r=2, then the second moment is
Ey/x(y?/x) = (1/2)" V271U ((v — 1) /2, (v + 3)/2,x%/2)

If r=3, then the third moment is
Ey;x(3/x) = (1/2)0 V2% U((v — 1)/2, (v + 4)/2,x%/2)

Theorem 3.4: If X and Y are jointly distributed according to (2) then the product
moment is

E(x™y™) =0 for odd m (15)
Proof: The results follow on writing
mony _ (Y (© . m.n_ 201/2)"? 2 _
EQmy™) =[5 Jo X" e YO
x2)(=D/2)~16-y?/2 gy qy (16)

From (16), X is symmetric and if m is odd, then the product moments do not exist,
hence E(x™y™) = 0, for odd m.

Corollary-1. According to (2) then the Product moments of the mixture of Chi-
normal variables are given as

Exy(xy) =0 (17)
COVxy(x,y) =0 (18)
pxy(x,y) =0 (19)
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Therefore, (18) and (19) clearly visualize the Chi-normal variables are uncorrelated
but not independent and the variables are jointly dependent. Comparing these
results with (2), it is observed that uncorrelatedness does not imply independence.
Hence the proposed density function of chi-normal mixture is unique and it’s having
several notable properties.

Theorem 3.5: The Joint Shannon’s differential entropy of (2) is

h;(,Y(x; y) = —(w;(v) + w,(v) + w3(v) —v/2) (20)
where

w1 (v) = log (2(1/2)"2 Nar ((v - 1)/2) )

w,(v) = (log2 +¥(v/2))/2

w;(v) = (v = 3)/2) (log 2 + ¥((v + 1)/2) - 2/(v — 1))
and W ( ) is the di-gamma function, respectively.

Proof: It is found from

+y o
Iy (6, y) = - f || furt ) tog (fu o) dxdy
oty 2(1/2)”/2 2
50 Fartonm?

2 ((v—l)/Z) 1,-v2/2 _2a/2 o 2y (w-1)/2)-1 —y2/2>
x*) e log (\/Er((v_l)/z)y(y x*) e dxdy

hyy (6,7) = =(@; () + W, (v) + w3(v) — v/2)

4. Generating functions

Theorem 4.1: The MGF of the bivariate chi-normal mixture is

1 e e (6V2)(6V2)" (T + 1/2)T ((w + 2Kk +m)/2)
My (t1, t2) = ng Z 2k!m! < r((v/2) +k) )

(21)
Proof: Let the MGF of a bivariate distribution is given as
+y o 2(1/2)172/2
M t ,t — j j et1x+t2y 2
x,v (1, £2) L do \/EI"((U— 1)/2) $46%
_ xZ)((v—1)/2)—1e—y2/2dxdy

+y poo v/2
= f f pltix+tzy 2(1/2) yv—Z(l _ xz/yZ)((v—1)/2)—1e—y2/2dxdy
5 Jo Var((v —1)/2)

(22)

From (22) Set S = x/y, expand the exponent into the sum of odd and even power
(tly)2k+152k+1 (tly)zkszk

series as e(1Y)S = yo_ R + D=0 ——o— -break the symmetry,

integrate it with respect to S as follows
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v/2 i 2k 1
My y(t1,t;) = +1/2) (t2) f Sk (1
0

_ ]
Var((v —1)/2) & ka-
_52)((1;—1)/2)—1de yv+2k—le—y2/Zetzydy (23)

0
Since the odd powers are vanished from (23), Substitute the results of the integral

and integrate with respect to y, finally the result is found to be

2k m
Myy (t1,t2) = \/_Z Z (tv2) (t2v2) <F(k +1/2r((w + 2k + m)/2)>

L 2k!'m! r(w/2) +k)
Theorem 4.2: The Cumulant of the bivariate mixture of chi-normal distribution is
Cxy(ty,t2)
= —(1/2) log s
+ log Z Z (£v2) " (t32)" (F(k +1/2)r((v + 2k + m)/2)> 28

2k!m! F((v/Z) + k)

Proof: It 1S found from CX,Y (tl, tz) = lOg MX,Y (tl' tz)
Theorem 4.3: The CF of the bivariate chi-normal mixture is
_ 1o o (itlﬁ)Zk(itzﬁ)m (F(k+1/2)F((v+2k+m)/2))
Proof: Let the Cf of a bivariate distribution is given as
¢XY(t1 tz) = f+y fweit1x+it2y 2(1/2)1]/2 y(y2 _ xz)((v—1)/2)—1e_yz/zdxdy
' -y Jo \/EI;((U - 1)/2)
+y [po© v/2
= j ] eitix+ityy 2(1/2) y”_z(l _ xz/yz)((v—1)/2)—1e—yz/zdxdy
—y Jo Var((v—1)/2)
It is evident from Theorem 4.1, the integration is obvious and expression of final
CF is given as

(it:v2) " (it,v2)™ (T (k + 1/2)T (v + 2k +m)/2)
Pxy(ty,t2) = \/—Z z ( >

(25)

o e 2ketml r((v/2)+k)
Theorem 4.4: The surv1va1 function of bivariate chi-normal mixture is
" (v-1)/2)-1 ( )
Seu(xy) = 1— ((v—l)/Z —1)
xr (o) V2rr((w —1)/2) kz_o k
2k+1 2k+1
x (-1/2 (=2 —)y (((v - D/2) - ky?/2) (26)

where y(.,.) is the lower incomplete Gamma function.
Proof: 1t is found from the following fact
Sxy(,y) =1—Fxy(x,y)
Theorem 4.5: The hazard function of the bivariate chi-normal distribution is

hX,Y(x: y) =
2(1/2)V/2 (v=1/2)-1 _,2
Fr(w—2? 0" ) ey/2 on
v— _ _ k k
1— \/_211:41"((17 1)/2)2(( 1)/2) (((U 1]){/2) 1)(-1/2)"(%)]/(((1}—1)/2)—k,y2/2)

Proof: It is found from
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fx,y(x» y)

hX'Y(x, )= Sxy(x,y)

and

SX,Y(X;Y) =1- FX,Y(X;)’)-

Theorem 4.6: The Cumulative hazard function of the bivariate chi-normal
distribution is

Hyy(x,y) = —log (1 mz (w-1)/2)- 1(((v 1)/2)—1) -1/
2" (Tyl) r((w-1/2) - k,y2/2)> (28)

Proof: Let the Cumulative hazard function of a multivariate distribution
Hyy(x,y) = —log (1 — Fxy(x, }’))
= —log (SX y (%, )’))

Hyy(x,y) = —log (1 mr(w 1)/2)

2k+1+y2k+1

2 (5 (@~ vy - ko2))

((v v/2)-1(((v-1)/2)-1),_
2o, (= 072) = 1) gy

5. Some Special Cases
Result 5.1

Table 1: The Special cases of (2) based on Jacobean transformation
Transformation  Parameter

Case No Bivariate Mixtures

X XY v
1 Inverse Chi-normal - 1y v
2 Chi-log normal ex Vv
3 inverse chi-log normal e” 1y v
4 Chi-square -normal - y? v
5 Rayleigh -normal - - 2
6 Uncorrelated uniform-Rayleigh - - 3

6. Bounded student’s t distribution

Theorem 6.1: Bounded student’s t ratio (t,) is defined as the ratio of two
uncorrelated, but jointly dependent standard normal variate (x ~N (0,1)) and chi-
variate (y ~ x,,) divided by the square root of its degrees of freedom v,then it’s
density function is given as

1
I = 2w -172) (
where —Vv < t, < +Vv, v > 1.
Proof: From (29) and from the above definition, Bounded student’s t ratio (t;) can
be written as

2)((v—1)/2)—1 (29)

1—(tp/Vv)
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t, = Vv(x/y) (30)
Using two dimensional Jacobian of transformation and change of variable technique
sety =uand x = u(tb / ﬁ),then applying the partial derivatives and compute the
Jacobian determinant as
j=9&y) RACEAE

a(tp,u) 0 1
=u/\v (31)
Then using the above settings along with Jacobian determinant, the joint density of
Bounded student’s t ratio (t;) and u can be given as

(v-1)/2)-1

f(tp,u) = \/Ezr((lé—z_)z/;/z)u (uz — (u(tb/ﬁ))z) e W 2xu/\Nv (32)

where —Vv < t, < +Vv,0 S u < .
From (32), integrate with respect to u, then

v/2 (v-1/2)-1 )
f(tb) = #j_ﬁ)/z)(l _ (tb/\/a)z) 1 J.O uv"le—v/2 gy
_ 2(1/2)v/? o (-1/2)-1 (T'(v/2)
B \/Ex/EF((v - 1)/2) (1 B (tb/\/;) ) <21—v/2 > (33)

Simplifying (33), the final version of the density function Bounded student’s t
distribution with Vv degrees of freedom is given as

o ((v-1)/2)-1
fltpsv) = \/55(1/2,1(17—1)/2) (1 N (tb/\/;) )

where —Vv < t, < +Vv,v > 1.

From (34), it is the density function of Bounded student’s t distribution which is a
symmetric beta distribution, and it comes under the Type-II distribution of the
Pearsonian system of frequency curves. The distribution is having a shape
parameter V(degrees of freedom) and a normalizing constant B(1/2, (v —1)/2)
beta function.

Result 6.2: The following probability curves of the bounded-t-distribution for the
selected values of degrees of freedom Vv are visualized below.

(34)
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(i) v=25 (i) v=30
(k) v=35 (I) v=45

'
%)

(m) v=o0

Figure 2. Probability curves of the bounded-t-distribution for different values of
degrees of freedom Vv

Theorem 6.3: The CDF of the Bounded student’s t distribution is defined by
F(ty) = (I1,2,(1/2,(v = 1)/2) — 1) /2 (35)
Where 1;,2,,(1/2,(v—1)/2) = B(t,%/v;1/2,(v—1)/2)/B(1/2,(v — 1)/2)
and B(t%/v;1/2,v) are the regularized and incomplete beta function respectively.
Proof: Let the CDF of a distribution is

F(ty) = J  5£($)dS

_ 1 tp _ 2
~ VvB(1/2,(v-1)/2) f—ﬁ(l (5/v) )
By setting S? /v = w and integrate with respect to W ,the final result is

F(ty) = (I,2,(1/2,v) = 1)/2

(v-1)/2)-1
as
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1 t2/ _ _ _ .
Where 12,,(1/2,v) szo P w@W2=1(1 — ) (@=-D/2)-1gy, is the

regularized beta function.
7. Constants of bounded t distribution

Theorem 7.1: The ™ odd order moment of the Bounded student’s t-distribution
with v degrees of freedom does not exist, then the 7" even order moment is given
as

ary _ p Bar+(1/2),(v-1)/2)
Et")=v B /20— D)2) where v > 1 (36)

Proof: The I'" even order moment of the distribution is

+v
E(t?) = jv‘ t2Tf(t) dt

hﬁ L 2\ (-1)/2)-1
) f—ﬁ VuB(1/2,(v - 1)/2) (1= (o)) dt
v 2% 2\ (-1)/2)-1
- o VvB(1/2,(v—1)/2) (1 - (t/\/g) ) dt
-(37)

From (37) by setting t,2/v = u and integrate with respect to U ,the final result is
found to be

B(r+(1/2),(v-1)/2)
E(t?") =v" ;(1/2/,@_”1)/25 where v > 1 (38)

If =1, then the second moment is E(t,%) =1
If r=2, then the fourth momentis  E(t,*) = 3v/(v + 2)
If r=3, then the sixth momentis  E(t,°) = 15v%/(v + 2)(v + 4) and so on.
Theorem 7.2: The Shannon’s differential entropy of the Bounded student’s- t -
distribution is given as
, (v=3)r((v+1)/2)
h(ty) = log (VvB(1/2,(v—1)/2) ) +
( ) w—Dr((v-1/2)
x (‘1’(17/2) ~¥((w+1)/2) +2/(w-1)) (39)
where ¥(,, .) is the di-gamma function.
Proof: It is found from

' W
B (ty) = — f £(ty) log f (t,)dt,

7

_ +v 1
- f—\/F VuB(1/2,(v-1)/2) (1 - (tb/
(v-1)/2)-1
(w-1)/2)-1 —(ty/VD)?
Vv)’) log ((1 (o)) )dtb (40)

VuB(1/2,(v-1)/2)
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By setting S = t;,//v in (40) and using the change of variable technique, the
expression will be
= log (VoB(1/2,(v — 1)/2))
_ W32 1 e2y((w-1)/2)-1 _q2
fl 5200/ (1-52%) log(1 —54)dS (41)
Now integrate (41) with respect to S and simplify, then the final result is found to
be

() = log (VoB(1/2,(v = 1)/2)) + S0 DA (w(w/2) -

w((v+1)/2) +2/(v - 1))

8. Generating functions

Theorem 8.1: The MGF of the Bounded student’s t distribution is given as
_ r(w/2)
My, (8 = o=t /- (V) (42)

where | ( ) 1s the modified Bessel function of Kind-1.
Proof: Let the MGEF of a distribution is given as

t(tp) 2y ((v=1)/2)-1
M, (1) = f U VuB(1/2,(v— 1)/2)( N (tb/ﬁ) )

By setting S = t;,/+/v and using the change of variable technique, the expression
will be

tp

t(svv)
=/ m (1 - §2)(-D/2)-14g (43)
2k+1

Now from (43) expand the exponent (et(s‘/;) =Yy (t2k+1(5\/_) /(2k +

1)!) + Xk=0 (tZk (S \/E)Zk / Zk!)) into odd and even power series, substitute it and

integrate with respect S, then the
odd terms of the power series are vanished and the final result is found to be

I/ g (00)" rlery/2)
Mtb(t)_ N Y=o 2k!  I'(k+v/2)

M., (t) = % wr2-1(tVv)
Theorem 8.2: The Cumulant of the Bounded student’s- t -distribution is given as
Ce, (1) = log(r'(v/2)) — ((v/2) — 1) log(tvv/2) +
log (Iw/2-1(tv7)) (44)
Proof: It is found from C, (t) = log M, (t)
Theorem 8.3: The Cf of the Bounded student’s t distribution is given as

rw/2) . - .
1,0 = P DDy (1645) (4s)

where J( ) is the Bessel function of Kind-1.
Proof: Let the Cf of a distribution is given as

eit(tp)
¢, () = J_ \/—m( — (to/V)

tp

(v-1)/2)-1
2) d
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By setting S =t / WV and using the change of variable technique, the expression

will be

_ 1 et 2y((wv-1)/2)-1

- f—l B(1/2,(v—1)/2) (1-5% ds (46)
Now from (46) expand the exponent with complex argument (eit(sﬁ) =

oo (021 (V)™ @k + 1)1) + Bieso (07 (SV9) ™ /2Kkt)) into odd
and even power series, substitute it and integrate with respect S, then the odd terms
of the power series are vanished and the final result is found to be

I/ e (V) r(kt1/2)
be, (1) = == Zie=0™ I(k+v/2)

r(/2) - — .
e, () = (o) (@114 (i)

9. Special cases and percentage points

Theorem 9.1: From (29), the Limiting distribution of the Bounded student’s- t —
distribution when v — oo is the standard normal distribution N (0,1) and it given

as
f(ty) = \/%e_tbz/z where — o < t, < o 47)
Proof: It is found from

. . 1 . \/— 2 (v-3)/2
fimf @:0) = U e < b (1= (00/V9))

. rw/2) , 2\"\ /2
= lim DR CEYD X lim ((1 - (tb/\/?) ) )

xtim (1 (6/0)°) (48)

From (48), the limits can be separately applied for each term in the product, and it
is given as

11}_7)7010 F((v—l)/lz)/l"(v/z) =/ 2)1/? (49)
v 1/2

lim ((1 - (tb/\/;)z) ) _ (e_th)l/z 50

o o\ —3/2

lim (1-(6/V9)7) =1 (51)

Now substitute (49), (50) and (51) in (48), then the result is found to be

f(ty) = \/%e_tbz/z where —o<t, <+wo.
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Result 9.2: The two-sided significant percentage points of Bounded-t-distribution
are also computed with the help of Maple version 16 shown in Table 3.

Table 2: The Special cases of (29)

Parameters Transformation
Case Distributi :
No istribution Location Scale shape Jacobean
Scaled Bounded - -
I student’s-t X S v X+st,
symmetric arcsine i i
2 distribution 2 &/ \/E
3 Uniform - - 3 -
4 Wigner’s Semi-circle - - 4 -
5 Wigner’s unit semi-circle - - 4 t, / Ja

Table 3: Significant Two tail Percentage points of Bounded-t-distribution

P([tow)| > tywy(@) = @
tb(v)(a)

tb(,,)(0.0l) tb(v)(0.0S) tb(v)(O.l) tb(v)(O.Z) tb(v)(0-3) tb(v)(0.4) tb(v)(O.S)

df (v)

2 1.4142 1.4131 1.4099 1.3968 1.3751 1.3450 1.3066
3 1.7234 1.6887 1.6454  1.5588 1.4722 1.3856 1.2990
4 1.9481 1.8474 1.7567 1.6108 1.4865 1.3741 1.2694
5 2.1057 1.9408 1.8143 1.6308 1.4858 1.3604 1.2474
6 2.2182 2.0002 1.8481 1.6398 1.4821 1.3493 1.2318
7 2.3011 2.0408 1.8698 1.6443 1.4782 1.3407 1.2203
8 2.3643 2.0699 1.8848 1.6467 1.4747 1.3339 1.2116
9 2.4138 2.0919 1.8957 1.6481 1.4716 1.3284 1.2048
10 2.4536 2.1089 1.9039 1.6488 1.4690 1.3239 1.1993
11 2.4862 2.1226 1.9103 1.6492 1.4667 1.3202 1.1949
12 2.5133 2.1337 19154  1.6495 1.4648 1.3171 1.1911
13 2.5363 2.1429 1.9196 1.6495 1.4630 1.3144 1.1880
14 2.5560 2.1507 1.9231 1.6496 1.4615 1.3122 1.1852
15 2.5730 2.1573 1.9261 1.6495 1.4602 1.3102 1.1829
16 2.5879 2.1631 1.9286 1.6494  1.4590 1.3084 1.1809
17 2.6010 2.1681 1.9308 1.6494  1.4580 1.3069 1.1790
18 2.6126 2.1725 1.9327 1.6493 1.4570 1.3055 1.1774
19 2.6230 2.1765 1.9343 1.6491 1.4562 1.3042 1.1760
20 2.6323 2.1800 1.9358 1.6490 14554  1.3031 1.1747
21 2.6408 2.1831 1.9371 1.6489 1.4547 1.3021 1.1735
22 2.6485 2.1859 1.9383 1.6488 1.4540 1.3012 1.1725
23 2.6555 2.1885 19394  1.6487 14534  1.3003 1.1715
24 2.6619 2.1909 1.9403 1.6486 1.4529 1.2996 1.1706
25 2.6678 2.1930 1.9412 1.6485 1.4524  1.2988 1.1698
26 2.6732 2.1950 1.9420 1.6484  1.4519 1.2982 1.1690
27 2.6782 2.1968 1.9428 1.6483 1.4514  1.2976 1.1684
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28 2.6829 2.1985 19435 16482 14510 1.2970 1.1677
29 2.6872 2.2000 1.9441  1.6482 14507  1.2965 1.1671
30 2.6913 2.2015 19447 16481 14503  1.2960 1.1665
40 2.7205 2.2119 19488  1.6474 14477 12924  1.1625
50 2.7379 2.2180 19512 16470 14461  1.2902 1.1600
60 2.7495 2.2220 19527 16467 14450  1.2888 1.1584
70 2.7578 2.2248 19538  1.6464  1.4442  1.2878 1.1573
80 2.7640 2.2269 19546  1.6463  1.4437  1.2870 1.1564
90 2.7688 2.2286 19552  1.6461 14432 1.2864  1.1557
100 2.7726 2.2299 1.9557 1.6460  1.4428  1.2859 1.1552

o0 2.5758 1.9600 1.6449 1.2816 1.0364 0.8416  0.6745

10. Numerical illustration and discussion

The application of the proposed Bounded student’s t distribution was explained
with the help of the Fisher’s Iris Plants Database. The best-known database to be
found in the pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently until this day. (See Duda & Hart, for example.) The data
set consists 4 different characteristics of Iris plants in centimeters (Sepal length
(X1), Sepal width(X5), petal length(X3), petal width (X,)), 3 classes(lris Setosa ,
Iris Versicolour , Iris Virginica) of 50 instances each, where each class refers to a
type of iris plant. Out of 150 instances, the authors randomly select 30 instances for
giving a numerical illustration. From (29) the classical and Bounded student’s t ratio
are similar in their computation, hence at first standard t-scores are computed to
find the univariate outliers. Secondly 4 different regression models (X;on X,, X5,
X4, X,0n X;, X3,X,, Xz0n X, X,,X, and X,0n X;, X,, X3)are fitted based on 4
characteristics of iris plants and then Jackknife residuals are computed to identify
the outliers in the Y-space. The Comparative results of Classical and Bounded
student’s t ratio are given in Table 3 and Table 4 along with discussion.

Table 4: Comparative results of Classical t-ratio, Bounded student’s t-ratio and
Identification of Univariate Outliers

Observ-  Sepal Sepal petal petal ltpal  tpal  Itps]l  |tpal
ation length width length  width
X1 X5 X3 Xy

1 510 350 140 20 197 143 395 463

2 490 300 140 20 340 1285 .395 463

3 470 320 130 20 878 714 934 463

4 460 310 150 20 1.14 1000 .144 463

5 500 360 140 20 072 428 395 463

6 540 390 1.70 40 1.00 1285 1.22 1521

7 460 340 140 30 114 143 395 .529

8 500 340 150 20 072 143 144 463

9 4.40 290 140 20 1.68 1571 .395 .463

4.90 3.10 1.50 10 340 1.000 .144 1455
5.40 3.70 1.50 .20 1.00 .714 144 463

N
= o
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12 4.80 3.40 1.60 .20 609 143 .683  .463
13 4.80 3.00 1.40 10 609 1285 .395 1455
14 4.30 3.00 1.10 10 195 1285 201 1455
15 5.80 4.00 1.20 .20 207 1571 147 463
16 5.70 4.40 1.50 40 1.80 2.713* 144 1521

17 540 390 1.30 40  1.00 1.285 .934 1521
18 510 350  1.40 30 197 143 395 529
19 570 3.80 1.70 30 180 1.000 1.22 529
20 510 3.80 150 30 197 1.000 .144 529
21 540 340 1.70 20 100 .143 122 463
22 510 370 150 40 197 714 144 1521
23 460 360  1.00 20 114 428 255 463
24 510 330 1.70 50 197 428 122 2513
o5 480 340 1.90 20 609 143 229 463
26 500 300 1.60 20 072 1285 683 .463
27 500 340 1.60 40 072 143 683 1521
08 520 350 150 20 466 143 144 463
29 520 340 1.40 20 466 143 395 463
30 470 320 1.60 20 878 714 683  .463

*Critical |ty (q=005v=20)| = 220, *Critical |t (=0 01p=20)| = 2.6872 df (v=29)
dCritical |t(q=0.05,=20)| = 2.045, “Critical |t(,=0.01,9=20)| = 2.756

Table 5: Comparative results of Classical Jackknife, Bounded Jackknife residuals
in linear regression analysis and identification of outliers in Y space

Observ  Sepal Sepal  petal petal ltpal  ltp2l  Itpsl [tpal
-ation  length width length  width
Xl X2 X3 X4
1 510 3.50 1.40 20 221 .097 250 4759
2 490 3.00 1.40 20 1375 1.903 1.015  .6525
3 470 320 1.30 20 .138 339 782 2198
4 460 3.10 1.50 20 .686 .010 406 .0625
5 500 3.60 1.40 20 .622 962 144 7991
6 540 3.90 1.70 40 394 754 993 5378
7 460 340 1.40 30 1495 732 .029 .6882
8 500 3.40 1.50 20 074 172 317 5244
9 440 290 1.40 20 565 639 282 5493
10 490 3.0 1.50 10 491 461 337 1.127
11 540 3.70 1.50 20 542 .366 244 1.020
12 480 3.40 1.60 20 1.253 1.143 1329  .9243
13 480 3.00 1.40 10 693 .905 325 7077

430 3.00 1.10 10 931 .092 1.368 3715

[EEN
IS
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15 5.80 4.00 1.20 20 2278 257 2.020 .9496
16 5.70 440 1.50 40 594 2.043 301 .0685
17 540  3.90 1.30 40  .655 311 1.599 1.547

18 5.10 3.50 1.40 30 .409 489 17 7499
19 5.70  3.80 1.70 30 1249 251 .696 2871
20 5.10 3.80 1.50 30 1.041 1.339 541 2227
21 540 340 1.70 20 1.300 .733 .857 1625
22 510 3.70 1.50 40 452 213 156 1.301

23 460 360 100 20 1.699 1570  1.851  .1765
24 510 330 170 .50 1.078 2506> 339  3.887
o5 480 340 190 20 2475 2363 3.942a¢ 2011
26 500 3.00 160 .20 1332 1.736 073 .2398

27 5.00 3.40 1.60 40  .057 791 .008 1.794
28 5.20 3.50 1.50 20 424 .008 172 .6392
29 5.20 3.40 1.40 20 1.075 167 .653 1672
30 4.70 3.20 1.60 .20 .888 424 1.059 4787
bCritical |ty (g-0.05p=26)| = 2.1950, *Critical |t,(4=0.01p=26)| = 2.6732 df (v = 26)

dCritical |t(q=0.05=26)| = 2.056, “Critical |t(z=001=26)| = 2.779

Table 1 exhibits the result of bounded student’s t-ratio and the computed standard
student t-scores are similar. The standardized student t-scores of the variable sepal
length (X;) is having a single outlier (observation 15) at 5% significance level for
29 degrees of freedom based on classical student’s t-statistic and the bounded
student’s t-statistic failed to identify the remote observation in the same variable.
Likewise observation 16 is an outlier in the variable sepal width(X,) at 5 % level
based on classical statistic and 1% significance level based on Bounded t- statistic.
In the same manner, in Petal width (X3), observations 23, 25 and in Petal width(X,),
observations 24 are identified as outliers by both test statistics at 5% significance
level. Table 3 visualizes the comparative results of Classical and Bounded Jackknife
residuals in linear regression analysis. These residual helps to identify the outliers
in the Y-space (response space) and it exactly follows the classical student’s t-
distribution for n — p — 1 degrees of freedom, where p is the number of regressors
in the regression model. Since the computation of the residuals on both the test
statistics are similar, but distributional assumptions are different. The absolute
Jackknife residual of the variable sepal length (X;)shows the observations 15, 25
and in sepal width(X,), Observations 24, 25 are outliers at 5% significance level
based on both the test statistic. Similarly in Petal length, observation 25 is the only
outlier identified based on Bounded student’s statistic at 5%, 1% significance level.
Finally in variable Petal width(X,), Observation 24 is the only outlier identified by
both the statistic at 1% significance level. From the above discussion, authors came
to know, both the distributional assumption of the test statistic are giving similar
results in a small and finite sample and the introduction of Bounded student’s t
distribution can be used as a proxy to student’s t distribution when we accept the
relationship assumption between the standard normal and chi-variate are
uncorrelated, but not independent.
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11. Conclusion

This paper proposed a new bivariate mixture of chi and normal distribution, which
is said to be chi-normal distribution. The most significant property of the
distribution is the correlation between the standard normal variate and the chi-
variables is zero and it denotes both the random variables are not independent but
uncorrelated. The classical student’s t distribution is the pioneering work proposed
by William Sealy Gosset under the pen name ‘student’ Likewise, the authors
explored a new sampling distribution to the literature based on the proposed chi-
normal distribution which is declared to be the Bounded student’s t distribution.
The properties of the Bounded student’s t distribution are scrutinized, and the
limiting form of the distribution becomes the standard normal distribution when the
degree of freedom is larger. This distribution creates an alternate path to the
sampling literature and the Bounded student’s t statistic can also use to test the
significance of Means and difference between two means from the normal
population. The multivariate extension of the proposed Bounded student’s t
distribution can also be left it for future research, and it can also open the way to
introduce new distance metrics useful to identify the multivariate outliers in a
multivariate data matrix. Finally, the proposed Bounded student’s t statistic gave
approximately similar results when it compares with the classical student’s t
statistic, and this confirms the Bounded student’s t distribution can also be used as
an alternate in a small sample.

References

1. Balakrishnan, N., and Lai, C. D. (2009). Continuous Bivariate Distributions.
2" Edition, Springer, New York.

2. Bohning D, Seidel W. (2003). Editorial: recent developments in mixture
models. Computational Statistics and Data Analysis, 41, 349-357.

3. Fruhwirth-Schnatter S. (2006). Finite Mixture and Markov Switching Models.
Springer Science & Business Media, New York.

4. Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series, and
Products, 6th Edition SanDiego, Academic Press. MR1773820.

5. lzawa, T. (1965). Two or multidimensional gamma-type distribution and its
application to rainfall data. Papers in Meteorology and Geophysics, 15, 167—
200.

6. Jensen, D. R. (1970). The joint distribution of quadratic forms and related
distributions. Australian Journal of Statistics, 12, 13-22.

7. Marin, J., Mengersen, K. and Robert, C. P. (2005). Bayesian modelling and
inference on mixtures of distributions. In: Dey D, Rao CR, editors. Handbook
of Statistics Vol. 25. Amsterdam: Elsevier-Sciences, 459-507.

8. McLachlan, G. J. and Basford, K. E. (1988). Mixture models: Inference and
Applications to Clustering. Marcel Dekker, New York.

9. McLachlan GJ, Peel D. (2000). Finite mixture models. John Wiley & Sons,
New York.

10. Pearson K. 91894). Contribution to the mathematical theory of evolution.
Philosophical Transactions of the Royal Society of London A, 185, 71-110.



A Bivariate Mixture of Chi- Normal Distribution and Bounded Student’s t-Distribution 23

11. Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. (1986). Integrals and
Series, Vols. 1, 2 and 3. Amsterdam: Gordon and Breach Science Publishers.
MR0874986.

12. Royen, T. (1991), Expansions for the multivariate chi-square distribution.
Journal of Multivariate Analysis, 38, 213-232.

13. Schmeiser, B.W., Lal, R. (1982). Bivariate gamma random vectors.
Operations Research, 30(2), 355-374.

14. Titterington, D. M., Smith, A. F. and Markov, U. E. (1985). Statistical
Analysis of Finite Mixture Distributions. John Wiley & Sons, New York.



