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Abstract  

 

A bivariate mixture of Chi and Normal distribution is introduced by using Jacobian 

transformation and rescaling the scale, shape parameters of existing Mckay’s Bi-

variate Gamma distribution which is considered to be the chi-normal distribution 

and its marginals are univariate chi and normal distribution respectively. 

Conditional distribution, various generating functions and its constants are shown. 

Similarly, the authors explored a new Bounded student’s t-distribution in the 

sampling literature based on chi-normal mixture and studied its characteristics, 

computed the percentage points at 5% and 1% level by using Maple version 16. 

Three-dimensional probability surfaces are visualized the shape of chi-normal 

densities and two-dimensional probability curves shown the shape of Bounded 

student’s t density heuristically. Finally, the authors confirmed the limiting 

distribution of bounded student’s t distribution is the standard normal and the 

application of Bounded student’s t distribution was also numerically illustrated. 
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0. Some Preliminaries 

 

Explicit expressions for the PDF of chi-normal distribution, Bounded-t distribution 

and the Calculation of constants, generating functions involves several special 

functions (Prudnikov et al. (1986) & Gradshteyn and Ryzhik (2000)) and they are 

given as follows: 

i. The Hyper geometric function of two variables defined by 
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𝐹1(𝑎, 𝑏, 𝑐, 𝑑; 𝑥, 𝑦) = ∑ ∑
(𝑎)𝑘+𝑙(𝑏)𝑘(𝑐)𝑙

(𝑑)𝑘+𝑙

∞

𝑙=0

∞

𝑘=0

(
𝑥𝑘𝑦𝑙

𝑘! 𝑙!
). 

ii. The rising factorial or Pochammer symbol is given as 
(𝑎)𝑘 = 𝑎(𝑎 + 1)(𝑎 + 2) … … (𝑎 + 𝑘 − 1) 

iii. The integral representation of the Gamma and the lower incomplete 

Gamma function are defined by 

Γ(a) = ∫ xa−1e−x
∞

0

dx 

and 

γ(a, x) = ∫ ta−1e−t
x

0

dt, 

 respectively. 

iv. The integral representation of the Beta function, Incomplete Beta function 

and Regularized Incomplete Beta function are defined as 

𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1
1

0

𝑑𝑡, 

𝐵(𝑥; 𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1
𝑥

0

𝑑𝑡 

and 

𝐼𝑥(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1

𝑥

0

𝑑𝑡, 

respectively. 

v. The integral representation of the Tricomi’s Confluent hyper geometric 

function is defined by 

𝑈(𝑎, 𝑏, 𝑥) =
1

𝛤(𝑎)
∫ 𝑡𝑎−1(1 + 𝑡)𝑏−𝑎−1𝑒−𝑥𝑡

∞

0

𝑑𝑡 

vi. The integral representation of the Digamma function due to Gauss is defined 

by 

𝛹(𝑧) = ∫ (
𝑒−𝑥

𝑥
−

𝑒−𝑧𝑥

1 − 𝑒−𝑥
)

∞

0

 𝑑𝑥 

vii. The Bessel function of the first Kind is defined by 

𝐽𝛼(𝑥) = ∑
(−1)𝑘

𝑘! 𝛤(𝑘 + 𝛼 + 1)

∞

𝑘=0

(𝑥/2)2𝑘+𝛼 

viii. The Modified Bessel function of the first kind is defined by 

𝐼𝛼(𝑥) = 𝑖−𝛼 ∑
1

𝑘! 𝛤(𝑘 + 𝛼 + 1)

∞

𝑘=0

(𝑥/2)2𝑘+𝛼 

 

1.   Introduction 

 

The finest works of Titterington et. al (1985), McLachlan and Basford (1988), 

McLachlan and Peel (2000) provided a comprehensive import of finite mixture 

distributions and the application, inference of finite mixture models. Balakrishnan 

(2009) examined varied forms of bivariate gamma distributions. Jensen’s (1970) 
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generalization of Kibble’s distribution resulted in Jensen’s Bivariate Gamma 

Distribution where density function has as a diagonal expansion in terms of 

Laguerre polynomials and Orthogonal polynomials. McKay (Mckay,1934) 

proposed the bivariate gamma distribution and its joint pdf given by 

 

𝑓𝑋′,𝑌′(𝑥′, 𝑦′) =
𝑎𝑝+𝑞

𝛤(𝑝)𝛤(𝑞)
𝑥′𝑝−1(𝑦′ − 𝑥′)𝑞−1𝑒−𝑎𝑦′

;   0 < 𝑥′ < 𝑦′ 𝑎, 𝑝, 𝑞 > 0  (1) 

 

From (1) if 𝑥 = √𝑥′, 𝑦 = √𝑦′ , 𝑝 = 1/2, 𝑝 + 𝑞 = 𝑣/2 𝑎𝑛𝑑 𝑎 = 1/2 , then using 

one dimensional Jacobian of transformation, (1) becomes the joint density function 

of bivariate mixture of chi-half normal distribution. Now change the limits of x  as 
−𝑦 < 𝑥 < +𝑦   and then the joint density becomes the bivariate mixture of chi-

normal distribution. The introduction of this proposed distribution makes us to 

explore a new Bounded student’s t distribution in the sampling literature and the 

proposed features of distributions were considered in the following sections. 
 

1.1. Bivariate mixture of Chi-normal distribution 

 

Definition 1.1: Let X  and Y  be the random variables that follow Bivariate Chi-

normal distribution with degrees of freedom v , then its density function is defined 

as  

𝑓𝑋,𝑌(𝑥, 𝑦) =
2(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣 − 1) 2⁄ )
𝑦(𝑦2 − 𝑥2)((𝑣−1) 2⁄ )−1𝑒−𝑦2/2                                  (2) 

where − 𝑦 < 𝑥 < +𝑦 . 
Result 1.2: The following probability surfaces of (2) for the selected values of 

degrees of freedom v  are visualized below: 

 

 

 

 

                                                                                          

 

 

 

 

 

 

 

(a) v=2                    (b) v=3 
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(c ) v=4                (d) v=5 

 

 

 

 

 

 

 

 

 

 

 

 

(e ) v=6                                      (f) v=7 
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(i) v=20             (j) v=25 

Figure 3. probability surfaces of (2) for different values of degrees of freedom v  

 

Theorem 1.3: The cumulative distribution function of (3) is defined by 

𝐹𝑋,𝑌(𝑥, 𝑦) =
1

√2𝜋𝛤((𝑣 − 1) 2⁄ )
∑ (

((𝑣 − 1) 2⁄ ) − 1
𝑘

)

((𝑣−1) 2⁄ )−1

𝑘=0

(−12)𝑘  

×  (
𝑥2𝑘+1 + 𝑦2𝑘+1

2𝑘 + 1
) 𝛾(((𝑣 − 1) 2⁄ )𝑘, 𝑦22)                                    (3) 

where 𝛾(. , . ) is the lower incomplete Gamma function. 

Proof: Let the cumulative distribution function of a bivariate distribution is 

 𝐹𝑋,𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑈, 𝑉)
𝑦

0

𝑥

−𝑦
𝑑𝑈𝑑𝑉 

𝐹𝑋,𝑌(𝑥, 𝑦) =
2(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣−1) 2⁄ )
∫ ∫ 𝑉(𝑉2 − 𝑈2)((𝑣−1) 2⁄ )−1𝑒−𝑉2/2

𝑦

0

𝑥

−𝑦

𝑑𝑈𝑑𝑉  

        =
2(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣−1) 2⁄ )
∫ ∫ 𝑉𝑣−2(1 − 𝑈2/𝑉2)((𝑣−1) 2⁄ )−1𝑒−𝑉2/2

𝑦

0

𝑥

−𝑦

𝑑𝑈𝑑𝑉                   (4)                

Now using Binomial expansion in (4) for 

 

(1 − 𝑈2/𝑉2)((𝑣−1) 2⁄ )−1 = ∑ (
((𝑣 − 1) 2⁄ ) − 1

𝑘
)

((𝑣−1) 2⁄ )−1
𝑘=0 (−1)𝑘(1 𝑉2⁄ )𝑘(𝑈2)𝑘  

Set 
2 / 2S V= and integrate it, then the final expression of CDF as 

𝐹𝑋,𝑌(𝑥, 𝑦) =
1

√2𝜋𝛤((𝑣 − 1) 2⁄ )
∑ (

((𝑣 − 1) 2⁄ ) − 1
𝑘

)

((𝑣−1) 2⁄ )−1

𝑘=0

 

                                         ×  (−1/2)𝑘 (
𝑥2𝑘+1+𝑦2𝑘+1

2𝑘+1
) 𝛾(((𝑣 − 1) 2⁄ ) − 𝑘, 𝑦2/2)  
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where 𝛾(((𝑣 − 1) 2⁄ ) − 𝑘, 𝑦2/2) = ∫ 𝑆((𝑣−1) 2⁄ )−𝑘−1𝑒−𝑆
𝑦2 2⁄

0
𝑑𝑆 is the lower 

incomplete gamma function. 

 

2. Marginal and conditional distributions 

 

Theorem 2.1: The MGF of (2) is  

𝑓𝑋(𝑥) =
1

√2𝜋
𝑒−𝑥2/2        where  x−   +                                                            (5) 

Proof: The marginal distribution of chi-normal mixture of X  exists when the limits 

of Y is |𝑥| < 𝑦 < ∞. Therefore, marginal distribution of X is derived as  

                 = ∫
2(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣 − 1) 2⁄ )
𝑦(𝑦2 − 𝑥2)((𝑣−1) 2⁄ )−1𝑒−𝑦2/2

∞

|𝑥|

𝑑𝑦

=
1

√2𝜋
𝑒−𝑥2/2 ∫

(1 2⁄ )(𝑣−1) 2⁄

𝛤((𝑣 − 1) 2⁄ )
𝑆((𝑣−1) 2⁄ )−1𝑒−𝑆/2

∞

0

𝑑𝑆. 

By setting 𝑆 = 𝑦2 − 𝑥2and the result is found to be 

 𝑓𝑋(𝑥) =
1

√2𝜋
𝑒−𝑥2/2        where  x−   +   

Theorem 2.2: The marginal distribution of Y  of (2) is  

𝑓𝑌(𝑦) =
(1 2⁄ )(𝑣 2⁄ )−1

𝛤(𝑣 2⁄ )
𝑦𝑣−1𝑒−𝑦/2     where  0 , 0y v                                      (6) 

Proof: The marginal distribution of chi-normal mixture of Y  exists when the limits 

of X is−𝑦 < 𝑥 < +𝑦. Therefore, marginal distribution of Y  is computed as  

𝑓𝑌(𝑦) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)

+𝑦

−𝑦

𝑑

= ∫
2(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣 − 1) 2⁄ )
𝑦(𝑦2 − 𝑥2)((𝑣−1) 2⁄ )−1𝑒−𝑦2/2

+𝑦

−𝑦

       

= ∫
4(1 2⁄ )𝑣 2⁄

√𝜋𝛤((𝑣 − 1) 2⁄ )
𝑦(𝑦2 − 𝑥2)((𝑣−1) 2⁄ )−1𝑒−𝑦2/2

𝑦

0

𝑑𝑥

=
(1 2⁄ )(𝑣 2⁄ )−1

𝛤(𝑣 2⁄ )
𝑦𝑣−1𝑒−𝑦2/2 ∫

𝛤(𝑣 2⁄ )

𝛤(1 2⁄ )𝛤((𝑣 − 1) 2⁄ )

1

0

𝑆(1 2⁄ )−1(−𝑆)((𝑣−1) 2⁄ )−1𝑑𝑆 

By Setting 𝑆 = 𝑥2/𝑦2 , the final result is found to be 

𝑓𝑌(𝑦) =
(1 2⁄ )(𝑣 2⁄ )−1

𝛤(𝑣 2⁄ )
𝑦𝑣−1𝑒−𝑦2/2             where 0 < 𝑦 < ∞, 𝑣 > 0. 

Theorem 2.3: The PDF of conditional Chi-normal distribution of X  on Y  is 
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𝑓𝑋 𝑌⁄ (𝑥 𝑦⁄ ) =
1

𝑦𝐵(1/2, (𝑣 − 1)/2)
(1 − 𝑥2/𝑦2)((𝑣−1) 2⁄ )−1                                     (7) 

where − 𝑦 < 𝑥 < +𝑦. 

  

Proof: It is derived from 𝑓𝑋 𝑌⁄ (𝑥 𝑦⁄ ) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
 

Theorem 2.4: The PDF of Conditional Chi-normal distribution of Y  on X  is 

𝑓𝑌 𝑋⁄ (𝑦 𝑥⁄ ) =
2(1 2⁄ )(𝑣−1) 2⁄

𝛤((𝑣−1) 2⁄ )
𝑦(𝑦2 − 𝑥2)((𝑣−1) 2⁄ )−1𝑒−(𝑦2−𝑥2)/2                                   (8) 

where |𝑥| < 𝑦 < ∞. 

Proof: It is derived from 𝑓𝑌 𝑋⁄ (𝑦 𝑥⁄ ) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)
. 

 

3. Constants of Conditional and Bivariate Chi-normal distribution 

 

Theorem 3.1: The rth odd moments of the conditional bivariate mixture of Chi-

normal distribution of X  on Y  does not exist, and the rth even moments is shown 

as: 

𝐸𝑋/𝑌(𝑥2𝑟/𝑦) = 𝑦2𝑟 𝐵(𝑟 + (1/2), (𝑣 − 1)/2)

𝐵(1/2, (𝑣 − 1)/2)
, where 1v                            (9) 

Proof: The  even moments of a distribution is 

𝐸𝑋/𝑌(𝑥2𝑟/𝑦) = ∫ 𝑥2𝑟𝑓𝑋/𝑌(𝑥/𝑦)
+𝑦

−𝑦

𝑑𝑥          

= ∫
𝑥2𝑟

𝑦𝐵(1/2, (𝑣 − 1)/2)
× (1 − 𝑥2/𝑦2)((𝑣−1)/2)−1

+𝑦

−𝑦

𝑑𝑥 

= ∫
2𝑥2𝑟

𝑦𝐵(1/2, (𝑣 − 1)/2)
× (1 − 𝑥2/𝑦2)((𝑣−1)/2)−1

𝑦

0

𝑑𝑥 

𝐸𝑋/𝑌(𝑥2𝑟/𝑦) =
𝐵(𝑟 + (1/2), (𝑣 − 1)/2)

𝐵(1/2, (𝑣 − 1)/2)
𝑦2𝑟

, where 1v  . 

 

If r=1, then the second moment is  𝐸𝑋/𝑌(𝑥2/𝑦) = 𝑦2/𝑣. 

 

If r=2, then the fourth moment is  𝐸𝑋/𝑌(𝑥4/𝑦) = 3𝑦4/𝑣(𝑣 + 2). 

 

If r=3, then the sixth moment is  𝐸𝑋/𝑌(𝑥6/𝑦) = 15𝑦6/𝑣(𝑣 + 2)(𝑣 + 4).           

Theorem 3.3: The rth conditional moment of the conditional bivariate mixture of 

Chi-normal distribution of Y  on X  is 

𝐸𝑌/𝑋(𝑦𝑟/𝑥) = (1/2)(𝑣−1)/2𝑥𝑣+𝑟−3𝑈((𝑣 − 1)/2, (𝑟/2) + 1 + (𝑣 − 1)/2, 𝑥2/2) 

(10) 

 where 1v   and 𝑈(. , . ) is the Tricomi’s confluent hyper geometric function. 

Proof: The moment of a distribution is 

𝐸𝑌/𝑋(𝑦𝑟/𝑥) = ∫ 𝑦𝑟𝑓𝑌/𝑋(𝑦/𝑥)
∞

|𝑥|

𝑑𝑦 

=
2(1/2)(𝑣−1)/2

𝛤((𝑣 − 1)/2)
∫ 𝑦𝑟+1(𝑦2 − 𝑥2)((𝑣−1)/2)−1𝑒−(𝑦2−𝑥2)/2

∞

|𝑥|

𝑑𝑦                (11) 

thr

thr
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Then set 𝑆 = 𝑦2 − 𝑥2 in (11) and change the limits, then 

𝐸𝑌/𝑋(𝑦𝑟/𝑥) =
(1/2)(𝑣−1)/2

𝛤((𝑣 − 1)/2)
∫ (𝑥2 + 𝑆)𝑟/2𝑆((𝑣−1)/2)−1𝑒−𝑆/2

∞

0

𝑑𝑆 

          =
(1/2)(𝑣−1)/2𝑥𝑟

𝛤((𝑣 − 1)/2)
∫ (1 + 𝑆/𝑥2)𝑟/2𝑆((𝑣−1)/2)−1𝑒−𝑆/2

∞

0

𝑑𝑆             (12) 

Again from (12) set 𝑊 = 𝑆/𝑥2 and integrate it, then the order conditional 

moment of the distribution is given as 

𝐸𝑌/𝑋(𝑦𝑟/𝑥) = 𝑥𝑟+𝑣−3 (
1

𝛤((𝑣 − 1)/2)
∫ 𝑊((𝑣−1)/2)−1(1

∞

0

+   𝑊)(𝑟/2)+1+((𝑣−1)/2)−((𝑣−1)/2)−1𝑒−(𝑥2/2)𝑊 𝑑𝑊)                    (13) 

Finally, (13) can be written in terms of Tricomi’s Confluent hyper geometric  

function as 

𝐸𝑌/𝑋(𝑦𝑟/𝑥) = (1/2)(𝑣−1)/2𝑥𝑣+𝑟−3𝑈((𝑣 − 1)/2, (𝑟/2) + 1 + (𝑣 − 1)/2, 𝑥2/2) 

(14) 

 where 𝑣 > 1 and 

 𝑈((𝑣 − 1)/2, (𝑟/2) + 1 + (𝑣 − 1)/2, 𝑥2/2) =
1

𝛤((𝑣−1)/2)
∫ 𝑊((𝑣−1)/2)−1(1 +

∞

0

                                                                   𝑊)(𝑟/2)+1+((𝑣−1)/2)−((𝑣−1)/2)−1𝑒−(𝑥2/2)𝑊𝑑𝑊 

is the Tricomi’s confluent hyper geometric function. 

 

From (14), if r=1, then the Conditional expectation is 

𝐸𝑌/𝑋(𝑦/𝑥) = (1/2)(𝑣−1)/2𝑥𝑣−2𝑈((𝑣 − 1)/2, (𝑣 + 2)/2, 𝑥2/2) 

 

If r=2, then the second moment is 

𝐸𝑌/𝑋(𝑦2/𝑥) = (1/2)(𝑣−1)/2𝑥𝑣−1𝑈((𝑣 − 1)/2, (𝑣 + 3)/2, 𝑥2/2) 

 

If r=3, then the third moment is 

𝐸𝑌/𝑋(𝑦3/𝑥) = (1/2)(𝑣−1)/2𝑥𝑣𝑈((𝑣 − 1)/2, (𝑣 + 4)/2, 𝑥2/2) 

 

Theorem 3.4: If X  and Y  are jointly distributed according to (2) then the product 

moment is 

𝐸(𝑥𝑚𝑦𝑛) = 0  for odd m                                                                                              (15) 

Proof: The results follow on writing 

𝐸(𝑥𝑚𝑦𝑛) = ∫ ∫ 𝑥𝑚𝑦𝑛 2(1/2)𝑣/2

√𝜋𝛤((𝑣−1)/2)
𝑦(𝑦2 −

∞

0

+𝑦

−𝑦

                                            𝑥2)((𝑣−1)/2)−1𝑒−𝑦2/2𝑑𝑥𝑑𝑦                                                 (16)  

From (16), x  is symmetric and if m  is odd, then the product moments do not exist, 

hence 𝐸(𝑥𝑚𝑦𝑛) = 0, for odd m . 

Corollary-1. According to (2) then the Product moments of the mixture of Chi-

normal variables are given as 

𝐸𝑋𝑌(𝑥𝑦) = 0                                                                                                                     (17) 

𝐶𝑂𝑉𝑋,𝑌(𝑥, 𝑦) = 0                                                                                                             (18) 

𝜌𝑋,𝑌(𝑥, 𝑦) = 0                                                                                                                  (19) 

thr
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Therefore, (18) and (19) clearly visualize the Chi-normal variables are uncorrelated 

but not independent and the variables are jointly dependent. Comparing these 

results with (2), it is observed that uncorrelatedness does not imply independence. 

Hence the proposed density function of chi-normal mixture is unique and it’s having 

several notable properties. 

Theorem 3.5: The Joint Shannon’s differential entropy of (2) is 

ℎ𝑋,𝑌
′ (𝑥, 𝑦) = −(𝜔1(𝑣) + 𝜔2(𝑣) + 𝜔3(𝑣) − 𝑣/2)                                                   (20) 

where  

𝜔1(𝑣) = 𝑙𝑜𝑔 (2(1/2)𝑣/2/√𝜋𝛤((𝑣 − 1)/2))  

𝜔2(𝑣) = (𝑙𝑜𝑔 2 + 𝛹(𝑣/2))/2 

𝜔3(𝑣) = ((𝑣 − 3)/2) (𝑙𝑜𝑔 2 + 𝛹((𝑣 + 1)/2) − 2/(𝑣 − 1)) 

and ( )  is the di-gamma function, respectively. 

Proof: It is found from 

     

ℎ𝑋,𝑌
′ (𝑥, 𝑦) = − ∫ ∫ 𝑓𝑋,𝑌(𝑥, 𝑦) 𝑙𝑜𝑔 (𝑓𝑋,𝑌(𝑥, 𝑦))

∞

0

+𝑦

−𝑦

𝑑𝑥𝑑𝑦           

       = − ∫ ∫
2(1/2)𝑣/2

√𝜋𝛤((𝑣−1)/2)
𝑦(𝑦2 −

∞

0

+𝑦

−𝑦

         𝑥2)((𝑣−1)/2)−1𝑒−𝑦2/2  𝑙𝑜𝑔 (
2(1/2)𝑣/2

√𝜋𝛤((𝑣−1)/2)
𝑦(𝑦2 − 𝑥2)((𝑣−1)/2)−1𝑒−𝑦2/2) 𝑑𝑥𝑑𝑦  

ℎ𝑋,𝑌
′ (𝑥, 𝑦) = −(𝜔1(𝑣) + 𝜔2(𝑣) + 𝜔3(𝑣) − 𝑣/2) 

 

4. Generating functions 

 

Theorem 4.1: The MGF of the bivariate chi-normal mixture is   

𝑀𝑋,𝑌(𝑡1, 𝑡2) =
1

√𝜋
∑ ∑

(𝑡1√2)
2𝑘

(𝑡2√2)
𝑚

2𝑘! 𝑚!

∞

𝑚=0

∞

𝑘=0

(
𝛤(𝑘 + 1/2)𝛤((𝑣 + 2𝑘 + 𝑚)/2)

𝛤((𝑣/2) + 𝑘)
) 

(21) 

Proof: Let the MGF of a bivariate distribution is given as 

𝑀𝑋,𝑌(𝑡1, 𝑡2) = ∫ ∫ 𝑒𝑡1𝑥+𝑡2𝑦
∞

0

+𝑦

−𝑦

2(1/2)𝑣𝑧/2

√𝜋𝛤((𝑣 − 1)/2)
𝑦(𝑦2

− 𝑥2)((𝑣−1)/2)−1𝑒−𝑦2/2𝑑𝑥𝑑𝑦 

       = ∫ ∫ 𝑒𝑡1𝑥+𝑡2𝑦
∞

0

+𝑦

−𝑦

2(1/2)𝑣/2

√𝜋𝛤((𝑣 − 1)/2)
𝑦𝑣−2(1 − 𝑥2/𝑦2)((𝑣−1)/2)−1𝑒−𝑦2/2𝑑𝑥𝑑𝑦 

(22) 

From (22) Set 𝑆 = 𝑥/𝑦, expand the exponent into the sum of odd and even power 

series as 𝑒(𝑡1𝑦)𝑆 = ∑
(𝑡1𝑦)2𝑘+1𝑆2𝑘+1

(2𝑘+1)!

∞
𝑘=0 + ∑

(𝑡1𝑦)2𝑘𝑆2𝑘

2𝑘!

∞
𝑘=0  ,break the symmetry,  

integrate it with respect to  S  as follows 



10                                                                                                           Jayakumar et al. 

  

𝑀𝑋,𝑌(𝑡1, 𝑡2) =
4(1/2)𝑣/2

√𝜋𝛤((𝑣 − 1)/2)
∑

(𝑡1)2𝑘

2𝑘!

∞

𝑘=0

∫ 𝑆2𝑘
1

0

(1

− 𝑆2)((𝑣−1)/2)−1𝑑𝑆 ∫ 𝑦𝑣+2𝑘−1𝑒−𝑦2/2𝑒𝑡2𝑦𝑑𝑦
∞

0

                              (23) 

Since the odd powers are vanished from (23), Substitute the results of the integral 

and integrate with respect to y, finally the result is found to be 

𝑀𝑋,𝑌(𝑡1, 𝑡2) =
1

√𝜋
∑ ∑

(𝑡1√2)
2𝑘

(𝑡2√2)
𝑚

2𝑘! 𝑚!

∞

𝑚=0

∞

𝑘=0

(
𝛤(𝑘 + 1/2)𝛤((𝑣 + 2𝑘 + 𝑚)/2)

𝛤((𝑣/2) + 𝑘)
) 

Theorem 4.2: The Cumulant of the bivariate mixture of chi-normal distribution is 

𝐶𝑋,𝑌(𝑡1, 𝑡2)

= −(1/2) 𝑙𝑜𝑔 𝜋

+ 𝑙𝑜𝑔 (∑ ∑
(𝑡1√2)

2𝑘
(𝑡2√2)

𝑚

2𝑘! 𝑚!

∞

𝑚=0

∞

𝑘=0

(
𝛤(𝑘 + 1/2)𝛤((𝑣 + 2𝑘 + 𝑚)/2)

𝛤((𝑣/2) + 𝑘)
))       (24) 

Proof: It is found from 𝐶𝑋,𝑌(𝑡1, 𝑡2) = 𝑙𝑜𝑔 𝑀𝑋,𝑌 (𝑡1, 𝑡2) 

Theorem 4.3: The CF of the bivariate chi-normal mixture is   

𝜙𝑋,𝑌(𝑡1, 𝑡2) =
1

√𝜋
∑ ∑

(𝑖𝑡1√2)
2𝑘

(𝑖𝑡2√2)
𝑚

2𝑘!𝑚!
∞
𝑚=0

∞
𝑘=0 (

𝛤(𝑘+1/2)𝛤((𝑣+2𝑘+𝑚)/2)

𝛤((𝑣/2)+𝑘)
)              (25)  

Proof: Let the Cf of a bivariate distribution is given as 

𝜙𝑋,𝑌(𝑡1, 𝑡2) = ∫ ∫ 𝑒𝑖𝑡1𝑥+𝑖𝑡2𝑦
∞

0

+𝑦

−𝑦

2(1/2)𝑣/2

√𝜋𝛤((𝑣 − 1)/2)
𝑦(𝑦2 − 𝑥2)((𝑣−1)/2)−1𝑒−𝑦2/2𝑑𝑥𝑑𝑦 

     = ∫ ∫ 𝑒𝑖𝑡1𝑥+𝑖𝑡2𝑦
∞

0

+𝑦

−𝑦

2(1/2)𝑣/2

√𝜋𝛤((𝑣 − 1)/2)
𝑦𝑣−2(1 − 𝑥2/𝑦2)((𝑣−1)/2)−1𝑒−𝑦2/2𝑑𝑥𝑑𝑦 

It is evident from Theorem 4.1, the integration is obvious and expression of final 

CF is given as  

𝜙𝑋,𝑌(𝑡1, 𝑡2) =
1

√𝜋
∑ ∑

(𝑖𝑡1√2)
2𝑘

(𝑖𝑡2√2)
𝑚

2𝑘! 𝑚!

∞

𝑚=0

∞

𝑘=0

(
𝛤(𝑘 + 1/2)𝛤((𝑣 + 2𝑘 + 𝑚)/2)

𝛤((𝑣/2) + 𝑘)
) 

Theorem 4.4: The survival function of bivariate chi-normal mixture is 

𝑆𝑋,𝑌(𝑥, 𝑦) = 1 −
1

√2𝜋𝛤((𝑣 − 1)/2)
∑ (((𝑣 − 1)/2) − 1

𝑘
)

((𝑣−1)/2)−1

𝑘=0

 

                                    ×  (−1/2)𝑘 (
𝑥2𝑘+1+𝑦2𝑘+1

2𝑘+1
) 𝛾 (((𝑣 − 1)/2) − 𝑘, 𝑦2/2)                 (26) 

  where 𝛾(. , . ) is the lower incomplete Gamma function. 

Proof: It is found from the following fact 

𝑆𝑋,𝑌(𝑥, 𝑦) = 1 − 𝐹𝑋,𝑌(𝑥, 𝑦) 

Theorem 4.5: The hazard function of the bivariate chi-normal distribution is 

ℎ𝑋,𝑌(𝑥, 𝑦) =
2(1/2)𝑣/2

√𝜋𝛤((𝑣−1)/2)
𝑦(𝑦2−𝑥2)

((𝑣−1)/2)−1
𝑒−𝑦2/2

1−
1

√2𝜋𝛤((𝑣−1)/2)
∑ (((𝑣−1)/2)−1

𝑘
)

((𝑣−1)/2)−1

𝑘=0
(−1/2)𝑘(

𝑥2𝑘+1+𝑦2𝑘+1

2𝑘+1
)𝛾(((𝑣−1)/2)−𝑘,𝑦2/2)

          (27) 

Proof: It is found from 
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ℎ𝑋,𝑌(𝑥, 𝑦) =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑆𝑋,𝑌(𝑥, 𝑦)
 

 and 

𝑆𝑋,𝑌(𝑥, 𝑦) = 1 − 𝐹𝑋,𝑌(𝑥, 𝑦). 

Theorem 4.6: The Cumulative hazard function of the bivariate chi-normal 

distribution is 

𝐻𝑋,𝑌(𝑥, 𝑦) = − 𝑙𝑜𝑔 (1 −
1

√2𝜋𝛤((𝑣−1)/2)
∑ (((𝑣 − 1)/2) − 1

𝑘
)

((𝑣−1)/2)−1

𝑘=0
(−1/

                                      2)𝑘 (
𝑥2𝑘+1+𝑦2𝑘+1

2𝑘+1
) 𝛾 (((𝑣 − 1)/2) − 𝑘, 𝑦2/2))                (28)  

Proof: Let the Cumulative hazard function of a multivariate distribution 

𝐻𝑋,𝑌(𝑥, 𝑦) = − 𝑙𝑜𝑔 (1 − 𝐹𝑋,𝑌(𝑥, 𝑦)) 

                  = − 𝑙𝑜𝑔 (𝑆𝑋,𝑌(𝑥, 𝑦)) 

𝐻𝑋,𝑌(𝑥, 𝑦) = − 𝑙𝑜𝑔 (1 −
1

√2𝜋𝛤((𝑣−1)/2)
∑ (((𝑣 − 1)/2) − 1

𝑘
)

((𝑣−1)/2)−1

𝑘=0
(−1/

 2)𝑘 (
𝑥2𝑘+1+𝑦2𝑘+1

2𝑘+1
) 𝛾 (((𝑣 − 1)/2) − 𝑘, 𝑦2/2))  

 

5. Some Special Cases  

 

Result 5.1 

 

Table 1: The Special cases of (2) based on Jacobean transformation 

Case No Bivariate Mixtures 
Transformation Parameter 

'X         
'X  

'Y  v  
1 Inverse Chi-normal - 1/ y  v  
2 Chi-log normal xe  - v  

3 inverse chi-log normal xe  1/ y  v  

4 Chi-square -normal - 2y  v  
5 Rayleigh -normal - - 2 

6 Uncorrelated uniform-Rayleigh - - 3 

 

6. Bounded student’s t distribution 

 

Theorem 6.1: Bounded student’s t ratio (𝑡𝑏)  is defined as the ratio of two 

uncorrelated, but jointly dependent standard normal variate (𝑥 ∼ 𝑁(0,1)) and chi-

variate (𝑦 ∼ 𝜒𝑣) divided by the square root of its degrees of freedom 𝑣,then it’s 

density function is given as 

𝑓(𝑡𝑏; 𝑣) =
1

√𝑣𝐵(1/2, (𝑣 − 1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

                             (29) 

where −√𝑣 ≤ 𝑡𝑏 ≤ +√𝑣, 𝑣 > 1. 

Proof: From (29) and from the above definition, Bounded student’s t ratio (𝑡𝑏) can  

be written as 
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 𝑡𝑏 = √𝑣(𝑥/𝑦)                                                                                                                 (30) 

Using two dimensional Jacobian of transformation and change of variable technique 

set 𝑦 = 𝑢 and 𝑥 = 𝑢(𝑡𝑏/√𝑣),then applying the partial derivatives and compute the 

Jacobian determinant as 

𝐽 =
𝜕(𝑥, 𝑦)

𝜕(𝑡𝑏 , 𝑢)
= |𝑢/√𝑣 𝑡/√𝑣

0 1
|

= 𝑢/√𝑣                                                                                                   (31) 

Then using the above settings along with Jacobian determinant, the joint density of 

Bounded student’s t ratio (𝑡𝑏) and u can be given as   

𝑓(𝑡𝑏 , 𝑢) =
2(1/2)𝑣/2

√𝜋𝛤((𝑣−1)/2)
𝑢 (𝑢2 − (𝑢(𝑡𝑏/√𝑣))

2
)

((𝑣−1)/2)−1

𝑒−𝑢2/2 × 𝑢/√𝑣       (32)  

where −√𝑣 ≤ 𝑡𝑏 ≤ +√𝑣,0 ≤ 𝑢 < ∞. 

From (32), integrate with respect to u, then 

 𝑓(𝑡𝑏) =
2(1/2)𝑣/2

√𝑣√𝜋𝛤((𝑣−1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

∫ 𝑢𝑣−1𝑒−𝑢2/2∞

0
𝑑𝑢 

     =
2(1/2)𝑣/2

√𝑣√𝜋𝛤((𝑣 − 1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

(
𝛤(𝑣/2)

21−𝑣/2
)                       (33) 

Simplifying (33), the final version of the density function Bounded student’s t 

distribution with  v  degrees of freedom is given as 

𝑓(𝑡𝑏; 𝑣) =
1

√𝑣𝐵(1/2,(𝑣−1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

                                          (34) 

where −√𝑣 ≤ 𝑡𝑏 ≤ +√𝑣,𝑣 > 1. 

From (34), it is the density function of Bounded student’s t distribution which is a 

symmetric beta distribution, and it comes under the Type-II distribution of the 

Pearsonian system of frequency curves. The distribution is having a shape 

parameter v (degrees of freedom) and a normalizing constant 𝐵(1/2, (𝑣 − 1)/2) 

beta function. 

Result 6.2: The following probability curves of the bounded-t-distribution for the 

selected values of degrees of freedom v  are visualized below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 (a). v=2                           (b). v=4 
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(c ). v=5                 (d). v=6 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    (e ) v=7        (f) v=10 

 

 

 

 

 

 

 

 

 

 

 

 

                  (g ) v=15      (h) v=20 
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                      (i) v=25     (j) v=30 

 

 

 

 

 

 

 

 

 

 

  

                  (k) v=35                      (l) v=45 

 

 

 

 

 

 

 

                    

(m) v=∞ 

 

Figure 2. Probability curves of the bounded-t-distribution for different values of 

degrees of freedom v  

 

Theorem 6.3: The CDF of the Bounded student’s t distribution is defined by 

𝐹(𝑡𝑏) = (𝐼𝑡𝑏
2/𝑣(1/2, (𝑣 − 1)/2) − 1)/2                                                                   (35) 

 Where 𝐼𝑡𝑏
2/𝑣(1/2, (𝑣 − 1)/2) = 𝐵(𝑡𝑏

2/𝑣; 1/2, (𝑣 − 1)/2)/𝐵(1/2, (𝑣 − 1)/2) 

and 𝐵(𝑡2/𝑣; 1/2, 𝑣) are the regularized and incomplete beta function respectively. 

Proof: Let the CDF of a distribution is  

𝐹(𝑡𝑏) = ∫ 𝑓(𝑆)𝑑𝑆
𝑡

−√𝑣
                                                  

           =
1

√𝑣𝐵(1/2,(𝑣−1)/2)
∫ (1 − (𝑆/√𝑣)

2
)

((𝑣−1)/2)−1

𝑑𝑆
𝑡𝑏

−√𝑣
  

By setting 𝑆2/𝑣 = 𝑤 and integrate with respect to w ,the final result is 

𝐹(𝑡𝑏) = (𝐼𝑡𝑏
2/𝑣(1/2, 𝑣) − 1)/2 
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Where 𝐼𝑡2/𝑣(1/2, 𝑣) =
1

𝐵(1/2,(𝑣−1)/2)
∫ 𝑤(1/2)−1(1 − 𝑤)((𝑣−1)/2)−1𝑑𝑤

𝑡2/𝑣

0
 is the 

regularized beta function. 

 

7. Constants of bounded t distribution 

 

Theorem 7.1: The rth odd order moment of the Bounded student’s t-distribution 

with  𝑣 degrees of freedom does not exist, then the rth even order moment is given 

as 

𝐸(𝑡2𝑟) = 𝑣𝑟 𝐵(𝑟+(1/2),(𝑣−1)/2)

𝐵(1/2,(𝑣−1)/2)
            where 𝑣 > 1                                                     (36) 

                                                    

Proof: The  even order moment of the distribution is 

𝐸(𝑡2𝑟) = ∫ 𝑡2𝑟𝑓(𝑡)
+√𝑣

−√𝑣

𝑑𝑡 

            

               = ∫
𝑡2𝑟

√𝑣𝐵(1/2, (𝑣 − 1)/2)
(1 − (𝑡/√𝑣)

2
)

((𝑣−1)/2)−1

𝑑𝑡
+√𝑣

−√𝑣

 

= ∫
2𝑡2𝑟

√𝑣𝐵(1/2, (𝑣 − 1)/2)
(1 − (𝑡/√𝑣)

2
)

((𝑣−1)/2)−1

𝑑𝑡
√𝑣

0

 

                    - (37) 

From (37) by setting 𝑡𝑏
2/𝑣 = 𝑢 and integrate with respect to u ,the final result is 

found to be 

𝐸(𝑡2𝑟) = 𝑣𝑟 𝐵(𝑟+(1/2),(𝑣−1)/2)

𝐵(1/2,(𝑣−1)/2)
                      where 𝑣 > 1                                         (38) 

                                                    

If r=1, then the second moment is  𝐸(𝑡𝑏
2) = 1                                                   

If r=2, then the fourth moment is     𝐸(𝑡𝑏
4) = 3𝑣/(𝑣 + 2)                         

If r=3, then the sixth moment is       𝐸(𝑡𝑏
6) = 15𝑣2/(𝑣 + 2)(𝑣 + 4) and so on.     

Theorem 7.2: The Shannon’s differential entropy of the Bounded student’s- t -

distribution is given as   

ℎ
′(𝑡𝑏) = 𝑙𝑜𝑔 (√𝑣𝐵(1/2, (𝑣 − 1)/2)) +

(𝑣 − 3)𝛤((𝑣 + 1)/2)

(𝑣 − 1)𝛤((𝑣 − 1)/2)
 

                                          ×   (𝛹(𝑣/2) − 𝛹((𝑣 + 1)/2) + 2/(𝑣 − 1))                 (39) 

where 𝛹(., . ) is the di-gamma function. 

Proof: It is found from  

   

ℎ
′(𝑡𝑏) = − ∫ 𝑓(𝑡𝑏) 𝑙𝑜𝑔 𝑓 (𝑡𝑏)𝑑𝑡𝑏

+√𝑣

−√𝑣

 

           = − ∫
1

√𝑣𝐵(1/2,(𝑣−1)/2)
(1 − (𝑡𝑏/

+√𝑣

−√𝑣

√𝑣)
2

)
((𝑣−1)/2)−1

𝑙𝑜𝑔 (
(1−(𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

√𝑣𝐵(1/2,(𝑣−1)/2)
) 𝑑𝑡𝑏                                                     (40) 

thr
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By setting 𝑆 = 𝑡𝑏/√𝑣 in (40) and using the change of variable technique, the 

expression will be 

= 𝑙𝑜𝑔 (√𝑣𝐵(1/2, (𝑣 − 1)/2)) 

                 − ∫
(𝑣−3)/2

𝐵(1/2,(𝑣−1)/2)
(1 − 𝑆2)((𝑣−1)/2)−1 𝑙𝑜𝑔(1 − 𝑆2)

+1

−1
𝑑𝑆                        (41)  

Now integrate (41) with respect to S and simplify, then the final result is found to 

be 

 ℎ
′(𝑡𝑏) = 𝑙𝑜𝑔 (√𝑣𝐵(1/2, (𝑣 − 1)/2)) +

(𝑣−3)𝛤((𝑣+1)/2)

(𝑣−1)𝛤((𝑣−1)/2)
(𝛹(𝑣/2) −

                                                                        𝛹((𝑣 + 1)/2) + 2/(𝑣 − 1)) 

8. Generating functions 

 

Theorem 8.1: The MGF of the Bounded student’s t distribution is given as    

𝑀𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

(𝑡√𝑣/2)
(𝑣/2)−1 𝐼(𝑣/2)−1(𝑡√𝑣)                                                                           (42) 

where ( )I  is the modified Bessel function of Kind-1. 

Proof: Let the MGF of a distribution is given as 

𝑀𝑡𝑏
(𝑡) = ∫

𝑒𝑡(𝑡𝑏)

√𝑣𝐵(1/2,(𝑣−1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

𝑑𝑡𝑏
+√𝑣

−√𝑣
                     

By setting 𝑆 = 𝑡𝑏/√𝑣 and using the change of variable technique, the expression 

will be 

= ∫
𝑒𝑡(𝑆√𝑣)

𝐵(1/2,(𝑣−1)/2)
(1 − 𝑆2)((𝑣−1)/2)−1𝑑𝑆

+1

−1
                                                                 (43) 

Now from (43) expand the exponent (𝑒𝑡(𝑆√𝑣) = ∑ (𝑡2𝑘+1(𝑆√𝑣)
2𝑘+1

/(2𝑘 +∞
𝑘=0

1)!) + ∑ (𝑡2𝑘(𝑆√𝑣)
2𝑘

/2𝑘!)∞
𝑘=0 ) into odd and even power series, substitute it and 

integrate with respect S, then the                                                                                                     

odd terms of the power series are vanished and the final result is found to be 

 𝑀𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

√𝜋
∑

(𝑡√𝑣)
2𝑘

2𝑘!

∞
𝑘=0

𝛤(𝑘+1/2)

𝛤(𝑘+𝑣/2)
 

 𝑀𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

(𝑡√𝑣/2)
(𝑣/2)−1 𝐼(𝑣/2)−1(𝑡√𝑣) 

Theorem 8.2: The Cumulant of the Bounded student’s- t -distribution is given as   

  𝐶𝑡𝑏
(𝑡) = 𝑙𝑜𝑔(𝛤(𝑣/2)) − ((𝑣/2) − 1) 𝑙𝑜𝑔(𝑡√𝑣/2) +

                                                                       𝑙𝑜𝑔 (𝐼(𝑣/2)−1(𝑡√𝑣))                                  (44)   

Proof: It is found from 𝐶𝑡𝑏
(𝑡) = 𝑙𝑜𝑔 𝑀𝑡𝑏

(𝑡) 

Theorem 8.3: The Cf of the Bounded student’s t distribution is given as   

 𝜙𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

(𝑖𝑡√𝑣/2)
(𝑣/2)−1 𝑖−((𝑣/2)−1)𝐽(𝑣/2)−1(𝑖𝑡√𝑣)                                                     (45) 

  where ( )J  is the Bessel function of Kind-1. 

Proof: Let the Cf of a distribution is given as 

  𝜙𝑡𝑏
(𝑡) = ∫

𝑒𝑖𝑡(𝑡𝑏)

√𝑣𝐵(1/2,(𝑣−1)/2)
(1 − (𝑡𝑏/√𝑣)

2
)

((𝑣−1)/2)−1

𝑑𝑡𝑏
+√𝑣

−√𝑣
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By setting /bS t v=  and using the change of variable technique, the expression 

will be 

 = ∫
𝑒𝑖𝑡(𝑆√𝑣)

𝐵(1/2,(𝑣−1)/2)
(1 − 𝑆2)((𝑣−1)/2)−1𝑑𝑆

+1

−1
                                  (46)                                  

Now from (46) expand the exponent with complex argument (𝑒𝑖𝑡(𝑆√𝑣) =

∑ ((𝑖𝑡)2𝑘+1(𝑆√𝑣)
2𝑘+1

/(2𝑘 + 1)!)∞
𝑘=0 + ∑ ((𝑖𝑡)2𝑘(𝑆√𝑣)

2𝑘
/2𝑘!)∞

𝑘=0 ) into odd 

and even power series, substitute it and integrate with respect S, then the odd terms 

of the power series are vanished and the final result is found to be 

 𝜙𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

√𝜋
∑

(𝑖𝑡√𝑣)
2𝑘

2𝑘!

∞
𝑘=0

𝛤(𝑘+1/2)

𝛤(𝑘+𝑣/2)
 

 𝜙𝑡𝑏
(𝑡) =

𝛤(𝑣/2)

(𝑖𝑡√𝑣/2)
(𝑣/2)−1 𝑖−((𝑣/2)−1)𝐽(𝑣/2)−1(𝑖𝑡√𝑣) 

 

9. Special cases and percentage points 

 

Theorem 9.1: From (29), the Limiting distribution of the Bounded student’s- t –

distribution when v →  is the standard normal distribution ( )0,1N  and it given 

as 

 𝑓(𝑡𝑏) =
1

√2𝜋
𝑒−𝑡𝑏

2/2 𝑤ℎ𝑒𝑟𝑒 − ∞ < 𝑡𝑏 < +∞                                                            (47) 

Proof: It is found from     

 𝑙𝑖𝑚
𝑣→∞

𝑓(𝑡𝑏; 𝑣) = 𝑙𝑖𝑚
𝑣→∞

   
1

√𝑣𝐵(1/2,(𝑣−1)/2)
× 𝑙𝑖𝑚

𝑣→∞
 (1 − (𝑡𝑏/√𝑣)

2
)

(𝑣−3)/2

 

 = 𝑙𝑖𝑚
𝑣→∞

   
𝛤(𝑣/2)

√𝑣𝛤(1/2)𝛤((𝑣−1)/2)
× 𝑙𝑖𝑚

𝑣→∞
 ((1 − (𝑡𝑏/√𝑣)

2
)

𝑣

)
1/2

 

                                                                          × 𝑙𝑖𝑚
𝑣→∞

 (1 − (𝑡𝑏/√𝑣)
2

)
−3/2

                 (48)                                                                                                          

From (48), the limits can be separately applied for each term in the product, and it 

is given as 

 𝑙𝑖𝑚
𝑣→∞

1

𝛤((𝑣−1)/2)/𝛤(𝑣/2)
= (𝑣/2)1/2                                                                                  (49)   

𝑙𝑖𝑚
𝑣→∞

 ((1 − (𝑡𝑏/√𝑣)
2

)
𝑣

)
1/2

= (𝑒−𝑡𝑏
2
)

1/2
                                                                  (50) 

𝑙𝑖𝑚
𝑣→∞

 (1 − (𝑡𝑏/√𝑣)
2

)
−3/2

= 1                                                                                       (51) 

Now substitute (49), (50) and (51) in (48), then the result is found to be 

                                         

𝑓(𝑡𝑏) =
1

√2𝜋
𝑒−𝑡𝑏

2/2                     where  bt−   + .     
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Result 9.2: The two-sided significant percentage points of Bounded-t-distribution 

are also computed with the help of Maple version 16 shown in Table 3. 

 

Table 2: The Special cases of (29) 

 

Case 

No 

 

Distribution 

       Parameters  Transformation 

Location Scale shape Jacobean 

1 
Scaled Bounded  

student’s-t 
x  s  v  bx st+  

2 
symmetric arcsine 

distribution 
- - 2 / 2bt  

3 Uniform - - 3 - 

4 Wigner’s Semi-circle - - 4 - 

5 Wigner’s unit semi-circle - - 4 / 4bt  

 

 

Table 3: Significant Two tail Percentage points of Bounded-t-distribution 

𝑃(|𝑡𝑏(𝑣)| > 𝑡𝑏(𝑣)(𝛼)) = 𝛼 

 

𝑑𝑓(𝑣) 

𝑡𝑏(𝑣)(𝛼) 

𝑡𝑏(𝑣)(0.01) 𝑡𝑏(𝑣)(0.05) 𝑡𝑏(𝑣)(0.1) 𝑡𝑏(𝑣)(0.2) 𝑡𝑏(𝑣)(0.3) 𝑡𝑏(𝑣)(0.4) 𝑡𝑏(𝑣)(0.5) 

2 1.4142 1.4131 1.4099 1.3968 1.3751 1.3450 1.3066 
3 1.7234 1.6887 1.6454 1.5588 1.4722 1.3856 1.2990 
4 1.9481 1.8474 1.7567 1.6108 1.4865 1.3741 1.2694 
5 2.1057 1.9408 1.8143 1.6308 1.4858 1.3604 1.2474 
6 2.2182 2.0002 1.8481 1.6398 1.4821 1.3493 1.2318 
7 2.3011 2.0408 1.8698 1.6443 1.4782 1.3407 1.2203 
8 2.3643 2.0699 1.8848 1.6467 1.4747 1.3339 1.2116 
9 2.4138 2.0919 1.8957 1.6481 1.4716 1.3284 1.2048 
10 2.4536 2.1089 1.9039 1.6488 1.4690 1.3239 1.1993 
11 2.4862 2.1226 1.9103 1.6492 1.4667 1.3202 1.1949 
12 2.5133 2.1337 1.9154 1.6495 1.4648 1.3171 1.1911 
13 2.5363 2.1429 1.9196 1.6495 1.4630 1.3144 1.1880 
14 2.5560 2.1507 1.9231 1.6496 1.4615 1.3122 1.1852 
15 2.5730 2.1573 1.9261 1.6495 1.4602 1.3102 1.1829 
16 2.5879 2.1631 1.9286 1.6494 1.4590 1.3084 1.1809 
17 2.6010 2.1681 1.9308 1.6494 1.4580 1.3069 1.1790 
18 2.6126 2.1725 1.9327 1.6493 1.4570 1.3055 1.1774 
19 2.6230 2.1765 1.9343 1.6491 1.4562 1.3042 1.1760 
20 2.6323 2.1800 1.9358 1.6490 1.4554 1.3031 1.1747 
21 2.6408 2.1831 1.9371 1.6489 1.4547 1.3021 1.1735 
22 2.6485 2.1859 1.9383 1.6488 1.4540 1.3012 1.1725 
23 2.6555 2.1885 1.9394 1.6487 1.4534 1.3003 1.1715 
24 2.6619 2.1909 1.9403 1.6486 1.4529 1.2996 1.1706 
25 2.6678 2.1930 1.9412 1.6485 1.4524 1.2988 1.1698 
26 2.6732 2.1950 1.9420 1.6484 1.4519 1.2982 1.1690 
27 2.6782 2.1968 1.9428 1.6483 1.4514 1.2976 1.1684 
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28 2.6829 2.1985 1.9435 1.6482 1.4510 1.2970 1.1677 
29 2.6872 2.2000 1.9441 1.6482 1.4507 1.2965 1.1671 
30 2.6913 2.2015 1.9447 1.6481 1.4503 1.2960 1.1665 
40 2.7205 2.2119 1.9488 1.6474 1.4477 1.2924 1.1625 
50 2.7379 2.2180 1.9512 1.6470 1.4461 1.2902 1.1600 
60 2.7495 2.2220 1.9527 1.6467 1.4450 1.2888 1.1584 
70 2.7578 2.2248 1.9538 1.6464 1.4442 1.2878 1.1573 
80 2.7640 2.2269 1.9546 1.6463 1.4437 1.2870 1.1564 
90 2.7688 2.2286 1.9552 1.6461 1.4432 1.2864 1.1557 

100 2.7726 2.2299 1.9557 1.6460 1.4428 1.2859 1.1552 

  2.5758 1.9600 1.6449 1.2816 1.0364 0.8416 0.6745 

 

10. Numerical illustration and discussion 

 

The application of the proposed Bounded student’s t distribution was explained 

with the help of the Fisher’s Iris Plants Database. The best-known database to be 

found in the pattern recognition literature.  Fisher's paper is a classic in the field and 

is referenced frequently until this day.  (See Duda & Hart, for example.)  The data 

set consists 4 different characteristics of Iris plants in centimeters (Sepal length 
(𝑋1), Sepal width(𝑋2), petal length(𝑋3), petal width (𝑋4)), 3 classes(Iris Setosa , 

Iris Versicolour , Iris Virginica) of 50 instances each, where each class refers to a 

type of iris plant. Out of 150 instances, the authors randomly select 30 instances for 

giving a numerical illustration. From (29) the classical and Bounded student’s t ratio 

are similar in their computation, hence at first standard t-scores are computed to 

find the univariate outliers. Secondly 4 different regression models (𝑋1on 𝑋2, 𝑋3,
𝑋4, 𝑋2on 𝑋1, 𝑋3, 𝑋4, 𝑋3on 𝑋1, 𝑋2, 𝑋4 and 𝑋4on 𝑋1, 𝑋2,  𝑋3)are fitted based on 4 

characteristics of iris plants and then Jackknife residuals are computed to identify 

the outliers in the Y-space. The Comparative results of Classical and Bounded 

student’s t ratio are given in Table 3 and Table 4 along with discussion. 

 

Table 4: Comparative results of Classical t-ratio, Bounded student’s t-ratio and 

Identification of Univariate Outliers 

 

Observ-

ation 

 

Sepal 

length 

𝑋1 

 

Sepal 

width 

   𝑋2 

 

petal 

length 

    𝑋3 

 

petal 

width 

       𝑋4 

 
|𝑡𝑏1| 

 
|𝑡𝑏2| 

 
|𝑡𝑏3| 

 
|𝑡𝑏4| 

1 5.10 3.50 1.40 .20 .197 .143 .395 .463 

2 4.90 3.00 1.40 .20 .340 1.285 .395 .463 

3 4.70 3.20 1.30 .20 .878 .714 .934 .463 

4 4.60 3.10 1.50 .20 1.14

6 

1.000 .144 .463 

5 5.00 3.60 1.40 .20 .072 .428 .395 .463 

6 5.40 3.90 1.70 .40 1.00

3 

1.285 1.22

1 

1.521 

7 4.60 3.40 1.40 .30 1.14

6 

.143 .395 .529 

8 5.00 3.40 1.50 .20 .072 .143 .144 .463 

9 4.40 2.90 1.40 .20 1.68

3 

1.571 .395 .463 

10 4.90 3.10 1.50 .10 .340 1.000 .144 1.455 

11 5.40 3.70 1.50 .20 1.00

3 

.714 .144 .463 
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12 4.80 3.40 1.60 .20 .609 .143 .683 .463 

13 4.80 3.00 1.40 .10 .609 1.285 .395 1.455 

14 4.30 3.00 1.10 .10 1.95

2 

1.285 2.01

2 

1.455 

15 5.80 4.00 1.20 .20 2.07

7d 

1.571 1.47

3 

.463 

16 5.70 4.40 1.50 .40 1.80

9 

2.713a,

d 

.144 1.521 

17 5.40 3.90 1.30 .40 1.00

3 

1.285 .934 1.521 

18 5.10 3.50 1.40 .30 .197 .143 .395 .529 

19 5.70 3.80 1.70 .30 1.80

9 

1.000 1.22

1 

.529 

20 5.10 3.80 1.50 .30 .197 1.000 .144 .529 

21 5.40 3.40 1.70 .20 1.00

3 

.143 1.22

1 

.463 

22 5.10 3.70 1.50 .40 .197 .714 .144 1.521 

23 4.60 3.60 1.00 .20 1.14

6 

.428 2.55

1b,d 

.463 

24 5.10 3.30 1.70 .50 .197 .428 1.22

1 

2.513
b,d 25 4.80 3.40 1.90 .20 .609 .143 2.29

9b,d 

.463 

26 5.00 3.00 1.60 .20 .072 1.285 .683 .463 

27 5.00 3.40 1.60 .40 .072 .143 .683 1.521 

28 5.20 3.50 1.50 .20 .466 .143 .144 .463 

29 5.20 3.40 1.40 .20 .466 .143 .395 .463 

30 4.70 3.20 1.60 .20 .878 .714 .683 .463 
bCritical |𝑡𝑏(𝛼=0.05,𝑣=29)| = 2.20, aCritical |𝑡𝑏(𝛼=0.01,𝑣=29)| = 2.6872                                               ( )29df v =  

dCritical |𝑡(𝛼=0.05,𝑣=29)| = 2.045, cCritical |𝑡(𝛼=0.01,𝑣=29)| = 2.756    

 

 

Table 5: Comparative results of Classical Jackknife, Bounded Jackknife residuals 

in linear regression analysis and identification of outliers in Y space 

 

Observ

-ation 

 

Sepal 

length 

1X  

 

Sepal 

width 
  2X  

 

petal 

length 
       3X  

 

petal 

width 
   4X  

 
|𝑡𝑏1| 

 
|𝑡𝑏2| 

 
|𝑡𝑏3| 

 
|𝑡𝑏4| 

1 5.10 3.50 1.40 .20 .221 .097 .250 .4759 

2 4.90 3.00 1.40 .20 1.375 1.903 1.015 .6525 

3 4.70 3.20 1.30 .20 .138 .339 .782 .2198 

4 4.60 3.10 1.50 .20 .686 .010 .406 .0625 

5 5.00 3.60 1.40 .20 .622 .962 .144 .7991 

6 5.40 3.90 1.70 .40 .394 .754 .993 .5378 

7 4.60 3.40 1.40 .30 1.495 .732 .029 .6882 

8 5.00 3.40 1.50 .20 .074 .172 .317 .5244 

9 4.40 2.90 1.40 .20 .565 .639 .282 .5493 

10 4.90 3.10 1.50 .10 .491 .461 .337 1.127

5 11 5.40 3.70 1.50 .20 .542 .366 .244 1.020

8 12 4.80 3.40 1.60 .20 1.253 1.143 1.329 .9243 

13 4.80 3.00 1.40 .10 .693 .905 .325 .7077 

14 4.30 3.00 1.10 .10 .931 .092 1.368 .3715 
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15 5.80 4.00 1.20 .20 2.278
b,d 

.257 2.020 .9496 

16 5.70 4.40 1.50 .40 .594 2.043 .301 .0685 

17 5.40 3.90 1.30 .40 .655 .311 1.599 1.547

2 18 5.10 3.50 1.40 .30 .409 .489 .717 .7499 

19 5.70 3.80 1.70 .30 1.249 .251 .696 .2871 

20 5.10 3.80 1.50 .30 1.041 1.339 .541 .2227 

21 5.40 3.40 1.70 .20 1.300 .733 .857 .7625 

22 5.10 3.70 1.50 .40 .452 .213 .156 1.301

4 23 4.60 3.60 1.00 .20 1.699 1.570 1.851 .1765 

24 5.10 3.30 1.70 .50 1.078 2.506b,

d 

.339 3.887

9a,c 25 4.80 3.40 1.90 .20 2.475
b,d 

2.363b,

d 

3.942a,c 2.011

6 26 5.00 3.00 1.60 .20 1.332 1.736 .073 .2398 

27 5.00 3.40 1.60 .40 .057 .791 .008 1.794

1 28 5.20 3.50 1.50 .20 .424 .008 .172 .6392 

29 5.20 3.40 1.40 .20 1.075 .767 .653 .1672 

30 4.70 3.20 1.60 .20 .888 .424 1.059 .4787 
bCritical |𝑡𝑏(𝛼=0.05,𝑣=26)| = 2.1950, aCritical |𝑡𝑏(𝛼=0.01,𝑣=26)| = 2.6732                                               ( )26df v =  

dCritical |𝑡(𝛼=0.05,𝑣=26)| = 2.056, cCritical |𝑡(𝛼=0.01,𝑣=26)| = 2.779      

 

Table 1 exhibits the result of bounded student’s t-ratio and the computed standard 

student t-scores are similar. The standardized student t-scores of the variable sepal 

length (𝑋1) is having a single outlier (observation 15) at 5% significance level for 

29 degrees of freedom based on classical student’s t-statistic and the bounded 

student’s t-statistic failed to identify the remote observation in the same variable. 

Likewise observation 16 is an outlier in the variable sepal width(𝑋2) at 5 % level 

based on classical statistic and 1% significance level based on Bounded t- statistic. 

In the same manner, in Petal width (𝑋3), observations 23, 25 and in Petal width(𝑋4), 

observations 24 are identified as outliers by both test statistics at 5% significance 

level. Table 3 visualizes the comparative results of Classical and Bounded Jackknife 

residuals in linear regression analysis. These residual helps to identify the outliers 

in the Y-space (response space) and it exactly follows the classical student’s t-

distribution for 𝑛 − 𝑝 − 1 degrees of freedom, where p is the number of regressors 

in the regression model. Since the computation of the residuals on both the test 

statistics are similar, but distributional assumptions are different. The absolute 

Jackknife residual of the variable sepal length (𝑋1)shows the observations 15, 25 

and in sepal width(𝑋2), Observations 24, 25 are outliers at 5% significance level 

based on both the test statistic. Similarly in Petal length, observation 25 is the only 

outlier identified based on Bounded student’s statistic at 5%, 1% significance level. 

Finally in variable Petal width(𝑋4), Observation 24 is the only outlier identified by 

both the statistic at 1% significance level. From the above discussion, authors came 

to know, both the distributional assumption of the test statistic are giving similar 

results in a small and finite sample and the introduction of Bounded student’s t 

distribution can be used as a proxy to student’s t distribution when we accept the 

relationship assumption between the standard normal and chi-variate are 

uncorrelated, but not independent.  
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11.  Conclusion 

 

This paper proposed a new bivariate mixture of chi and normal distribution, which 

is said to be chi-normal distribution. The most significant property of the 

distribution is the correlation between the standard normal variate and the chi-

variables is zero and it denotes both the random variables are not independent but 

uncorrelated. The classical student’s t distribution is the pioneering work proposed 

by William Sealy Gosset under the pen name ‘student’ Likewise, the authors 

explored a new sampling distribution to the literature based on the proposed chi-

normal distribution which is declared to be the Bounded student’s t distribution. 

The properties of the Bounded student’s t distribution are scrutinized, and the 

limiting form of the distribution becomes the standard normal distribution when the 

degree of freedom is larger. This distribution creates an alternate path to the 

sampling literature and the Bounded student’s t statistic can also use to test the 

significance of Means and difference between two means from the normal 

population. The multivariate extension of the proposed Bounded student’s t 

distribution can also be left it for future research, and it can also open the way to 

introduce new distance metrics useful to identify the multivariate outliers in a 

multivariate data matrix. Finally, the proposed Bounded student’s t statistic gave 

approximately similar results when it compares with the classical student’s t 

statistic, and this confirms the Bounded student’s t distribution can also be used as 

an alternate in a small sample. 
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