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A Class of Improved Estimators for Estimating the Population Mean
in Double Sampling and its properties
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Abstract

In this paper a class of improved estimators has been proposed for estimating
population mean in Two Phase (Double) Sampling when information of auxiliary
variable is available. Under Simple Random Sampling (SRSWOR), expressions
of Mean Square Error and bias have been derived to make comparison of
suggested class with wide range of other estimators. Empirical study has also
been given using five different natural populations. Empirical study confirmed
that the suggested class of improved estimators is more efficient under relative
efficiency criterion. We have also developed some ranges of constant where we
get minimum mean square error. These constant values are useful for surveyor.
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1. Introduction

Consider the problem of estimating population mean of variable of interest in the
presence of auxiliary variable but it is expensive to collect information on study

variable for a large sample and information on auxiliary variables is not known in
advance.
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In such a situation, Two-Phase Sampling techniques can be used to decrease the
cost for little sacrifice on efficiency. Samiuddin and Hanif (2006) have discussed
two possibilities of availability of information of single auxiliary variable. The
first situation is when information of auxiliary variables is available for the whole
population and in the second it is not available for the complete population.
Samiuddin and Hanif (2007) have argued that Single Phase Sampling; if cost is
not matter of concern; is a suitable technique in first situation. In Two Phase
Sampling a larger sample is selected from population and information of auxiliary
variable is recorded and at second phase information on auxiliary variable and
variable of interest is recorded for estimation. Two Phase Sampling can, therefore,
be used when cost of drawing large sample is too high or when information of
auxiliary variable is not available for population.

In Simple Random Sampling WithOut Replacement design in each phase, the
Two Phase Sampling scheme is as follows:

e At first-phase a large sample of size n (n, < N) is selected by Simple
Random Sampling With and WithOut Replacement SRSWR(WOR) from a
finite population of N and only auxiliary variable information is observed for
these units. This sample is called as first-phase sample.

e At second-phase another sample of size n,(n,cn) is chosen by
SRSWR(WOR) from the first-phase sample n , and information on the
variable understudy may be obtained. This sample is called as second-phase

sample. Second-phase sample can also be taken independent of the first
sample, Bose (1943).

Let us consider the finite population of size N and let Y_, X and Z are the
population means of the variables Yy, X and Z respectively. The sample of size ¢

N, ’at the first phase is drawn from the population and we assume that x; =

Z?_llﬁ be the sample mean of variable ‘X’ for the first phase sample,
=17,

= _\N2 Xi 5 _yn2 Vi = _ N2 Zi ;

whereasx, = Zi=1n_2’ Vo = Zizlzand Z; = Zizlzare the means of variable X,

Y and Z respectively for the sample of size ‘ N, obtained at second phase’.
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1.1 Notations: In Simple Random Sampling With and WithOut Replacement
with single auxiliary variables we may obtained as,

_ Yo=Y
€o(2) = €y2 = —2,7
_ %—X
€12) T Cx2 =~
= 59252_53%2
e =ep =5
BT s T
trst ==X (X, = X)"(Y; = YV)5(Z; — 2)} ncN, ncn

€y(2) = eo(z)
Yo =Y(1+eom)
eo(z) = ey__(z)
Y
€x(1) = €1(1)
Ty = X(1+eywy)

€x(1)
aw =3
esjzc(l) = 62(1)

szay = SE(1+ ex))
e

x(1)
€21 = 52

E(eln) = 0252
E(efy) = 91 Moz
E(ef) = Moz
E(eo(Z)el(l)) = 91 =
E(esmei) = 6’2
#12
E(eoye2n) = 01 5— i

E(e31)) = 05 (Bozry — 1) . .
1— 1—

E = g o3 where 9, =— 9, =— 0; = —
(exmea)) 1%, 2=, 1= 17 n,

Ratio method of estimation has been very popular in Single Phase Sampling. In
Double Sampling this method has attracted number of survey statisticians and
large number of estimators has been proposed from time to time. The Ratio
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estimator, in Double Sampling, can be constructed in two ways namely known
and unknown information of mean of auxiliary variable. The Ratio estimator
when mean of auxiliary variable is known is given as:

_ V2 =

Vr@2) = f—jX (1.2)
and

Y2 (1.3)
Yp(2) = sz

and Mean Square Errors of eq. (1.1) and eq. (1.2) are,

MSE(Jr(z)) = 0,7%(C2 + CZ — 2,y CiCy) (1.4)
and

MSE(Jp(2y) = 0,72(C2 + CZ + 2y CiCy) (1.5)

The Mean Square Error given in eq. (1.4) is precisely the Mean Square Error of
Classical Ratio estimator of Single Phase Sampling based upon a sample of size
n,. Sahoo and Sahoo (1993, 1994) proposed Ratio and Product type estimators for
population mean when population information of auxiliary variable is known

)_’SSr(Z) = }Zi_fz_ (1.6)

and

J_’SSp(Z) = %Z_l (1.7)

Mean Square Errors of eq. (1.6) and eq. (1.7) are,

MSE (Jssr(2)) = Y?[6,C2 + 6,(CZ — 2p,,C,C,)] (1.8)
and

MSE (Vsspcz)) = Y2[0,C2 + 6,(CZ + 2p,,C,C,)] (1.9)

Comparison of eq. (1.6) with eq. (1.2) shows that estimator yg,.,) will be more
precise than Ve 2y if pyy > ZCT" holds.
y

2. Proposed estimator - |
In this paper, the Generalized Exponential Ratio and Product type estimators have

been suggested under Double Sampling design when the information of auxiliary
variable is known.
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1
Xh — x"
tlg(z) = )_]Zexp 1 : 1 (21)
Xn + (a — Dx}
1 1
X! — Xn
tlg(z) = )_]Zexp 1 : 1 (22)

Xt + (a— 1)3?1z
where a is optimized constant and h is the generalized constant. Using the
notations eq. (1.1), we may write the estimator eq. (2.1) as:

1 1 l
Vv Xn—Xn(1+e R
tf(z) = Y(l + 60(2))exp ( 1(1))

1

_ _1 1
Xr+ (a— DXe(1+ eyq))”

—e
g _y 1(1)
tl(Z) - Y(l + eo(z))exp ah {1 4 8@ 91(1) e;;l)}

_ —e e e -1
g _ 1 11) €11
toy = Y(1+ ep))exp - {1 + P } ]

-1
Expanding the series {1 + % — %} upto first order in e, we get

r—e e e
9 _§ W () _am | aw
tio) = Y(l +-e0(2))exp —n (1 A + ah )]
Ignoring the highest order terms of errors, we get

— r—e
f(z) = Y(l + 80(2))€Xp _ alffl)]

Expand exp [ 1(1)] function upto order one as:

2
e e
g 1(1) 1(1)
He) = Y(l + 90(2)) [1 - + ZaZth

2
= €1(1) €o0(2)€1(1) €1(1)
Hey =7 (1 +eom) — o= + (24)

(2.3)

ah ah 2a’h?
Applying expectation on eq. (2.4) and using eq. (1.1), we get
_. (0,1 O,u 20.u
g 52 (Y92H20 102 4UiH1

MSE(tfz)) = ¥ (72" + s~ 2axt)
Differentiate eq. (2.5) w.r.t. “a”, we get

Yoo

_ 2.
hXpq1 ( 5)

Put the value of ‘a’ in eq. (2.5), we get the minimum MSE( 1(2))
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MSE( 1(2)) = lz0(6, — 61p%) (2.6)

The bias of tf(z) to first order of approximation, is given by

_[ 6,u? 0, u?
Bias(tg ) ¥ _1.“11 _ _1.“11
1) 2Y2ug, Yo,

: g _ 0113,
Blas(tl(z)) =~ Thes 2.7)

2.1 Family of estimator for t/;,, : Some members of ], are given in Table 1.

3. Generalized Exponential Ratio type estimator-11 when sampling is done
with replacement

The following Generalized Exponential estimator has been suggested under
Double Sampling with replacement when the information of auxiliary variable is
known.

_ — Sx1
tz‘g(z) = y2expy— ad T (3.1)
S2h + (a — Ds2}
Using the notations eq. (1.1), we may write the estimator eg. (3.1) as:
1 1

> szh_s2h (1+e )h
) = V(1 + eoJexp j ————=—== 3.2)
5'2 +(a- 1)5 (1+€2(1))h

After some S|mpI|f|cat|0n We get eq. (3.2) as:

57" 1-1-20

g v X h
|S2 h h

or

td | = 17(1 +e )ex 6D

2@ @) [1+ 20 2]
| h ah

or

_ (—e e e
g _ 2(1) 2(1) 2(1)
t2(2) = Y(l + eo(z))exp 7 1+ ] ] (3.3)

Expanding the series up to first order and re- wrltlng eg. (3.3) as:
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€2(1) €2(1)  €2(1)
2(2) = Y(l + eo(z))exp [ A [1 + Y ah l (3.4)
or
g €2(1)
tyoy = Y(l + eo(z))exp [ (3.5)

Expanding the exponential serles up to first order and re-writing eg. (3.5) as:

e 1 e2
g 2(1) 2(1)
o) = Y(l + eO(Z)) [1 - + ﬂazhzl
2
e e
g 2(1) 2(1)
o) = Y(l + 60(2)) [1 - + ZaZth

or

2
= €201) , €2(1) €o(2)€2(1)

tzg(z) =Y <1 + €o(2) — 3 + ahe ah ) (3.6)

Taking square and applying expectation of the eq. (3.6) and ignore higher order

teams, we get

E(t9,) - 1?) = V2E |eo(z) - ez(ﬁ)]

N2 E(ezy)  2E(eoe2n)
E(t5 — Y) = 72 <E(e§(2)) e >
Using eg. (1.1), we get
_, 021 9*(,302(1) - 1) 20112
g T2 2120 1 _
MSE(tz(Z)) =Y l Y2 + a?h? ahY u,, 37)

Differentiate eq. (3.7) w.r.t ‘a’ and h is generalized constant,

_ 7#02 (302(1) - 1)
hit,
Put the value of ‘a’ in eq. (3.7), we have minimum MSE( 2(2))

613, l
MSE(t =u le* — (3.8)
( 2(2)) 20|72 .Uzo.uzz)z (302(1) - 1)
The bias of tg(z) to first order of approximation, is given by
. 01ui,
Bias(td ) = —= (3.9)
( 2(2)) Yud,(Boz — 1)
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g

3.3.1 Family of Generalized Ratio type estimator for tye

) Some members of

t5 in Table 2.

4. Numerical comparison

In this paper, Mean Square Errors of the estimator proposed in eg. (2.6) and eq.
(3.8) have been numerically compared with the Mean Square Errors of the
existing estimators. For the comparison numbers of populations are considered
from real life data. The description of the populations is given in Table 3. In this
section, numerical comparison between the proposed estimators and existing
estimators using Two Double Sampling with single auxiliary variable has been
made for each of the population described in Table 3. Table 4 — Table 8 show the
Mean Square Errors and the relative efficiencies for each population with
information of single auxiliary variable, respectively. The sample of size n, at the
first phase is taken equal to 60% of the total sample size n and sample of size n,
at phase two is taken 67% of n,.

5. Conclusion

The study of the Table 4 - Table 8 shows that in case of single known auxiliary
variable information the proposed estimators i.e. eq. (2.1) and eq. (3.1) are highly
efficient and consistent than the existing estimators i.e. eq. (1.2) and eq. (1.6) for
each of the population under study. It is also observed that for few choices of h
and a detail of which are given in respective Tables, the estimators i.e. eq. (2.1)
and eq. (3.1) are highly efficient and consistent than the existing estimators. The
choices of the constant are 1.0 < h < 2.0 and 3.5 < a < 6.0. These constant
values are helpful for surveyors.

Table 1: Family of estimators for tf(z)

Family of Exponential-type Ratio
Estimator 7

Family of Exponential —type product
Estimators t?

1(2)R(h.a) 1(2)R(h,a)
. _ [x-x ) N B¢
ti2)r(1,) = Yexp X tip@) = yexp X
3 _ \/} Y. il 4 _ \/} B/ ‘fl
LR = yexp = Liopey =Yexp|——= —
Jx JX
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5 — X B fl 6 _ ‘x_l - X
ti)ra12) = VexXp X+ 7 bipaz = Yexp X+x 1]2
Noor et al. (2012) Noor et al. (2012)
H@RrE2) = VeXP = — ti)p2) =VeXP |"=— 212
VX + 7 VENEA
The MSE’s of family of estimators are in Appendix A.2.1.
Table 2: Family of estimators for ti"(z)
Family of Exponential-type ratio Family of Exponential —type product
Estimators tJ Estimators tJ hla
S 2(2)R(ha) 22)P(ha)
1 = S)?_Sil 2 = 53%1_52?
bR, = V28XP sz ty@)p@a,1) = Y2exp T 1 1
¢3 = J,exp \/ST%_VS% £4 = §,exp \/5_3?—\/531
2(2)R(2,1) 2 52 2(2)P(2,1) 2 7\/5—5 2 1
5 = SJ? - SJ%l 6 = -53%1 - S)?-
t)Rr(12) = V2€XD ST¥ 52, L2@)p(12) = V2€XP 52, +52 1] 2
_ } [ .2 2]
o _ [Jsa-Js2
t3 R(22) = Y2€XP 7\/5? “ VS tZS(Z)P(ZJZ) =Y2€xp \/lef\/sz
(DR, \/Si)? + 1531_ |V Sx1 x 2 2
The MSE’s of family of estimators are in Appendix A.3.2.
Table 3: Description of the populations
Parameters | Population1l | Population2 | Population 3 | Population4 | Population 5
Source: Source: Source: Source: Source:
o Applied Applied Applied Applied
Applied . X X X
Linear Llpef_ar L|_ne§r L|_ne§r Lmegr
Statistical Statistical Statistical Statistical Statistical
Models 2004 Models 2004, | Models 2004, | Models 2004, | Models 2004,
' | Pg 1348, data | Pg 1348, data | Pg 1350, data | Pg 1352, data
Pg 1348, data
set1 set 3 set 3 set 9
setl
X:ANB X: ANB X : GNRP X: AMMS X: NOC
Y:AFS Y:ALS Y: AMP Y: AMP Y: NI
Z: ANN Z:AFS Z: AMMS Z. GNRP Z.TC
N=113 N=113 N=36 N=36 N=788
Pxy 0.7835 0.4093 -0.3877 -0.1885 0.1961
Uz 231.0662 3.6537 0.02656 0.02656 31.3002
oo 37188.3 37188.3 28389.71 0.06989 0.06154
Ui1g 1658.645 150.8594 -10.64885 -0.008122 0.2722
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Table 4: Mean Square Error and relative efficiencies for Population 1
MSE SSR 1994 MSE MSE g
MSEt
ny | MSE R and RE and RE til(z) té’(z) Constant SEt; 2
WOR WR WOR WR WOR WR h a WOR
70.652 76.039 36.07i 41.458 23.3655 | 276568 1] 35 16.5703
12 | 8 | (302) (275)* (154) 2 (100) (100) 1] 35 16.9252
(432)** (220)** | (150)* 1| 40 | 16.3633**
453096 | 5o 69y | 26447 | 39 830 | 13.7377 | 180201 | 1 | 32 | 107719
18 | 12 | (330) (281)* (193%) (176)* | (100) (100) 1] 35 10.9944
(426)** (248)** 1| 40 | 10.6421**
25.0324 | 30.415 | 18.744 1] 35 6.1332
30 | 20 | (415)* | (294 | (311)* %;;Sf 6('f§g)5 1%%%?9 1|35 | 6250
(413)** (309)** 1] 40 6.060**
Table 5: Mean Square Error and relative efficiencies for Population 2
MSE SSR 1994 | MSE | MSE g
ny | n, | MSERandRE and RE e, | 8, |constent | MSEt,
WOR WR WOR WR | WOR | WR h a WOR
5.4069 | 5.8188 | 1.474 15 | 5.0 0.3818
12 | 8 | (1321)* | (1291)* | (360)* %481%‘;? 0(;1(())8)4 O(fg(?; 15 | 6.0 | 0.3789**
(1427)** (389)** 2.0 | 6.0 0.3802
3.4673 3.8792 1.322 1.7343 | 0.2571 | 0.2985 15150 0.2454
18 | 12 | (1349)* (1300)* (514)* (581)* | (100) | (100) 15 | 6.0 | 0.2436**
(1423)** (543)** 2.0 | 6.0 0.2445
1.9156 23275 1.2006 16126 | 0.1354 | 0.1767 15 | 5.0 0.1364
30 | 20 | (1415)* (1317)* (887)* (913)* | (100) | (100) 15 | 6.0 | 0.1354**
(1415)** (887)** 2.0 | 6.0 0.1358
Table 6: Mean Square Error and relative efficiencies for Population 3
MSE MSE MSE
n, | n, MSE P and RE MSE SSP 1994 and g g Constants g
RE t1(2) t2(2) t1(2)
WOR WR WOR WR WOR WR h a WOR
0.2039 0.2294 0.0310 15 | 5.0 | 0.0108
6 | 4 | (3515)% | (3476)* | (534)* (()805%?,{ (J(fggf (J(fggf 15 | 6.0 | 0.0096
(2134)** (323)** 2.0 | 6.0 | 0.0103
0.0892 0.1147 0.0273 15 | 5.0 | 0.0045
12| 8 (3568) (3584) (1092) ?1%‘2%)? O(fgg)‘r’ 0(5803)2 1.5 | 6.0 | 0.0041**
(2176)" (666) 2.0 | 6.0 | 0.0042
0.0510 0.0765 0.0262 0.0517 | 0.0014 | 0.0021 151501 0.0024
18 | 12 | (3643)* (3643)* (1871)* (2462)* | (100) (100) 15 | 6.0 | 0.0021**
(2429)** (1248)** 2.0 | 6.0 | 0.0023
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Table 7: Mean Square Error and relative efficiencies for Population 4
n, | n, | MSE P and RE Msgnsdsgéggzt MSEt?,, | MSEt{,, | Constants | MSEt{,,
WOR | WR | WOR | WR WOR WR h a WOR
0.0146 | 0.0164 | 0.0070 15| 5.0 0.0063
6 | 4 | (252)% | 48)* | (120)* ?l%%f;f o(fgg)s ‘)(fgg’f 15| 6.0 | 0.0062*
(235)** (113)** 20| 6.0 0.0063
0.0064 1 4 5og2 | 99037 160055 | 0.0025 | 00032 |12| 20 | 000276
12 | 8 | (256) (256)* (116) (148)* |  (100) (100) 15| 6.0 0.00274
(234)** (135)** 20| 6.0 | 0.00273**
00036 | 4 5055 | 00026 | 504s | 00014 | 00021 |12| 50 | 000155
18 | 12 | (257) (262)* (186) (209* | (100) (100) 15| 6.0 0.0054
(200)** (168)** 20| 6.0 0.00155
Table 8: Mean Square Error and relative efficiencies for Population 5
MSE SSR 1994
ny | n; | MSERandRE and RE MSEt],, | MSEt],, | Constants | MSEt],,
WOR WR WOR | WR WOR WR h a WOR
15| 50 | 0.7651
60 | 40 (91'253%2 10.1122 %é%g’i 2.0265 | 0.7403 0.7801 | 15| 6.0 | 0.7455
(1315)%* (1296)* (207)%* (260)* |  (100) (100) 20 | 50 | 0.7381
2.0 | 6.0 | 0.7299**
15| 50 | 0.2273
180 | 120 é?é’;ﬁ 3.3707 ?4%%5 15048 | 02186 | 02584 | 15| 60 | 0.2219
(1314)** (1304)* (456%* (582)* |  (100) (100) 20| 50 | 0.2198
20| 6.0 | 0.2175**
15| 50 | 0.1198
200 | 200 (11'333; 2.0224 %386;,{ 14005 | 01143 | 01541 | 15| 60 | 01171
(1312)** (1312)* (771 (909)* |  (100) (100) 20| 50 | 0.1161
20 | 6.0 | 0.1150**
Reference

1. Bose, C. (1943). Note on the sampling error in the method of Double
Sampling. Sankhya, 6, 329-330.
2. Sahoo, J. and Sahoo, L. N. (1993). A class of estimators in Two-Phase
Sampling using two auxiliary variables. Journal of Indian Statistical

Association, 31, 107-114.

3. Sahoo, J. and Sahoo, L. N. (1994). On the efficiency of four chain type

estimators in Two-Phase Sampling under a model. Statistics, 25, 361-366




A Class of Improved Estimators for Estimating the Population Mean 131
in Double Sampling and its properties

4. Samiuddin, M. and Hanif, M. (2006). Estimation in Two-Phase Sampling with
complete and incomplete information Proc. 8" Islamic Countries Conference
on Statistical Sciences, 13, 479-495.

5. Samiuddin, M. and Hanif, M. (2007). Estimation of population mean in Single
and Two Phase Sampling with or without additional information. Pakistan
Journal of Statistics, 23(2), 99-118.

Appendix A

Table (A.2.1): Bias and MSE of Family of estimator for t7
MSE'sand Bias A =1 and a = 1

hila
MSE(t}z(Ln) = 0luzo + R?Uop — 2Ruu14]
MSE(t£(1,1)) = 0tz + R?op + 2Rp1y4]
111 . 1 5 [Ho2z  H11
laS( R(l.l)) %XZ l)l(y]
. 2 _nv 02 ﬁ
Blas(tp(l_l)) — oY [2)?22 + rea il
Ry,
MSE(t312)) = 0 |1z0 + T" — Ruqq
. oMoz M1 )
Bias(t3 = s
119 ias(tiaz) _ [8X2 2XY] _
4 RZHOZ
MSE(tP(l,Z)) =60 Hoo + T + Rﬂll
. 4 oMoz | M1 )
Blas(tp(liz)) =0Y [8)?2 + 2)??]
5 [ Rz,uoz
MSE (tp12)) = 0 |tz + — R
Bias(t5 ») = 07 [£2 — £11]

MSE(tpq1,2)) = 6 |H20 + # +Riin
ias(tf) = OF[£22 + 222

MSE(E10,) = 6 |10 + Rzl;;oz i Rgh_

212 Bias(t}c,4)) =_97 [3222 B :)%;7] |

Rzlioz n R4

MSE(tIE’;(Z,Z)) = 9 MZO + 16 2
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Ho2 +ﬂ]

Blas(tg(zlz)) = 97 [32)?2 4)?7

Table (A.3.2): Bias and MSE of Family of estimator for t§ SRS WR and SRS WOR

hla MSE'sand Bias A =1 anda =1
*' _ 2V 1y,
MSE(t1,) = 0" (3o + Y2 (Boy — 1) - ——
1 1 L 02 |
Bias(tl,,) = 6" [72(/302 _q K2
” _ — Moz _
N Y2(Bor —1) 2Yuy,
MSE(t3,) = 0" [uz0 + 04 -5
1 2 | _Y(B 1) _nuOZ |
, - Uiz
B 3 — p* 02 _
ias(t3,) =6 2 20
Y2 (Boz — 1) 17#12
MSE(tSJ) =0" [#20 + 04 -
211 TG-D ]
Y -1 Hiz
Bi 5 — p* 02 _
ias(t5,) =06 2 s
y? -1 1Y
MSE(tZZ) = 0 |1y + (Bo2 )__ Uiz
2 2 ’ 16 2 nuOZ
_Y(ﬁoz -1 |
Bias(t],) = 0" -
las( 2‘2) 16 e




