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Abstract 

 

The article deals with frequentist and Bayesian Survival analysis in Proportional 

Hazards model of random censorship using Burr type XII distribution. The Joint 

Conjugate Prior distribution of the model parameters does not exists while 

computing the Bayes estimates; we suggest pairwise independent gamma priors 

for the shape and scale parameters. The closed-form expressions for the Bayes 

estimates are not possible; we consider two different methods of Bayesian 

computation, namely, importance sampling and Lindley’s approximation to obtain 

the Bayes estimates. The Maximum Likelihood estimation is presented in a novel 

way. Monte Carlo simulation study is carried out to observe the behavior of the 

Maximum Likelihood estimators and Bayes estimators for different combinations 

of the quantities involved.  One real data analysis is performed for illustration.  
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1. Introduction 

 

Reliability and life testing experiments are usually expensive and time 

consuming. Several censoring mechanisms are used in order to reduce the 

experimental cost and time. The most popular among these are the right censoring 

schemes because of their crucial importance in life testing experiments.  

 

 

_______________________________________ 
1
 Department of Statistics, Government College Fateh Jang. Attock, Pakistan. 

  Email: yameendanish42sb@yahoo.com 
2
 Department of Statistics, Allama Iqbal Open University, Islamabad, Pakistan. 

   Email: irshadahmad@aiou.edu.pk 

mailto:yameendanish42sb@yahoo.com
mailto:irshadahmad@aiou.edu.pk


Parametric Survival Analysis Assuming the Proportional Hazard Functions  

of Survival and Censoring Times Distributions 

_______________________________________________________________________________ 

93 

The unified feature of Type I and Type II right censoring schemes is that the exact 

observation window is known for each unit in the sample. The third type of right 

censoring is random censoring in which censoring time is not fixed but depends 

upon other random factors which are modeled by an independent random 

variable. Consider the situation where the patients with cancer enter 

simultaneously into the study and we want to observe their lifetimes but censoring 

occurs in the following forms: loss to follow-up (e.g. the patient may decide to 

move elsewhere), drop out (e.g. due to bad side effects or refusal to participate), 

death from other diseases or termination of the study. Clearly, these random 

factors are beyond the control of an investigator and are modeled by a censoring 

time variable. 

 

The Proportional Hazards (PH) model has been studied by several authors 

including Koziol and Green (1976), Csorgo and Horvath (1983), Hollander and 

Pena (1989), and Csorgo and Faraway (1998). It was Cox (1972) who first 

introduced the PH model to add covariates in Regression type models. This idea 

can also be used to add an additional shape parameter to base distribution. It is 

observed that the addition of new parameter(s) to the distribution make it richer 

and more flexible. Marshall and Olkin (1997) added a positive parameter to a 

general Survival function. Al-Hussaini and Ghitany (2005) added two parameters 

(r and p) to a Survival function by considering a countable mixture of positive 

integer powers of general Survival functions where the mixing proportions are the 

Pascal (r, p). Similarly, Al-Hussaini and Gharib (2009) obtained a new family of 

distributions as a countable mixture with Poisson added parameter.  

 

A number of lifetime distributions such as Exponential, Generalized Exponential, 

Gamma, Weibull, Lognormal, etc., are commonly used for modeling failure time 

data. In this article, we consider Burr Type XII distribution introduced by Burr 

(1942). The motivation behind this distribution is that much of the region covered 

by Gamma and Lognormal distributions in skewness-kurtosis plane is also 

covered by the Burr Type XII distribution (Rodriguez, 1977). It is somewhat 

surprising to observe that a limited attention has been paid for modeling the 

randomly censored lifetimes when the lifetimes are not Exponential. The reason 

may be that the analysis becomes too difficult and may not be tractable. However, 

the density function of Burr distribution can take different curve shapes and 

provides a variety of curve shapes. For a nice account of some randomly censored 

lifetime distributions, see Danish and Aslam (2015, 2014, and 2013). 
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Suppose n identical units are put in life testing experiment and their lifetimes are 

recorded. Let, 1,..., nX X
 
be their actual survival times which are independent and 

identically distributed (i.i.d.) random variables with distribution function  XF t

and density function  Xf t . Further, suppose that 1,..., nT T  are their censoring 

times which are also i.i.d. random variables with distribution function  TF t  and 

density function  Tf t . Since, only one of the 
iX ’s and 

iT ’s is actually observed 

and it is not known in advance which one first. Let, the actual observed time be 

iY min  ,i iX T  with indicator variable  i i iW X T   . The indicator variable 

indicates whether the observation is censored or non-censored for 1 i n  . Now, 

it is simple to show that the observed iY  constitute a random sample from  YF t , 

where,        1 1 1Y X TF t F t F t    . This is the usual model of random 

censorship studied by several authors including Kaplan and Meier (1958), Efron 

(1967), Breslow and Crowley (1974) in nonparametric context. Under this model, 

Kaplan and Meier introduced their historic product limit estimator of the Survival 

function given by  
:

,
1

i

i

w

i

i Y y i

n R
S y

n R

 
  

  
  where 

iR  is the rank of ith unit in the 

observed sample. Under PH model, the variables X  and T  are connected as 

 1 ( ) 1 ( )T XF y F y


    for some positive constant  . 

It is simple to show that the joint density function of Y and W
 
is, 

    1

,W , w ( ) 1 ( ) ; 0, 0,1.w

Y X Xf y f y F y y w

                                       (1.1) 

The density and distribution functions of the Burr Type XII distribution are, 

   
1

1; , 1 ; 0, , 0,Xf x x x x


     
 

   
      

                                   (1.2) 

   ; , 1 1 ,XF x x


 


  
         

                                                                     (1.3) 

Using eq. (1.2) and eq. (1.3) in expression (1.1), we have 

   
 1 1

1 1

,W , w; , , 1 ; 0, w 0,1.w

Yf y y y y
 

     
  

    
                   

(1.4)  

The marginal distribution of Y  can be obtained from eq. (1.4) as,  

     
 1 1

1; , , 1 1 ; , , , 0.Yf y y y y
 

        
  

                     

The rest of the paper is organized as follows.  
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In the next section, we provide the Maximum Likelihood (ML) estimation. 

Section 4 consists of Bayesian estimation using importance sampling and 

Lindley’s approximation. A simulation study is carried out in Section 5. A real 

data analysis is performed in Section 6 and finally, we conclude the paper in 

Section 7. 

 

2.  Maximum Likelihood estimation  

 

In this section, we derive the ML estimators ˆˆ ,   and ̂  of the parameters ,   

and   assuming the model defined in eq. (1.4) holds. For an observed random 

sample      1 1, w ,..., , w , wn ny y y
 
of size n from (4), the Likelihood function is, 

   
 

1
1 1
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1 1

, , ; , 1 .

n

i

i

n n n w
n n

i i

i i

l y w y y
 

       


  



 


  

                
                  (2.1)  

The Log-Likelihood function can be written as,  
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The Likelihood equations are obtained by differentiating eq. (2.1) as, 
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Solving these equations simultaneously, we have    
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                                                     (2.4) 
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Any suitable iterative procedure can be used to solve eq. (2.4) for  . Once the 

ML estimate of   is obtained from eq. (2.4), the ML estimate of   can be 

obtained from eq. (2.3). We need the following results for further development. 

 

The elements of observed Fisher information matrix   θ  are obtained as, 
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θ θ  

The elements of expected Fisher information matrix  Ι θ  are derived as,  
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23 .
1

L n
E k



   

 
    

   
θ

 
Where,  

 1 ,       2k    ,  .
 

is Digamma function and  .  is its 

derivative. 

Theorem 1: The matrix    rs   Ι θ θ  is positive-definite and its determinant 

 I θ  is finite for all  0 , ,     θ and , 1,2,3.r s   

Proof: The determinant of the expected information matrix  Ι θ  is, 
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Careful simplification gives  
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Ι θ  

Thus the matrix  Ι θ  is positive-definite and its determinant  I θ  is finite for all 

 0 , , .     θ
 

It follows from Theorem 1 that there exists at least one solution of the Likelihood 

equations which is consistent estimate of the true parameter vector θ , see Chanda 

(1954) for more detail. 

Lemma 1: For 0iy  , suppose  
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Theorem 2: The observed information matrix     ˆrs 
    θ θ

θ θ   for , 1,2,3,r s   

where θ̂  is the consistent root of the Likelihood equations, is negative-definite 

with probability tending to unity. 

Proof: The determinant   θ  of the observed information matrix is, 
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Substituting ML estimates and simplifying, we have 
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ˆ
0iy  ,  

it follows from Lemma 1 that the 2
nd

 term on the right is positive and so 

  0 θ  . Thus, the matrix   θ  is negative-definite. 

 

Therefore, the Likelihood function has a relative maximum at the consistent roots 

of the Likelihood equations. Now the asymptotic normality result of the ML 

estimators can be stated as follows.  
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The vector  ˆ θ θ  has asymptotically Multivariate Normal distribution with 

mean vector 0 and the variance-covariance matrix  1V Ι θ . 

 

3. Bayesian estimation  

 

For the Bayesian estimation of unknown parameters, one needs prior distributions 

of these parameters. We assume the following independent Gamma priors of  

,   and   
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                                                     (3.1) 

It may be noted that as the hyper-parameters in the Gamma density approach zero, 

it becomes inversely proportional to its argument. This density is often used as 

non-informative Gamma prior for the parameters in the range 0 to  . The joint 

prior density of the unknown parameters can be written as,  

  3 31 1 2 2 11 1
, .  ,

a ba b a b
e e e

           


          
                                               (3.2) 

The posterior distribution is obtained by combining the Likelihood function in eq. 

(2.1) and joint prior in eq. (3.2) as,  
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The Bayes estimators involve the posterior expectation of a parameter or a 

function of parameters. In general, the posterior expectation of any function of 

parameters, say  , , ,U   
 
can be written as, 
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However, it is not possible to evaluate eq. (3.4) in closed-form. We use two 

different methods, namely, importance sampling and Lindley’s approximation to 

evaluate it. 

 

3.1 Importance sampling: Monte Carlo importance sampling is the most 

commonly used method of computing posterior expectations and provides reliable 

accuracy of computation. Here, we use it to obtain the Bayes estimates of ,   

and  . The posterior distribution eq. (3.3) can be written as, 
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Now, we suggest the following procedure to obtain the posterior samples and in 

turn to obtain the Bayes estimates and corresponding highest posterior density 

(HPD) credible intervals: 

Step 1: Generate 1  
~ gamma  2 2 2n,a b S  . 

Step 2: Generate 1 1 
 
~ gamma  1

1 1

1

n, ln 1
n

i

i

a b y
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Step 3: Generate  1 1 1,  
 
~ gamma  1

3 1 3 1

1

n , ln 1
n

i

i

a S b y




 
    

 
 . 

Step 4: Repeat Steps 1, 2 and 3 M times to obtain    1 1 1, , ,..., , ,M M M      . 
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The Bayes estimates of ,   and   under Squared Error (SE) Loss function can 

be obtained from 
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The HPD credible intervals can be constructed following the procedure described 

in Kundu and Pradhan (2009) as follows:  
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The HPD credible interval for   is the interval that has the shortest length. 

The Bayes estimates of ,   and   under Linear Exponential (LE) Loss function 

with Loss function parameter c can be obtained from 

 

 

1

1

,
1

ˆ ln ,

,

j

M
c

j j

j

BI M

j j

j

e

c


  



  







 
 
  
 
 
 




    

 

 

1

1

,
1ˆ ln ,

,

j

M
c

j j

j

BI M

j j

j

e

c


  



  







 
 
  
 
 
 




 

 

 

1

1

,
1ˆ ln .

,

j

M
c

j j

j

BI M

j j

j

e

c


  



  







 
 
  
 
 
 




 



Muhammad Yameen Danish  and Irshad Ahmad Arshad 

_______________________________________________________________________________ 

 

102 

 

The Bayes estimates of ,   and   under General Entropy (GE) Loss function 

with Loss function parameter q can be obtained from 
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3.2 Lindley’s approximation: Lindley (1980) proposed a procedure to 

approximate the ratio of two integrals such as eq. (3.4). The Linley’s 

approximation plays an important role in Bayesian analysis. It can be used quite 

effectively to obtain the Bayes estimates that are more accurate than the usual 

normal approximation and not computationally as intensive as numerical 

methods. The procedure is explained in appendix.  

The Bayes estimates of ,   and   under SE Loss function using the Lindley’s 

approximation are, 

 1 11 2 21 3 31 1 11 2 21 3 31

1
ˆ ˆ ,

2
BL A A A                                               (3.6) 

 1 12 2 22 3 32 1 12 2 22 3 32

1ˆ ˆ ,
2

BL A A A                
    

                        (3.7) 

 1 13 2 23 3 33 1 13 2 23 3 33

1ˆ ˆ .
2

BL A A A                                               (3.8) 

Similar expressions for the Bayes estimates of ,   and   under LE and GE loss 

functions can be obtained using the Lindley’s approximation. The closed-form 

expressions for 1 2 3 1 2, , , ,A A    and 3A  are provided in Appendix. 

 

4. Simulation 

 

In this section, we perform a Monte Carlo simulation to observe the behavior of 

the ML estimators and Bayes estimators for different sample sizes, different 

priors, different Loss functions and for different proportions of non-censored 
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observations. We consider different sample sizes: n = 20, 40, 60; different 

proportions of non-censored observations: p = 0.50, 0.80; different values of loss 

function parameters c and q: –0.5, –0.9, –0.3, 0.3, 0.9, 1.5; different sets of 

parameter values and different combinations of hyper-parameters as given in 

Table 1. It may be noted that NGP represents the non-informative gamma priors 

when all the hyper-parameters in eq. (3.2) are zero and IGP represents the 

informative Gamma priors with prior means equal to the corresponding parameter 

values. For a particular case, 1000 randomly censored samples are generated from 

the model in eq. (1.4) and for each sample we compute the ML estimates and the 

corresponding 95% confidence intervals based on observed information matrix, 

the Bayes estimates and corresponding 95% credible intervals based on 1000 

importance samples. The average values of the ML estimates, Bayes estimates 

and MSEs are reported in Tables 2 and 3. Some of the foregoing points are very 

clear from these results. It is observed that as the sample size increases, the biases 

and MSEs decrease reasonably. However, it is seen that the rate of decrease in 

biases and MSEs is higher for small to medium sample sizes as compared with 

medium to large sample sizes. It is further observed that the Bayes estimators 

under NGP based on importance sampling perform slightly better than the ML 

estimators for small sample sizes and their performance is very similar for large 

sample sizes. The Bayes estimators under NGP based on the Lindley’s 

approximation perform relatively better than both the ML estimators and the 

Bayes estimators under NGP based on importance sampling. A similar behavior is 

observed under the informative priors. However, the Bayes estimators under IGP 

perform quite better than both the ML estimators and the Bayes estimators under 

NGP. When comparing the Bayes estimators under different loss functions, it is 

seen that to estimate   and   under LE loss function with minimum MSEs, the 

appropriate range should be 0.3 1.5c  . Similarly to estimate   under GE loss 

function, the corresponding loss function parameter range should be 0.3 1.5q  . 

The range of loss function parameter for the estimation of shape   parameter 

should be round about 1.5 under LE and GE loss functions. The appropriate range 

of GE loss function parameter for the Bayes estimator of   is 0.3 1.5q   in 

case of 50% non-censoring rate and it changed to 0.9 0.3q    in case of 80% 

non-censoring rate. In their appropriate ranges, the Bayes estimators under LE 

loss function perform slightly better than the Bayes estimators under GE loss 

function and both perform slightly better than the Bayes estimators under SE loss 

function. 

 

 



Muhammad Yameen Danish  and Irshad Ahmad Arshad 

_______________________________________________________________________________ 

 

104 

 

5.  Data analysis 

 

To illustrate the proposed methods we analyze a real data set from Fleming and 

Harrington (1991). The data belongs to Group IV of the Primary Biliary Cirrhosis 

(PBC) liver study conducted by Mayo Clinic. The event of interest is the time to 

death of PBC Patients. The data on the survival times (in days) of 36 patients who 

had the highest category of bilirubin are: 400, 77, 859, 71, 1037, 1427, 733, 334, 

41, 51, 549, 1170, 890, 1413, 853, 216, 1882
+
, 1067

+
, 131, 223, 1827, 2540, 

1297, 264, 797, 930, 1329
+
, 264, 1350, 1191, 130, 943, 974, 790, 1765

+
, 1320

+
. 

The observations with ‘+’ indicate censored times. For computational ease, each 

data value is divided by 1000. Since we do not have any prior information about 

the unknown parameters, we use non-informative Gamma priors with all hyper-

parameters in (10) equal to zero, that is 1 1 2 2 3 3 0a b a b a b       for Bayes 

estimates. We compute the ML estimates and Bayes estimates of parameters 

under different Loss functions. The results are reported in Table 4. To test the 

Goodness-of-Fit of the model to the data at hand, we compute p-values of the 

Kolomogorov-Smirnov test. Based on this test we can say that all the methods fit 

the data quite well with slightly better fit for the Bayes estimates under GE loss 

function based on importance sampling. Figure 1 shows the survival function of 

Burr type XII distribution fitted to the K-M survival curve of the data using 

different methods of estimation. The fitted survival functions provide a closed, 

but smoothed, summary of the K-M survival curve. 

 

6.  Conclusion 

 

In this paper, we consider the survival analysis in Proportional Hazards model of 

random censorship using Burr Type XII distribution. We use independent Gamma 

priors for the unknown model parameters for Bayes estimates. The Bayes 

estimates under different Loss functions are obtained using importance sampling 

and Lindley’s approximation. A simulation study is performed to observe the 

behavior of the Maximum Likelihood and Bayes estimators. It is observed that the 

Bayes estimators under non-informative Gamma priors based importance 

sampling perform slightly better than the Maximum Likelihood estimators for 

small sample sizes and their performance is very similar for large sample sizes. 

The Bayes estimators under non-informative Gamma priors based on the 

Lindley’s approximation perform relatively better than both the Maximum 

Likelihood estimators and the Bayes estimators under non-informative priors 

based on importance sampling. Similarly, the Bayes estimators under informative 
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Gamma priors perform quite better than both the Maximum Likelihood estimators 

and the non-informative Bayes estimators. The Bayes estimators under Linear 

Exponential Loss function perform slightly better than the Bayes estimators under 

General Entropy Loss function and both perform relatively better than the Bayes 

estimators under Squared Error Loss function. However, the ML estimate of 

censoring parameter outperforms than the rest.  A real data analysis is performed 

to illustrate the proposed methodology. The Goodness-of-Fit of the model is 

checked by the Kolomogorov-Smirnov test of fit. It is observed that all the 

methods fit the data well with slightly better results for the Bayes estimates under 

GE Loss function based on importance sampling. 
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Appendix 

 

The posterior expectation eq. (3.4), using the notations    1 2 3, , , ,      and

   1 2 3 1 2 3, , ln , ,        , can be written as, 
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(A1) 

For large n, the expression in (A1) is evaluated by the Lindley’s method as, 
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Moreover, ij is ij
th

 element of minus the inverse of observed information matrix 

and all the quantities are evaluated at the ML estimates  1 2 3
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To derive expression eq. (3.6) for the Bayes estimate of  , take  , ,U      

in (A2) so 1 1U   and all other U-terms in (A2) are zero. Now expression eq. (3.6) 

follows from these substitutions in (A2). The eq. (3.7) and eq. (3.8) can be 

obtained similarly. 

 
Table 1: The values of parameters and hyper-parameters used in simulation 

Notation α  δ a1 b1 a2 b2 a3 b3 

NGP 2 1.5 1 0 0 0 0 0 0 

IGP 2 1.5 1 4 2 3 2 4 2 

NGP 2 1.5 0.25 0 0 0 0 0 0 

IGP 2 1.5 0.25 4 2 3 2 2 4 

 
 

Table 2: The average values of ML estimators and Bayes estimators under NGP and the 

corresponding MSEs (in parenthesis) when (a) p = 0.50 and (b) p = 0.80 

(a) 

U()
 

n ML Bayes Estimates (Importance Sampling) Lindley 

  Estimates SE LE (0.3) LE (0.9) GE (0.3) GE (0.9) SE 

α 20 2.2899 

(0.8171) 

2.2451 

(0.6132) 

2.1445 

(0.4412) 

1.9855 

(0.2805) 

2.0698 

(0.4369) 

1.9895 

(0.3842) 

2.8603 

(0.2248) 

40 2.1147 

(0.1825) 

2.1098 

(0.1758) 

2.0701 

(0.1535) 

1.9975 

(0.1247) 

2.0310 

(0.1483) 

1.9947 

(0.1402) 

2.0324 

(0.1112) 

60 2.0686 

(0.1067) 

2.0603 

(0.1015) 

2.0357 

(0.0937) 

1.9892 

(0.0829) 

2.0097 

(0.0917) 

1.9863 

(0.0890) 

1.9958 

(0.0776) 

 20 1.5967 

(0.0903) 

1.5862 

(0.0857) 

1.5758 

(0.0820) 

1.5556 

(0.0754) 

1.5584 

(0.0790) 

1.5454 

(0.0765) 

1.5360 

(0.0700) 

40 1.5433 

(0.0342) 

1.5371 

(0.0332) 

1.5324 

(0.0325) 

1.5230 

(0.0313) 

1.5239 

(0.0319) 

1.15177 

(0.0314) 

1.5138 

(0.0302) 

60 1.5244 

(0.0218) 

1.5170 

(0.0216) 

1.5145 

(0.0213) 

1.5085 

(0.0208) 

1.5089 

(0.0211) 

1.5049 

(0.0210) 

1.5025 

(0.0205) 

δ 20 1.0000 

(0.0000) 

1.1136 

(0.0130) 

1.0728 

(0.0054) 

1.0070 

(0.0001) 

0.9706 

(0.0009) 

0.9108 

(0.0080) 

0.9546 

(0.0021) 

40 1.0000 

(0.0000) 

1.0540 

(0.0030) 

1.0366 

(0.0014) 

1.0050 

(0.0001) 

0.9860 

(0.0002) 

0.9561 

(0.0020) 

0.9769 

(0.0006) 
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60 1.0000 

(0.0000) 

1.0352 

(0.0013) 

1.0242 

(0.0006) 

1.0035 

(0.0000) 

0.9906 

(0.0001) 

0.9707 

(0.0009) 

0.9844 

(0.0003) 

 

(b) 

U()
 

n ML Bayes Estimates (Importance Sampling) Lindley 

  Estimates SE LE (0.3) LE (0.9) GE (0.3) GE (0.9) SE 

α 20 2.1304 

(0.3664) 

2.1139 

(0.3633) 

2.0658 

(0.3164) 

1.9796 

(0.2559) 

2.0642 

(0.3347) 

2.0216 

(0.3147) 

2.1038 

(0.2244) 

40 2.0567 

(0.1473) 

2.0456 

(0.1449) 

2.0246 

(0.1369) 

1.9843 

(0.1250) 

2.0223 

(0.1398) 

2.0022 

(0.1363) 

1.9863 

(0.1177) 

60 2.0295 

(0.0864) 

2.0251 

(0.0883) 

2.0116 

(0.0854) 

1.9853 

(0.0810) 

2.0098 

(0.0864) 

1.9966 

(0.0852) 

1.9600 

(0.0783) 

 20 1.5878 

(0.0929) 

1.5864 

(0.0910) 

1.5752 

(0.0868) 

1.5534 

(0.0794) 

1.5704 

(0.0869) 

1.5564 

(0.0837) 

1.5323 

(0.0735) 

40 1.5396 

(0.0363) 

1.5376 

(0.0365) 

1.5325 

(0.0356) 

1.5223 

(0.0342) 

1.5299 

(0.0356) 

1.5233 

(0.0350) 

1.5124 

(0.0330) 

60 2.0295 

(0.0864) 

1.5252 

(0.0249) 

2.0116 

(0.0854) 

1.9853 

(0.0810) 

2.0098 

(0.0864) 

1.9966 

(0.0852) 

1.9680 

(0.0783) 

δ 20 0.2712 

(0.0138) 

0.2917 

(0.0203) 

0.2872 

(0.0191) 

0.2789 

(0.0170) 

0.2620 

(0.0169) 

0.2371 

(0.0155) 

0.2715 

(0.0134) 

40 0.2618 

(0.0059) 

0.2721 

(0.0079) 

0.2703 

(0.0077) 

0.2668 

(0.0073) 

0.2578 

(0.0072) 

0.2457 

(0.0069) 

0.2634 

(0.0052) 

60 0.2608 

(0.0037) 

0.2664 

(0.0049) 

0.2653 

(0.0048) 

0.2630 

(0.0046) 

0.2570 

(0.0046) 

0.2490 

(0.0044) 

0.2549 

(0.0025) 

Table 3: The average values of Bayes estimators under IGP and the corresponding MSEs (in 

parenthesis) when (a) p = 0.50 and (b) p = 0.80 

(a) 

U()
 

n Bayes Estimates (Importance Sampling) Lindley 

  SE LE (0.3) LE (0.9) GE (0.3) GE (0.9) SE 

α 20 2.1173 

(0.1758) 

2.1696 

(0.2106) 

2.0689 

(0.1503) 

2.0211 

(0.1447) 

1.9769 

(0.1370) 

2.9820 

(0.1203) 

40 2.0763 

(0.1016) 

2.1060 

(0.1137) 

2.0479 

(0.0920) 

2.0182 

(0.0893) 

1.9915 

(0.0860) 

2.0947 

(0.0795) 

60 2.0483 

(0.0732) 

2.0688 

(0.0791) 

2.0285 

(0.0685) 

2.0070 

(0.0672) 

1.9880 

(0.0656) 

1.9906 

(0.0620) 

 20 1.5594 

(0.0599) 

1.5683 

(0.0623) 

1.5507 

(0.0577) 

1.5353 

(0.0560) 

1.5240 

(0.0546) 

1.5334 

(0.0539) 

40 1.5304 

(0.0285) 

1.5349 

(0.0291) 

1.5260 

(0.0279) 

1.5180 

(0.0275) 

1.5123 

(0.0271) 

1.5173 

(0.0270) 
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60 1.5178 

(0.0198) 

1.5207 

(0.0201) 

1.5149 

(0.0196) 

1.5095 

(0.0194) 

1.5057 

(0.0193) 

1.5091 

(0.0192) 

δ 20 1.0600 

(0.0080) 

1.0833 

(0.0113) 

1.0383 

(0.0052) 

0.9744 

(0.0041) 

0.9359 

(0.073) 

0.9992 

(0.0032) 

40 1.0380 

(0.0020) 

1.0512 

(0.0034) 

1.0252 

(0.0014) 

0.9864 

(0.0009) 

0.9632 

(0.0020) 

1.0015 

(0.0007) 

60 1.0270 

(0.0010) 

1.0365 

(0.0016) 

1.0183 

(0.0006) 

0.9904 

(0.0004) 

0.9738 

(0.0009) 

1.0013 

(0.0003) 

 

(b) 

U()
 

n Bayes Estimates (Importance Sampling) Lindley 

  SE LE (0.3) LE (0.9) GE (0.3) GE (0.9) SE 

α 20 2.0652 

(0.1715) 

2.0325 

(0.1568) 

1.9713 

(0.1372) 

2.0293 

(0.1615) 

1.9984 

(0.1551) 

2.9154 

(0.1279) 

40 2.0367 

(0.1051) 

2.0189 

(0.1002) 

1.9847 

(0.0929) 

2.0168 

(0.1018) 

1.9996 

(0.0996) 

2.0522 

(0.0886) 

60 2.0214 

(0.0718) 

2.0093 

(0.0696) 

1.9858 

(0.0665) 

2.0076 

(0.0704) 

1.9958 

(0.0694) 

1.9630 

(0.0646) 

 20 1.5663 

(0.0685) 

1.5564 

(0.0656) 

1.5369 

(0.0607) 

1.5518 

(0.0656) 

1.5392 

(0.0635) 

1.5181 

(0.0601) 

40 1.5331 

(0.0325) 

1.5282 

(0.0318) 

1.5186 

(0.0306) 

1.5256 

(0.0318) 

1.5194 

(0.0313) 

1.5091 

(0.0296) 

60 1.5231 

(0.0232) 

1.5198 

(0.0228) 

1.5134 

(0.0223) 

1.5182 

(0.0228) 

1.5139 

(0.0226) 

1.5071 

(0.0218) 

δ 20 0.2718 

(0.0087) 

0.2692 

(0.0084) 

0.2642 

(0.0078) 

0.2511 

(0.0078) 

0.2334 

(0.0078) 

0.2595 

(0.0074) 

40 0.2655 

(0.0053) 

0.2641 

(0.0052) 

0.2613 

(0.0050) 

0.2537 

(0.0049) 

0.2436 

(0.0048) 

0.2586 

(0.0048) 

60 0.2632 

(0.0037) 

0.2622 

(0.0037) 

0.2603 

(0.0036) 

0.2549 

(0.0035) 

0.2479 

(0.0034) 

0.2585 

(0.0036) 

 
Table 4: The ML estimates and Bayes estimates and the associated p-values of Kolomogorov-

Smirnov test. 

Method LF α  δ p-value 

ML – 1.4904 1.5108 0.1613 0.7123 

Importance SE 1.4860 1.5070 0.1670 0.7251 

Sampling LE 1.4344 1.4745 0.1621 0.7274 

GE 1.4978 1.5141 0.1764 0.7403 

Lindley SE 1.4867 1.5112 0.1665 0.7146 

 LE 1.5390 1.5438 0.1710 0.6848 
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GE 1.4988 1.5185 0.1755 0.7286 

 

 
Figure 1: The Burr XII survival function fitted to K-M survival curve using different methods  


