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Parametric Survival Analysis Assuming the Proportional Hazard Functions
of Survival and Censoring Times Distributions
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Abstract

The article deals with frequentist and Bayesian Survival analysis in Proportional
Hazards model of random censorship using Burr type XII distribution. The Joint
Conjugate Prior distribution of the model parameters does not exists while
computing the Bayes estimates; we suggest pairwise independent gamma priors
for the shape and scale parameters. The closed-form expressions for the Bayes
estimates are not possible; we consider two different methods of Bayesian
computation, namely, importance sampling and Lindley’s approximation to obtain
the Bayes estimates. The Maximum Likelihood estimation is presented in a novel
way. Monte Carlo simulation study is carried out to observe the behavior of the
Maximum Likelihood estimators and Bayes estimators for different combinations
of the quantities involved. One real data analysis is performed for illustration.
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1. Introduction

Reliability and life testing experiments are usually expensive and time
consuming. Several censoring mechanisms are used in order to reduce the
experimental cost and time. The most popular among these are the right censoring
schemes because of their crucial importance in life testing experiments.
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The unified feature of Type | and Type Il right censoring schemes is that the exact
observation window is known for each unit in the sample. The third type of right
censoring is random censoring in which censoring time is not fixed but depends
upon other random factors which are modeled by an independent random
variable. Consider the situation where the patients with cancer enter
simultaneously into the study and we want to observe their lifetimes but censoring
occurs in the following forms: loss to follow-up (e.g. the patient may decide to
move elsewhere), drop out (e.g. due to bad side effects or refusal to participate),
death from other diseases or termination of the study. Clearly, these random
factors are beyond the control of an investigator and are modeled by a censoring
time variable.

The Proportional Hazards (PH) model has been studied by several authors
including Koziol and Green (1976), Csorgo and Horvath (1983), Hollander and
Pena (1989), and Csorgo and Faraway (1998). It was Cox (1972) who first
introduced the PH model to add covariates in Regression type models. This idea
can also be used to add an additional shape parameter to base distribution. It is
observed that the addition of new parameter(s) to the distribution make it richer
and more flexible. Marshall and Olkin (1997) added a positive parameter to a
general Survival function. Al-Hussaini and Ghitany (2005) added two parameters
(r and p) to a Survival function by considering a countable mixture of positive
integer powers of general Survival functions where the mixing proportions are the
Pascal (r, p). Similarly, Al-Hussaini and Gharib (2009) obtained a new family of
distributions as a countable mixture with Poisson added parameter.

A number of lifetime distributions such as Exponential, Generalized Exponential,
Gamma, Weibull, Lognormal, etc., are commonly used for modeling failure time
data. In this article, we consider Burr Type XII distribution introduced by Burr
(1942). The motivation behind this distribution is that much of the region covered
by Gamma and Lognormal distributions in skewness-kurtosis plane is also
covered by the Burr Type XII distribution (Rodriguez, 1977). It is somewhat
surprising to observe that a limited attention has been paid for modeling the
randomly censored lifetimes when the lifetimes are not Exponential. The reason
may be that the analysis becomes too difficult and may not be tractable. However,
the density function of Burr distribution can take different curve shapes and
provides a variety of curve shapes. For a nice account of some randomly censored
lifetime distributions, see Danish and Aslam (2015, 2014, and 2013).
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Suppose n identical units are put in life testing experiment and their lifetimes are
recorded. Let, X,,..., X, be their actual survival times which are independent and

identically distributed (i.i.d.) random variables with distribution function F, (t)
and density function f, (t). Further, suppose that T,,..,T, are their censoring
times which are also i.i.d. random variables with distribution function F; (t) and

density function f; (t) Since, only one of the X;’s and T,’s is actually observed
and it is not known in advance which one first. Let, the actual observed time be
Y, =min(X,,T;) with indicator variable W; =I(X; <T;). The indicator variable

indicates whether the observation is censored or non-censored for 1<i<n. Now,
it is simple to show that the observed Y, constitute a random sample from F, (t) :

where, 1-F, (t)=(1-F, (t))(1-F (t)). This is the usual model of random

censorship studied by several authors including Kaplan and Meier (1958), Efron
(1967), Breslow and Crowley (1974) in nonparametric context. Under this model,
Kaplan and Meier introduced their historic product limit estimator of the Survival

function given by S(y) = H {nn_RRi J , Where R. is the rank of ith unit in the
i, <y - N +

observed sample. Under PH model, the variables X and T are connected as
1-F(y)={1-F, (y)}5 for some positive constant & .
It is simple to show that the joint density function of Y and W s,

fow(y,w)=f, (NIL-F ()} 6™  y>0, w=0,1. (1.1)
The density and distribution functions of the Burr Type XII distribution are,
fo (X B)=apx’(1+x") 75 x>0, a,f>0, (1.2)
F (X a,B) =l—(1+ xﬁ)fa, (1.3)
Using eg. (1.2) and eq. (1.3) in expression (1.1), we have

. B B —a(1+5)-1 1w,
fyw (Y. Wi, B,5) =aBy”™ (1+y") S y>0,w=0,1. (1.4)
The marginal distribution of Y can be obtained from eq. (1.4) as,
fo (yia, B.0)=af(1+35)y"* (1+y” )_a(m)_l . y,a,3,6>0.

The rest of the paper is organized as follows.
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In the next section, we provide the Maximum Likelihood (ML) estimation.
Section 4 consists of Bayesian estimation using importance sampling and
Lindley’s approximation. A simulation study is carried out in Section 5. A real
data analysis is performed in Section 6 and finally, we conclude the paper in
Section 7.

2. Maximum Likelihood estimation

In this section, we derive the ML estimators 0?,,3 and & of the parameters «, 3
and ¢ assuming the model defined in eqg. (1.4) holds. For an observed random
sample (Y, W, ),....(¥,, W, ) =(y,w) of size n from (4), the Likelihood function is,

n n 1+b ZW
I(a,ﬂ,é;y,w):a”ﬂ"Hyf‘ln(ler,) s (2.1)

The Log-Likelihood function can be written as,
L(8;y,w)=In(I(6;y,w))=nlIna+nln g+(n-S,)Ins
+(ﬂ—1)82—(1+a(1+5))zn:ln(l+yiﬂ), (2.2)
i=1
where,
0=(a,p,9),S, = Zw and S, —Zlny,
The Likelihood equatlons are obtamed by differentiating eq. (2.1) as,
n-3S
——(1+6 Zln(1+yl )=0, ~ 1—a;|n(1+yiﬁ)=

a

y7Iny. Iny
——a(l+6 ! ' = =0.
ﬂ i Z 1+y! ;Hyf

Solving these equatlons simultaneously, we have
~ (n=S
5-(n=S) G(f)=—2

S, ;In(lerf)’
Zy, Iny, [_ Z 'ny‘ﬂj=iln(l+yf)- (2.4)

(2.3)

1+ y| B i1+ Y i1
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Any suitable iterative procedure can be used to solve eq. (2.4) for g. Once the
ML estimate of £ is obtained from eq. (2.4), the ML estimate of « can be
obtained from eq. (2.3). We need the following results for further development.

The elements of observed Fisher information matrix ®(8) are obtained as,

@11(9):_52L(9;y,w)__1

da’ a?’
_aZL(O y,Ww yl In y|
0, (9)— 0adp = Z 1t Y. ,
o°L(0;y,w n
@ls(()) :%:—gln(l+ ylﬁ)
OCL(O:y.W) __n .yl (Iny,)’
0,0)=—F7—"=-—7-1 1+6 R
=G et S
_O°L(0yy, y/ Ny o IL(Oyw) 1
@23(6)— aﬂaé‘ Z 1+ ﬂ’ 33 ) 852 - 62(n Sl)

The elements of expected Fisher information matrix 1(8) are derived as,

111(9):—E[Mj21

oo’ a’’
o) T |- S
{222
133(9)— E GZL(a(Ezy’W)J 5(]:_5),
1 2
ny| | k==1] +¥'(2)+¥'(1+y)
~ ’L(6;y,w)) n H J/J J
I22(9) E{ 8ﬂ2 J_F"— 12(2_'_7/) '
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o°L nNo
1,,(0)= _E(aﬂ%J =By K.
Where,
y=a(l+5), k=¥(2)-¥(y), ¥(.) is Digamma function and ¥'(.) is its
derivative.
Theorem 1: The matrix T1(0)=[1,(0)] is positive-definite and its determinant

|1(0)| is finite for all 8=(0<6,4, f<)and r,5=1,2,3.

Proof: The determinant of the expected information matrix I(8) is,

e { 1 y(k—y71)2+‘l"(2)+‘1"(}/+1)_ k2 }

‘I(e)‘:azﬂz s+e) 5(1+0)(r+2) T
LS (1+5)ak’ 1 (k=r7) +¥'(2)+¥(r+1)
B(r+1)° | (r+1)° v y+2 !

Careful simplification gives

o k()
ro)= B (r+2)|  y*(y+1)

+¥'(2)+¥'(y+1)|>0.

Thus the matrix 1(8) is positive-definite and its determinant |I (6)| is finite for all

=(0<a,f,6 <®).

It follows from Theorem 1 that there exists at least one solution of the Likelihood
equations which is consistent estimate of the true parameter vector 0, see Chanda
(1954) for more detail.

Lemma 1: For Y, >0, suppose g (& Zy, .then g(6)g"(6)—{g'(9)}" =0.

i=1

Proof: Since g'( ZyI Iny, and g"(6 Zy, Iny,)’

therefore, g(6)g"(0)—{g'( } (Zy.](zn:y.@ (Iny,) ] (ZY. Iny,]
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= ZyI yi (Inyi—lnyj)zzo.

1<|<]

Theorem 2: The observed information matrix ©(0) :[@rS (9)]9:é for r,s=12,3,

where 6 is the consistent root of the Likelihood equations, is negative-definite
with probability tending to unity.
Proof: The determinant |®(8)| of the observed information matrix is,

(o)=L -3 1+<1+7)§vf<'_nvi>2 (z i iny i

a ﬂz =1 (l+ yiﬁ)2 o 1+
1 5zyl Inyl 1+5 Zyl Inyl a2|n(l+y ) Zyl Inyl |
1+y/ 1+y/ — ' 1+y/

(i) (Zy" y'j Sinfu ) D o) 3 UL

1+y! = = (1+ yf)

Substituting ML estimates and simplifying, we have

©(0)=- 5 Zln(1+y,)
nj(e s y/(ny ) | (& yfiny )
= | i sy At
o (21: n(l+y' )] le (1+y;é)2 (Zl: 1+yf ]
Since,
y; 3
ey <In(1+y )forallyf>0,

it follows from Lemma 1 that the 2" term on the right is positive and so
©(0)|<0 . Thus, the matrix ©(8) is negative-definite.

Therefore, the Likelihood function has a relative maximum at the consistent roots
of the Likelihood equations. Now the asymptotic normality result of the ML
estimators can be stated as follows.
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The vector (6—0) has asymptotically Multivariate Normal distribution with

mean vector 0 and the variance-covariance matrix V =17(9).
3. Bayesian estimation
For the Bayesian estimation of unknown parameters, one needs prior distributions

of these parameters. We assume the following independent Gamma priors of
a,p and o

ﬂl(a):%aal'le"bl“; a,b,a>0
b2 .
”z(ﬁ)zﬁﬂzle Rf a,,b,, 5>0¢. (3.1)
2
ﬂs(a)z%aaﬂe-bﬁ; a,,b,6 >0

It may be noted that as the hyper-parameters in the Gamma density approach zero,
it becomes inversely proportional to its argument. This density is often used as
non-informative Gamma prior for the parameters in the range 0 to oo. The joint
prior density of the unknown parameters can be written as,

w(a,B,5) o™ e prle ™ 5%l ™, (3.2)
The posterior distribution is obtained by combining the Likelihood function in eq.
(2.1) and joint prior in eq. (3.2) as,

—a| b+ 3 n(1+y? n
7[(0{,,8,5|y,w) e [bl ;' (z+y )Jﬂa2+nleﬁ(b282)nl+lyﬁ «
—0| by+a S n(1+y?
5 sle i) = 7c (@ B,6]y.w). (3.3)

The Bayes estimators involve the posterior expectation of a parameter or a
function of parameters. In general, the posterior expectation of any function of

parameters, say U (, B,6), can be written as,
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Tﬁu(a B.5) 7. (. B, S|y, W)

I Iﬂ'c (a.B.5]y.w)

However, it is not possible to evaluate eq. (3.4) in closed-form. We use two
different methods, namely, importance sampling and Lindley’s approximation to
evaluate it.

(3.4)

E(U(aB.0]y.w))=

O ey 8

3.1 Importance sampling: Monte Carlo importance sampling is the most
commonly used method of computing posterior expectations and provides reliable
accuracy of computation. Here, we use it to obtain the Bayes estimates of «, 3

and o . The posterior distribution eq. (3.3) can be written as,

(@, B, S|y, W) ga(a1+n,bl+znlln(1+ yiﬁ))gﬂ(a2+n,b2—52)x
i=1

i=1

g, (a3+n—81,b3+aznlln(l+ y{’)jf(cx,ﬂ), (3.5)

where,
d,,9, and g, are gamma densities and

[T+y)’
‘f(a’ﬂ): : n-S+ag

(bl +i2:‘|n (1+ yi”)jn+al (bs +a§ In(1+y/ )j

Now, we suggest the following procedure to obtain the posterior samples and in
turn to obtain the Bayes estimates and corresponding highest posterior density
(HPD) credible intervals:

Step 1: Generate S, ~ gamma(a, +n,b, -S,).

Step 2: Generate o, |, ~ gamma[a1+n,bl+znlln(l+ yfl)j .
i=1

Step 3: Generate &,|(4, o) ~ gamma(a3 +n-S,,b, +alzn“ln (1+y2 )j .
i=1

Step 4: Repeat Steps 1, 2 and 3 M times to obtain (e, £, 8, ),....(¢ty s Bu 6w ) -
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The Bayes estimates of «, 8 and ¢ under Squared Error (SE) Loss function can
be obtained from

A

Zajg(ai’ ,-) Z'BJ (“J’ i) . 2515(“1' J)
= BI — J:in ) O = 5
,Z_l:f(a"’ i)

%:96(“11 ,-) %:5(“11 i).

The HPD credible intervals can be constructed following the procedure described
in Kundu and Pradhan (2009) as follows:

Let Uj :M
JZ_;@Z(“J’ J)

Arrange the pairs (a;,0;) (@, 0y ) 85 (1,0 )s-eor (@ Uy ).

A

Qg =

; j=1...,M.

where o) <...<ay,-

The Bayes estimate of 9, is 9, =ay, ),
M+l

MP
where M is the integer satisfying_z;u(i) <p< Z; Vg -
1= ]=

Now construct all the 100(1-4)% credible intervals for a as (9719%14)' for

Mlx{

V= U0V TV Zl: Uiy -
j=

The HPD credible interval for « is the interval that has the shortest length.
The Bayes estimates of «, # and 6 under Linear Exponential (LE) Loss function

with Loss function parameter ¢ can be obtained from

ie_wi@:(“wﬂj) ie_%g(“wﬂi)

. ~ 1
A =——1In v v Ba=—=In M '
’ Zé(aj,ﬁj) - 25(0‘1’131)
j=1 =
1 >eé(ap)
5y =—=In| 12
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The Bayes estimates of «, 8 and ¢ under General Entropy (GE) Loss function
with Loss function parameter g can be obtained from

> % (a; p;) q > 5%, 5;) q
dBI = J.:1M uésl = j:lM )

25(“11 ,-) Zf(“wﬂj)

j=1 j=1

i5jq§(“j’ i) q

Zf(%ﬂj)

=

5BI =

3.2 Lindley’s approximation: Lindley (1980) proposed a procedure to
approximate the ratio of two integrals such as eq. (3.4). The Linley’s
approximation plays an important role in Bayesian analysis. It can be used quite
effectively to obtain the Bayes estimates that are more accurate than the usual
normal approximation and not computationally as intensive as numerical
methods. The procedure is explained in appendix.

The Bayes estimates of «, # and ¢ under SE Loss function using the Lindley’s

approximation are,

. . 1

Qg = O+ P10+ P00y + P30 + E( Aoy + Aoy + A3O-31)’ (3.6)
. A 1
BoL = B+ P10y, + Pr0y, + P30 + E(Aio_lZ + A0y, + AOy, ), (3.7)
R A 1

OpL =0 + P10y3 + P30y + P30 +E(A10'13 + A0y + A ). (3.8)

Similar expressions for the Bayes estimates of «, # and ¢ under LE and GE loss
functions can be obtained using the Lindley’s approximation. The closed-form
expressions for p;, p,, o, A, A, and A, are provided in Appendix.

4. Simulation

In this section, we perform a Monte Carlo simulation to observe the behavior of
the ML estimators and Bayes estimators for different sample sizes, different
priors, different Loss functions and for different proportions of non-censored
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observations. We consider different sample sizes: n = 20, 40, 60; different
proportions of non-censored observations: p = 0.50, 0.80; different values of loss
function parameters ¢ and g: 0.5, -0.9, -0.3, 0.3, 0.9, 1.5; different sets of
parameter values and different combinations of hyper-parameters as given in
Table 1. It may be noted that NGP represents the non-informative gamma priors
when all the hyper-parameters in eq. (3.2) are zero and IGP represents the
informative Gamma priors with prior means equal to the corresponding parameter
values. For a particular case, 1000 randomly censored samples are generated from
the model in eq. (1.4) and for each sample we compute the ML estimates and the
corresponding 95% confidence intervals based on observed information matrix,
the Bayes estimates and corresponding 95% credible intervals based on 1000
importance samples. The average values of the ML estimates, Bayes estimates
and MSEs are reported in Tables 2 and 3. Some of the foregoing points are very
clear from these results. It is observed that as the sample size increases, the biases
and MSEs decrease reasonably. However, it is seen that the rate of decrease in
biases and MSEs is higher for small to medium sample sizes as compared with
medium to large sample sizes. It is further observed that the Bayes estimators
under NGP based on importance sampling perform slightly better than the ML
estimators for small sample sizes and their performance is very similar for large
sample sizes. The Bayes estimators under NGP based on the Lindley’s
approximation perform relatively better than both the ML estimators and the
Bayes estimators under NGP based on importance sampling. A similar behavior is
observed under the informative priors. However, the Bayes estimators under IGP
perform quite better than both the ML estimators and the Bayes estimators under
NGP. When comparing the Bayes estimators under different loss functions, it is
seen that to estimate « and 6 under LE loss function with minimum MSEs, the
appropriate range should be 0.3<c<1.5. Similarly to estimate « under GE loss
function, the corresponding loss function parameter range should be 0.3<q<1.5.

The range of loss function parameter for the estimation of shape S parameter
should be round about 1.5 under LE and GE loss functions. The appropriate range
of GE loss function parameter for the Bayes estimator of ¢ is 0.3<q<1.5 in
case of 50% non-censoring rate and it changed to —0.9<q<0.3 in case of 80%

non-censoring rate. In their appropriate ranges, the Bayes estimators under LE
loss function perform slightly better than the Bayes estimators under GE loss
function and both perform slightly better than the Bayes estimators under SE loss
function.
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5. Data analysis

To illustrate the proposed methods we analyze a real data set from Fleming and
Harrington (1991). The data belongs to Group IV of the Primary Biliary Cirrhosis
(PBC) liver study conducted by Mayo Clinic. The event of interest is the time to
death of PBC Patients. The data on the survival times (in days) of 36 patients who
had the highest category of bilirubin are: 400, 77, 859, 71, 1037, 1427, 733, 334,
41, 51, 549, 1170, 890, 1413, 853, 216, 1882, 1067", 131, 223, 1827, 2540,
1297, 264, 797, 930, 1329", 264, 1350, 1191, 130, 943, 974, 790, 1765", 1320".
The observations with ‘+’ indicate censored times. For computational ease, each
data value is divided by 1000. Since we do not have any prior information about
the unknown parameters, we use non-informative Gamma priors with all hyper-
parameters in (10) equal to zero, that is @ =b =a,=hb, =a,=b, =0 for Bayes
estimates. We compute the ML estimates and Bayes estimates of parameters
under different Loss functions. The results are reported in Table 4. To test the
Goodness-of-Fit of the model to the data at hand, we compute p-values of the
Kolomogorov-Smirnov test. Based on this test we can say that all the methods fit
the data quite well with slightly better fit for the Bayes estimates under GE loss
function based on importance sampling. Figure 1 shows the survival function of
Burr type XII distribution fitted to the K-M survival curve of the data using
different methods of estimation. The fitted survival functions provide a closed,
but smoothed, summary of the K-M survival curve.

6. Conclusion

In this paper, we consider the survival analysis in Proportional Hazards model of
random censorship using Burr Type XI1 distribution. We use independent Gamma
priors for the unknown model parameters for Bayes estimates. The Bayes
estimates under different Loss functions are obtained using importance sampling
and Lindley’s approximation. A simulation study is performed to observe the
behavior of the Maximum Likelihood and Bayes estimators. It is observed that the
Bayes estimators under non-informative Gamma priors based importance
sampling perform slightly better than the Maximum Likelihood estimators for
small sample sizes and their performance is very similar for large sample sizes.
The Bayes estimators under non-informative Gamma priors based on the
Lindley’s approximation perform relatively better than both the Maximum
Likelihood estimators and the Bayes estimators under non-informative priors
based on importance sampling. Similarly, the Bayes estimators under informative
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Gamma priors perform quite better than both the Maximum Likelihood estimators
and the non-informative Bayes estimators. The Bayes estimators under Linear
Exponential Loss function perform slightly better than the Bayes estimators under
General Entropy Loss function and both perform relatively better than the Bayes
estimators under Squared Error Loss function. However, the ML estimate of
censoring parameter outperforms than the rest. A real data analysis is performed
to illustrate the proposed methodology. The Goodness-of-Fit of the model is
checked by the Kolomogorov-Smirnov test of fit. It is observed that all the
methods fit the data well with slightly better results for the Bayes estimates under
GE Loss function based on importance sampling.
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Appendix

The posterior expectation eq. (3.4), using the notations(«, 8,6)=(6,,6,,6,) and
p(6.6,,6,)=Inx(6,,6,,6,), can be written as,
J U (01192,93)eL(ellQZ’HB)+p(91’02v93)d ((91, 921(93)

E(U(6,6,6,)|y.d)=2%% - . (A1)
( 10 Y213 ) eL(Glﬁz,Hg) p(61,92,€3)d (01’02’03)
(61.0.63)
For large n, the expression in (Al) is evaluated by the Lindley’s method as,
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Us (6,6,,6,) =V (8,6,,0,)+(U;d, +U,d, +Ud; +d, + ;)
[A ( 10y +U,00, +U, 0'13)‘*"6‘2( 1021 U505, +U30'23)
+A3( 10-31+U20-32+U30-33)]’ (A2)

+41
2

where,
8U(91,02,03) ap(91,92,¢93)

d. =po, + 0,0, + 0.0, U = , =
i 101 il p2 i2 103 i3 i 849, pl agl

o°L(8,6,,6. ..
Lije :W’ I, j,k=123, d, =U,0,, +U50,, +U 505,
00,00,

1
ds = E(Ullall +U,,05, +U 33045, )’

A =0y, Ly +200,L, + 203505 + 20,50, + 0L, + 0l
A =0y by, +20;, L5, + 201505, + 20,54, + 05,10 + 05l
A =0y L3+ 20, L + 20351 55 + 20,55 + 0 Lgs + Ol

Moreover, o is ij™ element of minus the inverse of observed information matrix

and all the quantities are evaluated at the ML estimates (6? 92,93)

In our case,
ai_l—bl o a, -1 -1

PL=

2 R n
A= ngll -20,, Z n — (l +0 ) (o Z m
i=1

A&—z”;” o3 2{(ved)a e, Sr-(ue )

1
2
= ;;3 20—122’7. anzZ’?u
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Yy y’ (Iny,)’ . v/ (L+y/)(Iny,)
Loy 0 (e (+y)

To derive expression eq. (3.6) for the Bayes estimate of «, take U (a,ﬂ,c?) =x

n :In(l"'yiﬁ)"]i

in (A2) so U, =1 and all other U-terms in (A2) are zero. Now expression eg. (3.6)

follows from these substitutions in (A2). The eq. (3.7) and eq. (3.8) can be
obtained similarly.

Table 1: The values of parameters and hyper-parameters used in simulation
Notation a p 0 a by a by a; bs

NGP 2 15 1 0 0 0 0 0 O
IGP 2 15 1 4 2 3 2 4 2
NGP 2 15 025 0 0 0 O O O
IGP 2 15 025 4 2 3 2 2 4

Table 2: The average values of ML estimators and Bayes estimators under NGP and the
corresponding MSEs (in parenthesis) when (a) p = 0.50 and (b) p = 0.80

(@)
U n ML Bayes Estimates (Importance Sampling) Lindley

Estimates = SE  LE(0.3) LE(0.9) GE(0.3) GE(0.9) SE

o 20 22899 22451 21445 19855 2.0698  1.9895  2.8603
(0.8171) (0.6132) (0.4412) (0.2805) (0.4369) (0.3842) (0.2248)

40 21147 21098 20701 1.9975 20310 1.9947  2.0324
(0.1825) (0.1758) (0.1535) (0.1247) (0.1483) (0.1402) (0.1112)

60 20686 20603 2.0357 1.9892 20097 1.9863  1.9958
(0.1067)  (0.1015) (0.0937) (0.0829) (0.0917) (0.0890) (0.0776)

B 20 15967 15862 15758 15556 15584 15454 15360
(0.0903) (0.0857) (0.0820) (0.0754) (0.0790) (0.0765) (0.0700)

40 15433 15371 15324 15230 15239 115177 15138
(0.0342) (0.0332) (0.0325) (0.0313) (0.0319) (0.0314) (0.0302)

60 15244 15170 15145 15085 15089 15049  1.5025
(0.0218)  (0.0216) (0.0213) (0.0208) (0.0211) (0.0210) (0.0205)

5 20 1.0000  1.1136 1.0728 1.0070 0.9706  0.9108  0.9546
(0.0000) (0.0130) (0.0054) (0.0001) (0.0009) (0.0080) (0.0021)

40 1.0000 1.0540 1.0366 1.0050 0.9860  0.9561  0.9769
(0.0000) (0.0030) (0.0014) (0.0001) (0.0002) (0.0020) (0.0006)
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60 1.0000 10352 1.0242 1.0035 009906  0.9707  0.9844
(0.0000)  (0.0013) (0.0006) (0.0000) (0.0001) (0.0009) (0.0003)

(b)
U@ n ML Bayes Estimates (Importance Sampling) Lindley

Estimates ~SE  LE(0.3) LE(0.9) GE(0.3) GE(0.9) SE

a 20 21304 21139 20658 1.9796 2.0642 20216  2.1038
(0.3664) (0.3633) (0.3164) (0.2559) (0.3347) (0.3147) (0.2244)

40 20567 20456 20246 19843 20223  2.0022  1.9863
(0.1473)  (0.1449) (0.1369) (0.1250) (0.1398) (0.1363) (0.1177)

60 20295 20251 20116 1.9853 20098 1.9966  1.9600
(0.0864) (0.0883) (0.0854) (0.0810) (0.0864) (0.0852) (0.0783)

B 20 15878 15864 15752 15534 15704 15564 15323
(0.0929)  (0.0910) (0.0868) (0.0794) (0.0869) (0.0837) (0.0735)

40 15396 15376 15325 15223 15299 15233 15124
(0.0363)  (0.0365) (0.0356) (0.0342) (0.0356) (0.0350) (0.0330)

60 20295 15252 20116 19853 2.0098  1.9966  1.9680
(0.0864)  (0.0249) (0.0854) (0.0810) (0.0864) (0.0852) (0.0783)

5 20 02712 02917 02872 02789 02620 02371  0.2715
(0.0138)  (0.0203) (0.0191) (0.0170) (0.0169) (0.0155) (0.0134)

40 02618 02721 02703 02668 02578 02457  0.2634
(0.0059)  (0.0079) (0.0077) (0.0073) (0.0072) (0.0069) (0.0052)

60 02608 02664 02653 0.2630 02570 0.2490  0.2549
(0.0037)  (0.0049) (0.0048) (0.0046) (0.0046) (0.0044) (0.0025)

Table 3: The average values of Bayes estimators under IGP and the corresponding MSEs (in
parenthesis) when (a) p = 0.50 and (b) p = 0.80
(@)

U@ n Bayes Estimates (Importance Sampling) Lindley
SE LE (0.3) LE(0.9) GE(0.3) GE(0.9) SE

a 20 21173 21696 2.0689 20211 19769  2.9820
(0.1758) (0.2106) (0.1503) (0.1447) (0.1370) (0.1203)

40 2.0763 21060 2.0479  2.0182  1.9915  2.0947
(0.1016) (0.1137) (0.0920) (0.0893) (0.0860) (0.0795)

60 2.0483 2.0688 2.0285 2.0070  1.9880  1.9906
(0.0732) (0.0791) (0.0685) (0.0672) (0.0656) (0.0620)

Jij 20 15594 15683 15507 15353 15240 15334
(0.0599) (0.0623) (0.0577) (0.0560) (0.0546) (0.0539)

40 15304 15349 15260 15180 15123 15173
(0.0285) (0.0291) (0.0279) (0.0275) (0.0271) (0.0270)
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60 15178 15207 15149  1.5095 15057  1.5091
(0.0198) (0.0201) (0.0196) (0.0194) (0.0193) (0.0192)

o 20 10600 1.0833 1.0383 009744 009359  0.9992
(0.0080) (0.0113) (0.0052) (0.0041) (0.073)  (0.0032)

40 10380 1.0512 1.0252 0.9864 09632  1.0015
(0.0020) (0.0034) (0.0014) (0.0009) (0.0020) (0.0007)

60 1.0270 1.0365 1.0183 0.9904 009738  1.0013
(0.0010) (0.0016) (0.0006) (0.0004) (0.0009) (0.0003)

(b)

U n Bayes Estimates (Importance Sampling) Lindley
SE LE (0.3) LE(0.9) GE(0.3) GE(0.9) SE

a 20 20652 2.0325 19713 20293 19984 29154
(0.1715) (0.1568) (0.1372) (0.1615) (0.1551) (0.1279)

40 2.0367 2.0189  1.9847 2.0168  1.9996  2.0522
(0.1051) (0.1002) (0.0929) (0.1018) (0.0996) (0.0886)

60 2.0214 2.0093 19858 2.0076  1.9958  1.9630
(0.0718) (0.0696) (0.0665) (0.0704) (0.0694) (0.0646)

B 20 15663 15564 15369 15518 15392 15181
(0.0685) (0.0656) (0.0607) (0.0656) (0.0635) (0.0601)

40 15331 15282 15186 15256 15194  1.5091
(0.0325) (0.0318) (0.0306) (0.0318) (0.0313) (0.0296)

60 1.5231 1.5198 1.5134 1.5182 1.5139 1.5071
(0.0232) (0.0228) (0.0223) (0.0228) (0.0226) (0.0218)

o 20 02718 0.2692 0.2642 0.2511 0.2334  0.2595
(0.0087) (0.0084) (0.0078) (0.0078) (0.0078) (0.0074)

40 0.2655 0.2641 0.2613  0.2537 0.2436  0.2586
(0.0053) (0.0052) (0.0050) (0.0049) (0.0048) (0.0048)

60 0.2632 0.2622 0.2603  0.2549  0.2479  0.2585
(0.0037) (0.0037) (0.0036) (0.0035) (0.0034) (0.0036)

Table 4: The ML estimates and Bayes estimates and the associated p-values of Kolomogorov-
Smirnov test.

Method LF o p 0 p-value
ML — 14904 15108 0.1613 0.7123
Importance SE 1.4860 1.5070 0.1670 0.7251
Sampling LE 14344 14745 0.1621 0.7274

GE 1.4978 15141 0.1764 0.7403
Lindley SE 1.4867 15112 0.1665 0.7146

LE 15390 1.5438 0.1710 0.6848
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Figure 1: The Burr XII survival function fitted to K-M survival curve using different methods



