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Abstract 

 

Multicollinearity occurs when two or more predictors are linearly related to each 

other. In this case, either OLS estimators do not exist or if exist the associated 

variances of estimated Regression co-efficients are very large, making inferences 

invalid. Ridge Regression is used to counter the effects of multicollinearity. This 

is done by introducing biasing constant k, called Ridge parameter in the least 

square objective function. Ridge parameter shrinks the estimates and their 

variances. Selection and choice of the unknown Ridge parameter k is of prime 

importance in Ridge Regression analysis.  

 

Khalaf et al. (2013) proposed some modifications of existing Ridge estimators 

  –     by multiplying them with the factor that make use of maximum 

eigenvalue associated with (   ) matrix and name resulting estimators as K1M–

K16M.  This study proposed some modifications of existing Ridge estimators   – 

    by multiplying them with the factor that make use of arithmetic mean of 

eigenvalues associated with (   ) matrix denoted as K1A–K16A. The 

comparative performance of proposed sets of estimators and Khalaf et al. (2013) 

was evaluated by Mean Square Error (MSE) using simulated data sets. Data sets 

considering different levels of collinearity (r), sample size (n), number of 

predictor (p), error term variances and error term distributions were generated. It 

was observed that proposed estimators K1A–K16A outperform K1M–K16M 

when error terms following normal distribution (  = 0.1, 1) collinearity levels (r) 

are (i.e.  0.80, 0.90, 0.95) and number of predictors are (i.e. 2, 4, 6) and when 

error terms following non-normal distribution (F (4, 20)) collinearity levels (r) are 

high (i.e. 0.80, 0.90, 0.95) and number of predictors are small (i.e. 2, 4).  

 

 

______________________________ 
1
 College of Statistical and Actuarial Sciences, University of Punjab, Lahore, Pakistan.  

2
 College of Statistical and Actuarial Sciences, University of Punjab, Lahore, Pakistan. 

3
 College of Statistical and Actuarial Sciences, University of Punjab, Lahore, Pakistan.  

 



Modified Method for Choosing Ridge Parameter 

_______________________________________________________________________________ 
21 

Keywords 

Multicollinearity, Ridge Regression, Mean square error 

 

1. Introduction 
 

In Regression analysis, usually we consider that the predictors are not linearly 

related to each other. In practice, there may be some type of relationships among 

the predictors. In this case, the assumption of independence of predictors is no 

longer valid; violation of this assumption causes the problem of multicollinearity. 

Regression analysis is most powerful statistical tool that helps in investigating the 

relationships between response variable and explanatories. Prediction and 

description mainly depend on the estimated Regression coefficients.  Least 

Squares method is the mostly used method for estimating the unknown 

Regression coefficients. It gave good estimates only if the assumption of 

independence of explanatories is valid. The assumptions are that the explanatory 

variables are independent from each other and this is very difficult to hold in 

reality. When the purpose is to get more information about the outcome variable, 

there is need to add more predictors to Regression model. By doing so, 

relationships between these variables occur and the magnitude of these 

relationships often increases. This type of linear relationships between the 

predictors is called the problem of multicollinearity. Chatterjee and Hadi (2006) 

and Gujarati (2003) highlighted that with the existence of multicollinearity in a 

data set, two or more explanatories give same or approximately same information. 

The existence of multicollinearity among explanatories causes many problems. It 

affects the model’s ability to estimate unknown Regression coefficients, t-test, 

computational accuracy, variance of LS estimated Regression coefficients, and LS 

estimated Regression coefficients, fitted values and predictions. Draper and Smith 

(1981) stated that as a result of multicollinearity, the     matrix is near ill 

conditioned (singular) that leads to large standard errors for Ordinary Least 

Squares (OLS) estimates.  

 

In order to overcome the problem of multicollinearity in Multiple Linear 

Regression model among explanatories, Hoerl and Kennard (1970) suggested 

Ridge Regression (RR) method instead of OLS method in Regression analysis.  

 

Multiple Linear Regression model can be written in matrix form as, 

       ,                                                                                                      (1.1) 

y is a vector of dependent variables with order n×1, X is matrix of explanatory of 

order n×p,   is a vector of unknown Regression coefficients of order p×1 and   is 
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vector of random errors of order n×1 that are distributed normally whose mean 

vector is zero while it’s covariance matrix is      (    is identity matrix of n×n 

order). The OLS of the Regression coefficients   is  ̂              , and 

variance-covariance matrix of   is Var ( ̂   )          , both  ̂ and Var ( ̂) 

depend on characteristics of      matrix. If matrix     is near to singular then 

the variances of Ordinary Least Square (OLS) estimates becomes large. In Ridge 

Regression method a small positive number k (≥0) to be added to diagonal of     

matrix to counter the effects of Multicollinearity such that the new estimates are, 

 ̂              
     ,                                                                        (1.2)  

 

For any positive value of k, this gave Minimum Mean Square Error (MMSE) as 

compared to LSE. The k is known as Ridge or biasing parameter (constant) and 

will be finding out from data. When k=0,  ̂   becomes the Ordinary Least Square 

estimates (OLS) and k increases more bias is introduced but variance of the 

Regression estimator stabilizes. 

 

Now, the MSE of Ridge Regression that is introduced by Hoerl and Kennard 

(1970) is defined as, 

   ( ̂   )    ∑
  

       
   

   ∑
  

  
 
 

       
 

 
                                                   (1.3) 

The 1st term on right hand side of eq. (1.3) is a variance and the second term is an 

amount of bias 

where, 

   
  

  
                                                                                                                 (1.4) 

   is the variance of the model eq. (1.3) and    is i
th

 element of   .  

The unbiased estimator of   is,  

 ̂  
 ̂ 

 ̂ 
 
                                                                                                               (1.5) 

where,   

 ̂  
    ̂       ̂ 

       
  is the residual sums of square obtained from the OLS and is an 

unbiased estimator of   and  ̂ 
  is the i

th
 elements of  ̂  where  ̂     ̂, V is 

orthogonal matrix of order (p×p); the columns of V are the normalized 

eigenvectors of correlation matrix.  

 

Many methods for estimation of Ridge parameter k have been described by many 

researchers such as Shehzad M. A. (2012), Vinod and Aman Ullah (1981). Some 
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well- known existing estimators are following. These estimators make use of the 

canonical form of Regression model.  

 

The canonical form of model eq. (1.3) is eq. (1.6). Consider orthogonal matrix D 

where, 

      ,  

where,       and                    containing eigenvalues ‘  ’ of 

matrix C. Model eq. (1.3) in canonical form is,  

                                                                                                              (1.6) 

       and        . 

The Least Square Estimators of the canonical form is,  

 ̂                                                                                                              (1.7) 

Ridge estimators in canonical form is  

 ̂                                                                                               (1.8) 

                  . MSE of the above estimators defined as: 

     ̂       ∑
  

       
  ∑

  
   

 

       
 

 
   

 
                                                     (1.9) 

First term on R.H.S eq. (1.9) is variance and second term is amount of bias. 

 

2. Methodology 

 

In this study, some successful extensions of the existing work have been proposed 

to deal with multicollinearity problem.  

 
Hoerl and Kennard estimator: Hoerl and Kennard (1970) explored value of k 

which minimizing the Mean Square Error (MSE) is the following:  

    ̂   
 ̂ 

 ̂ 
   

.   

where,  ̂ 
    is the square of the maximum value of  ̂. 

 
Kibria estimator: Kibria (2003) proposed the following estimators  

    ̂   
 ̂ 

 ∏  ̂ 
 

 
   

 
 
 

    

And,      ̂          {  
 }       

where,     √
 ̂ 

 ̂ 
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Khalaf and Shukur estimator: Khalaf and Shukur (2005) proposed a new 

estimator as a modification of     

    ̂   
     ̂

 

      ̂       ̂ 
   

 .  

where,      is maximum eigenvalue of matrix     .  

 
Alkhamisi, Khalaf and Shukur estimator: Alkhamisi et al. (2006) suggested that 
        ̂  

       (  );     ̂  
              

where,       
   ̂

 

      ̂     ̂
 
 
 

 
Alkhamisi and Shukur estimator: Alkhamisi and Shukur (2008) suggested the 

estimators for k as, 

         ̂  
    ∏    

 

  
   ,               (

 

  
)       

         ∏
 

  
 
 

  
   ,                             ∏    

 

  
   , 

               (
 

  
),                          (

 

  
),    

            (√  ) ,                           ∏
 

√  

 
    

 

 ;  

           ∏ √  
 
    

 

 ,                             (
 

√  
).  

where,    √
     ̂ 

      ̂       ̂ 
 
 

 
Khalaf, Mansson and Shukur estimators: Khalaf et al. (2013) proposed 

modifications of all of the above estimators by multiplying them by a factor, 

   
    

∑ | ̂| 
 
   

 

     is the maximum eigenvalue of     matrix and are denoted by K1M-K16M.  

 

This modification was proposed on the basis that as degree of correlation 

increases initial eigenvalues are larger than others. Thus, factor    will also 

become larger as it is based on the maximum eigenvalue of     matrix. This will 

lead to an increase of the estimated value of the ridge parameters k. Hence, this 

modification leads to larger values of the Ridge parameter especially when the 
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degree of correlation is high. The performance of these estimators was good for 

high collinearity level. 

 

2.1 Our Proposed estimators: Khalaf et al. (2013) proposed modifications by 

multiplying   –     estimators by a factor    which is based on maximum 

eigenvalue. 

 

After exploring the trends in eigenvalues of X
t
X, we came across a larger set of 

maximized eigenvalues in case of high multicollinearity (0.95, 0.99) then the 

others, however, as the level of multicollinearity decreases from the said level 

(0.95, 0.99), the difference between the maximum eigenvalue and remaining 

eigenvalues decreases. Hence, it was expected that some other Ridge estimators 

have potential to be explored in view of this phenomenon. 

 

Thus, instead of using maximum eigenvalue of      in the numerator of   , 

Arithmetic mean of eigenvalues of the      matrix may be used. When degree of 

collinearity among regressors was not very high (0.99) then there were small 

difference between maximum eigenvalue and the remaining eigenvalues so in this 

situation arithmetic mean was expected to give good results. 

 

Thus, a new set of Ridge estimators were developed. Which is arithmetic mean of 

the eigenvalues (   ) associated with      was considered for defining, 

    
   

∑ | ̂| 
 
   

 

Finally, the new set of estimators was defined by multiplying   –     by       

and the resulting estimators were denoted by K1A –K16A. 

 

2.2 Mean Square Error (MSE): The performances of Ridge Regression 

estimators have long being compared making use of MSE. Thus, to explore the 

competitive performance of the new suggested estimators and existing estimators, 

MSE was used.  MSE is defined as, 

    ∑
  ̂     

   ̂     
 

 

  

 

 ̂ is the estimator of   obtained from RR or OLS and N is number of replications 

used in  Monte Carlo study.  
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3.  The Monte Carlo simulation 
 

Theoretically the proposed and the existing estimators cannot be compared, so 

simulation studies were designed to explore the performance of the developed and 

already existing Ridge estimators.   
 

Gibbons (1981), Kibria (2003), McDonald and Galarneau (1975) and Wichern 

and Churchill (1978), and many other researchers used the following method to 

simulate or generate the predictor variables that is, 

           
 
         ;          i = 1, 2, 3...n; j =1, 2, 3...p                           (3.1) 

 

     are standard normal random variables, ‘  ’ is level of collinearity between 

any two explanatories and n is the number of observations. In this study, the 

model that is used is, 

                            ;    i=1, 2, 3 . . . n                        (3.2) 

   is taken to be zero and              regression coefficients, are considered so 

that ∑   
  

   .  Simulations studies are carried out using programming language 

R. 

 

4.   Factors affecting Ridge estimators  

 

Various factors can potentially affect the performance of Ridge estimators. These 

include severity of multicollinearity, sample size, number of explanatory 

variables, error term variance (normal distribution case) and distributions of error 

terms. Four levels of multicollinearity between any two regressors were 

considered as high (           ) and very high (           ). The variation 

of sample size and number of explanatories considered as n = 30, 70, 100, 150, 

200, 300 and p= 2, 4, 6,  respectively.  In case of normal error term distribution, 

the variation of error term variance was considered as   = 0.1, 1. To explore the 

effects of error term distribution, normal and non-normal distributions were 

considered. For non-normal F- distribution with (4, 20) were considered.  

 

5.   Simulation study 
 

In this study, a simulation study have been designed to explore the competitive 

performance of K1M–K16M and K1A–K16A. The comparisons of these two sets 

of estimators have been gauged considering different levels of sample size (n = 

30, 70, 100, 150, 200, 300), number of predictors (p = 2, 4, 6), correlation levels 
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(r = 0.80, 0.90, 0.95, 0.99) and error terms distributions (N (0,   ) with    = 1, 

0.1 and non-normal distributions with F (4, 20)). The performances of these 

estimators have been evaluated making use of Mean Square Error (MSE). Our 

study compares K1M–K16M and K1A–K16A. Each of the two studies addresses 

two cases; case–1 is pertaining to the combination of the levels of sample size, 

number of predictors and correlation levels with normal error terms distribution 

(  =1, 0.1). However, case-2 caters the combinations of sample size, number of 

predictors and correlation levels with non-normal error terms distributions (F (4, 

20)). The results of the simulation studies are summarized by graphs to make 

comparative performance of all estimators visible in a particular scenario. The 

results in terms of the tables and some figures are maintained as well but are not 

included in this document to save space. The results of MSE for Case-1 are 

presented in figures 4.1 (1 12) and those of Case-2 are presented in figures 4.2 

(1 6). 

 

6.   Summary and conclusions  
 

The results of the comparative analysis of set of proposed estimators (K1A–

K16A) and (K1M–K16M) indicated that distribution play vital rule. MSEs of all 

estimator (K1A-K16A) are minimum when error term follow normal distribution 

(figures (4.1 (1–4))). In case of normal distribution (  = 1, p = 2) and at all levels 

of r proposed estimators, K1A–K16A out-perform K1M–K16M. MSE of 

estimators K2M, K3M and K10M are maximum. When p = 4, 6 and r = 0.80, 

0.90, 0.95, 0.99 the proposed estimators K1A–K16A give good results. At p = 4, 

6, at r = 0.95, 0.99 the estimators K1A–K16A give good results and at r = 0.80, 

0.9 0, 0.95, 0.99 MSE of estimators K2M, K3M and K10M are maximum. When 

   = 0.1, at all levels of r and p our modified estimators K1A-K16A performs 

well.  When p = 2 MSE of estimators K1A, K4A, K5A,  K6A, K7A, K13A,  

when p = 4 MSE of estimators K1A, K4A, K5A,  K6A,  K7A,  K9A, K11A,   

K13A and when p = 6 MSE of estimators K1A,  K4A,  K5A, K6A, K7A, K9A,  

K11A, K13A are minimum. 

 

It was noted that MSEs of all estimators are maximum when error terms follow F-

distribution (figures (4.2 (1–2)). Our Modified estimators (K1A–K16A) give 

smaller MSE as compared to set of estimators (K1M–K16M) when error terms 

follow F-distribution. When p = 2 and at all levels of r estimators K1A-K16A 

perform well. When p = 4, at r = 0.80, 0.90, 0.95, 0.99 our set of estimators give 

good results. At r = 0.80, 0.90, 0.95 MSE of estimators K1M, K2M, K3M and 

K10M are maximum.  
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Thus, it is concluded that our proposed estimators (K1A–K16A) out-perform 

K1M–K16M for collinearity levels (r = 0.80, 0.90, 0.95, 0.99), moderate number 

of predictors (p = 2, 4, 6) and error terms following normal distribution (   = 1, 

0.1) and non- normal distribution F (4, 20)). Therefore, it is recommended to use 

K1A-K16A to deal the cases of high collinearity levels (r = 0.80, 0.90, 0.95, 0.99) 

and moderate number of predictors (p = 2, 4, 6) when error terms follow normal 

distribution (  =1, 0.1). For non- normal distribution (F (4, 20)) to deal the cases 

of high collinearity levels (r = 0.80, 0.90, 0.95) and moderate number of 

predictors (p = 2, 4).  This is due to the fact that under these conditions the 

proposed sets of estimators outperform the existing set of estimators (K1M–

K16M). 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (1): MSE at p=2 and   ~N (0, 1). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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Figure 4.1 (2): MSE at p = 4 and   ~N (0, 1). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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Figure 4.1 (3): MSE at p = 2 and   ~N (0, 0.1). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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Figure 4.1 (4): MSE at p = 4 and   ~N (0, 0.1). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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Figure 4.2 (1): MSE at p = 2 and   ~F (4, 20). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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Figure 4.2 (2).MSE at p=4 and   ~F (4, 20). 1
st
 column is the case of r=0.80 and 

2
nd

 column is the case of r=0.90. 

 

 

 

 

 

 

 

 

 

Figure 4.2 (2): MSE at p = 4 and   ~F (4, 20). 1
st
 column is the case of r = 0.80 and 2

nd
 column is 

the case of r = 0.90. 
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