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Abstract 

 

Pearson statistics of skewness and kurtosis gave false impression to assess the 

peakedness and tailedness for skewed (moderately, J-shape or reverse J-shape) 

Distributions. A number of alternate measures were suggested in literature by 

Hosking (1992), Blest (2003), Elamir and Seheult (2003), and Fiori and Zenga 

(2005) that provided better interpretation than the Karl Pearson statistics. Power 

Function Distribution has the characteristics of symmetric, J-shape or reverse J-

shape with varying magnitude of its shape parameter. In this paper, we derived 

the Blest‟s statistics of skewness and kurtosis, L-skewness and L-kurtosis and 

Trimmed L-skewness and Trimmed L-kurtosis for Power Function Distribution. 

Comparison is made with Karl Pearson statistics. 
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1.  Introduction 

 

The oldest and the most common measure of skewness and kurtosis is the 

standard fourth moment by Pearson (1905). These measures often concentrate 

only on symmetric Distribution. It does not provide true information about 

peakedness and tailedness for skewed Distribution. 
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Poor performance of standardized central moment of skewness and kurtosis may 

lead to seek alternate statistics and definition to study the Distribution shape 

characteristics. Included in these Blest‟s measures (Blest, 2003), L-skewness and 

L-kurtosis (Hosking, 1992) and TL-skewness and TL-kurtosis (Elamir and 

Seheult, 2003). 

 

Rahila and Memon (2012) also conducted such kind of comparison for Weibull 

Distribution but they just compared the Pearson with Blest‟s measure. Both 

Blest‟s and Karl Pearson measures are based on higher moments of a Distribution. 

So these measures can‟t evaluate for those Distributions like Cauchy and Inver 

Rayleigh Distribution whose higher moments do not exists. So how can we study 

the description of such Distributions? Answer is obtained by evaluating another 

alternate measures, the L-moments and Trimmed L-moments. So in our study, we 

computed also L-skewness and L-kurtosis, Trimmed L-skewness and Trimmed L-

kurtosis for Power Function Distribution with the Blest‟s measures and Pearson. 

 

Statistical Distributions have long been employed in the assessment of semi-

conductor device and product reliability. The use of the Exponential Distribution 

which is frequently preferred over mathematically more complex Distributions, 

such as the Weibull and the Lognormal among others, suggest that most engineers 

favor the application of simpler models to obtain failure rates and reliability 

figures quickly. It is, therefore, proposed that the Power Function Distribution be 

considered as a simple alternative which, in some circumstances, may exhibit a 

better fit for failure data and provide more appropriate information about 

reliability and Hazard Rates (Meniconi ,1996). 

 

The Distribution Function of Power Function Distribution as 

( ) 0

0

c
x

F x x c
b

shape parameter c

scale parameter b

 
   
 



 

                 (1.1) 

 

2.  Skewness and Kurtosis Statistics for Power Function Distribution 

 

2.1 Karl Pearson Statistics of Skewness and Kurtosis: Karl Pearson measure of 

skewness is the standard third moment coefficient as 
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standard fourth moment coefficient for kurtosis as  
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We evaluated for Power Function Distribution as 
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Now using eq. (2.1.1) to eq. (2.1.6), we obtain Karl Pearson measures of 

skewness and kurtosis  respectively as 
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It is interesting to note that the third and fourth moment about mean are the 

function of scale and shape parameters but the measures of skewness and kurtosis 

are function of shape parameter only. Power Function Distribution is symmetric 

for c = 1 and negatively skewed for c > 1 and positively skewed for c < 1. 

 

The Figure 1 shows the skewness and kurtosis for Power Function Distribution 

with changing the values of shape parameter. The Figure 1 indicates  the 

coefficient of kurtosis has a value 3 at two different points  c= 0.32 and c = 2.87. 

For c = 0.32 the Distribution is positively skewed ( 3 1.10299  ) for c = 2.87 the 

Distribution is negatively skewed ( 3 0.82996  ) for c = 1 the Distribution is 

symmetric. As we noted that skewness decreased for increasing value of shape 

parameter, kurtosis also decreased rapidly for c<1 but for c>1 it increased 

gradually.  

We are focusing the Distribution in three cases 

 c=1  

 c>1 

 c<1 
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2.2 Blest’s Statistics for Kurtosis: Blest suggested a new measures of kurtosis by 

which the effect of any skewness is deleted, allowing comparison of Distribution 

on the basis of kurtosis alone (Blest, 2003). Blest proposed a new measure of 

central tendency called Meson (from Greek mesos, meaning „middle‟) is denoted 

by  and the standardized value of meson is f
 




 , third moment about 

meson is zero i.e  
3

0E X    and the r
th

  moment about meson are defined as 

( )r

r E x      

So first four moment about meson are 

1 ( )

( ) E(x ) [ ]

E x

E x f f f

 

      

  

       
 

1 f             (2.2.1)

 

 

2

2

2

2

2 2 2 2 2 2

2 2 2

2 2 2

( )

( )

( ) ( )

( ) 2( )( ) ( ) 2 ( )

0

E x

E x f

E x f

E x x f f E x fE x f

f

f

 

 

 

       

 

 

  

  

  

         

  

 

 

2 2

2 (1 )f             (2.2.2) 

 

 

3

3

3

3

3 2 2 2 3 3

3 2 2 2 3 3

( )

( ) [ ]

E (x )

(x ) 3(x ) ( ) 3(x )( )

(x ) 3( ) E((x ) 3 (x )

E x

E x f f

f

E f f f

E f f E f

 

    

 

     

     

  

    

  

      

      

 

3 3 3

3 3 3 f f              (2.2.3) 



Azaz Ahmad  and Ahmed Saeed Akhter 

_______________________________________________________________________________ 

 

128 

 

 

 

4

4

4

4

4 3 2 2 3 4

4 3 2 2 2 3 3 4 4

4 2 4 4

4 3

3 3 3 4 2 4 4

4

4 2

4

( )

( )

( ) ( )

( ) 4( ) ( ) 6( ) ( ) 4( )( ) ( )

( ) 4 ( ) 6 E( ) 4 E( )

4 ( ) 6 0

4 (3 ) 6

12 4

E x

E x f

E x f

E x x f x f x f f

E x fE x f x f x f

f f f

f f f f f

f

 

 

 

       

       

    

     

 

  

  

  

        

        

    

    

   4 4 4 2 4 4

4 2 4 2 4 4 4 4

4

6

( 12 6 ) ( 4 )

f f f

f f f f

  

    

 

      

 

   4 2 4 4

4 4 6 3f f                               (2.2.4) 

Blest‟s proposed the following Moment Ratio 
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So from the eq. (2.2.3), we evaluate 
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so, the real roots of this equation is the measure of skewness in term of 

standardized value of meson. 
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The trial solution accomplishing this miracle turns out to be the symmetrical 

expression as 
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Blest‟s coefficient of skewness is derived for Power Function Distribution by 

putting the eq. (2.2.1) into eq. (2.2.9) as 
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is the function of only shape parameter. 

 

And coefficient of kurtosis is adjusted for skewness, as the standardized fourth 

moment about the Meson is obtained by taking the eq. (2.2.4). 
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From Figure 3, it is clear that both measures have same interpretation for 

symmetric Distribution. We can see that how Karl Pearson coefficient of 

skewness gives false impression about skewness for Case II and III.  

 

Figure 2 shows that for symmetric Distribution both measures of kurtosis are 

same but for skewed Distribution Blest measures always less than the Pearson 

kurtosis. The gap between two is smaller in Case II and it increased in Case III. 

 

2.3 Relation among Meson, Mean and Median: The gap between median and 

meson is another way measuring the degree of kurtosis.  
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So the Figure 4 shows the relation between three measure of central tendency for 

b=1 
 

It is clear from the Figure 4 that 

 Meson  = Mean = Median  for  Case I 

  Meson >Mean> Median    for Case II 

 Meson <Mean< Median     for Case III 

So the Distributions for Case III are far flatter than Distributions in Case II. 

 

2.4 L-kurtosis: L-moments are expectations of certain linear combinations of 

Order Statistics. L-moment exist for a real valued random variable X, iff X has a 

finite mean. A Distribution whose mean exists is characterized by its L-moments 

(Hosking, 1992).  

The first four L-moment for random variable X are defined by 
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L-kurtosis is defined as 4
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2.5 Comparison Among Skewness and Kurtosis Statistics: It is interesting to 

note that all three measures of skewness have same interpretation for symmetric 

Distribution. For Case II, Karl Pearson showed the poor performance in 

measuring the skewness but Blest‟s and L-skewness gave similar result for this 

case. And for Case III L-skewness is less than the Blest‟s measure and Karl 

Pearson. Figure 6 indicates that L-kurtosis gives less weight to extreme tail 

distribution as compared to Blest‟s and Pearson measure of kurtosis. 

 

2.6 Trimmed L-Moments: TL-moments defined by Elamir and Seheult (2003) are 

generalization of L-moments that do not require the mean of underlying 

Distribution to exist. They are defined by  
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Here, s and t are positive integers. The case s = t = 0 yields the original L-

moments defined by Hosking( 1990). The term “ trimmed” is appropriate because 

the definition of ( , )s t
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Trimmed L-moments ratio are defined as 
( , )
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
  are dimensionless 

measures of the shape of a Distribution. The close form of the first four TL-

moments of Power Function Distribution with various choice of trimming i.e. 
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(0,1), (1,0) and (1,1) are obtained and then evaluated  the TL-skewness and TL-

kurtosis as r = 3,4 
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2.7 Comparison between L and TL Moment Ratios: Interesting to note that all 

measures have same interpretation for symmetric Distribution. For positively 

skewed Distribution, the size of trimming affect the amount of skewness as well 

as kurtosis. There is less skewness and peakednes for (1,0) as compared to other 

choices of trimming. For negatively skewed Distribution, all measures are 

relatively equal except for choice (1,0). 

 

3. General Conclusion 

 

Moments are used to provide parameter estimation, fitting of Distribution and 

empirical description of data. In this paper, we are focusing the objective of 

measuring numerical description of Distribution. For this, we evaluate Karl 

Pearson Moment Ratio for Power Function Distribution. Karl Pearson Moment 

Ratio has accurate interpretation for only symmetric Distribution. It does not 

provide true amount of skewness and peakedness for heavy tailed Distributions, 

measuring the true amount we evaluate the alternate  measures i.e  Blest‟s 

measures, L-moments and TL-moments. Comparing Blest‟s measure with Karl 

Pearson, founded that Blest‟s  coincide with Karl Pearson when Distribution is 

symmetric but as the amount of skewness (positive or negative) increases Blest‟s 

picture of existing peakedness of a Distribution becomes clearer as it removes the 

effect of asymmetry. Pearson‟s measure in this regard is found to be over 

pronouncing the peakedness.  

 

The gap between median and meson is another way measuring the degree of 

kurtosis for a negatively (positively) skewed Distribution. Positively skewed 

Distributions of Power Function Distribution covers higher areas between meson 

and median and so, they are more peaked than its negatively skewed 

Distributions.   
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Both Blest‟s and Karl Pearson measures are based on higher moments of a 

distribution.  So these measures can‟t be evaluated for those Distributions like 

Cauchy and Inver Rayleigh Distribution whose higher moments do not exists. So 

how can we study the description of a such Distribution? Answer is obtained by 

evaluating another alternate measures the L-moments. Due to advantages of L-

moments over the convention moments many Distribution are analyzed by these 

moments. Linear combination of Order Statistics of Power Function Distribution 

are used to compute the L-moments. Furthermore, these moments are less 

sensitive in the case of Outlier (Vogel and Fennenscy 1993).  

 

Comparison with Karl Pearson and Blest‟s, L-Moment Ratio always give less 

weight to heavy tailed Distributions. L-moments cannot be defined for the 

Distributions whose mean do not exist. So we seek another alternative measures 

for such Distribution i.e TL-moments. TL-moments as a generalization of the L-

moments and with more advantages over L-moments and conventional moments. 

TL-moments assign zero weight to extreme observations, they are more Robust 

than L-moments when used to estimate from a sample containing Outliers. Like 

L-moments, TL-moments also completely determine the distribution. Different 

choices for the amount of trimming give different amount of skewness and 

peakedness for Power Function Distribution. We evaluate the TL-skewness and 

TL-kurtosis for trimming choices (1,0), (0,1) and (1,1). And compare with the L-

skewness and kurtosis. Our all measures are coincide for symmetric Distributions. 

For positively skewed Distribution the TL-skewness and kurtosis for choice (1,0) 

give less weight as compared to other choices. The gap among the TL-skewness, 

kurtosis statistics and L-skewness and L-kurtosis becomes smaller and smaller as 

value of shape parameter increases except for choice (1,0).   
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Figure 1: Skewness and kurtosis for Power Function Distribution 

 

 

Figure 2: Kurtosis of Karl Pearson and Blest                                          

 

 
Figure 3: Skewness of Karl Pearson and Blest 
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Figure 4: Relation between Meson, Mean and Median for b=1 

 

 
Figure 5: Skewness statistics. 

 
Figure 6: Relation among kurtosis statistics 
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Figure 7: L-skewness and TL-skewness 

 

 
Figure 8: L-kurtosis and TL-kurtosis 
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