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Abstract 

In this paper, two Regression-Cum-Exponential Estimators have been proposed to 

estimate the population mean using population mean of single auxiliary variable in 

Adaptive Cluster Sampling. The expressions for the Mean Square Error and Bias 

of the proposed Estimators have been derived. A simulation study has been carried 

out to demonstrate and compare the efficiencies and precisions of the Estimators. 

The proposed Estimators have been compared with Ratio, Regression, Exponential 

Ratio Estimators in usual sampling, the Hansen-Hurwitz and the Ratio Estimators 

in Adaptive Cluster Sampling when there is low positive correlation between 

study variable and auxiliary variable.  

Keywords 

 

Transformed population, Expected final sample size, Within network variances, 

Estimated relative bias, Estimated percentage relative efficiency 

 

1.  Introduction 

 

In Survey Sampling, to assess the thickness of entities that are clustered has been 

a main problem.  Examples of such clustered population comprise: plants and 

animals of rare and dying out species, fisheries, drug users, HIV and AIDS 

patients, etc. The Conventional Random Sampling Designs may be useless and 

often fail to give samples with meaningful information for such population. 
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The Adaptive Cluster Sampling (ACS) method is suitable for the rare and 

clustered population. In ACS an initial sample is selected by a Conventional 

Sampling Design then the surrounding area of each unit selected in the first 

sample is measured. A condition C is defined to take in a unit in the sample. All 

adjacent units is added and investigated if the predefined condition C (usually Cy 

> 0, where Y is the study variable) is fulfilled and this procedure keep on. This 

process stops when a new unit does not meet the condition. All the units studied 

(including the initial sample) composed the final sample. The set consisting of 

those units that met the condition is known as a network. The units that do not 

satisfy the condition are known as edge units. A cluster is a combination of 

network units with connected edge units.  

 

Auxiliary information’s are used to increase the precision of the Estimators of the 

population mean of Y. Survey statisticians frequently exercise auxiliary 

information to estimate population parameters; mean and variance. To reduce the 

error in estimates surveyors are always probing for efficient estimation methods. 

The development goes on in various forms of Estimators. The available 

Estimators, in the case of ACS are relatively simple and most of these are based 

upon information of single auxiliary variable.  

 

Thompson (1990) first proposed the idea of the ACS scheme and introduced 

modified Hansen-Hurwitz (1943) and Horvitz-Thompson (1952) type Estimators 

and Rao-Blackwell versions of Estimators. As an indispensable issue related to 

sampling technique, the sampling efficiency was examined with examples. This 

article launched a variety of subsequent research efforts on ACS. However, how 

those adaptive design factors including the predefined condition (or magnitude of 

the critical value), the definition of the neighborhood affects the efficiency of 

ACS in comparison with the non-adaptive design (simple random sampling), and 

possible challenges arising from case to case are not concretely touched.  

 

Dryver (2003) found that ACS performs well in a uni-variate setting. The 

efficiency of ACS depends on the relationship of the variables with one another in 

a multivariate setting. The simulation on real data of blue-winged and red-winged 

results shows that Horvitz-Thompson Type Estimator was the most efficient 

Estimator using the condition of one type of duck to estimate that type of duck. 

The Simple Random Sample can be more efficient than an adaptive one when the 

prediction was on one type of duck and the condition was on another type of 

duck. The ACS is more efficient than SRS when the condition was a function of 
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two types of ducks. For highly correlated variables the ACS performs well for the 

parameters of interest. 

 

Chao (2004) proposed the Ratio Estimator in ACS and showed that it produces 

better estimation results than the original Estimator of Adaptive Cluster Sampling, 

and a Ratio Estimator under a comparable Conventional sampling design. This 

article is meant to be an initial investigation of the utilization of the auxiliary 

information in ACS. 

 

Dryver and Chao (2007) discussed the Classical Ratio Estimator in ACS and 

proposed two new Ratio Estimators under ACS, “one of which is unbiased for 

ACS designs. The result shows that the proposed Estimators can be considered as 

a robust alternative of the conventional ratio Estimator, especially when the 

correlation between the variable of interest and the auxiliary variable is not high 

enough for conventional ratio Estimator to have satisfactory performance”.  

 

1.1 Adaptive Cluster Sampling Process: Consider a finite population of N units is 

labelled 1,2,3,…,N and denoted as u = {u1,u2,…,uN}. Consider a small initial 

sample os  of size n with n < N which is selected by simple random sample 

without replacement (SRSWOR). The first sample is chosen by traditional 

sampling process in an ACS procedure and then the predefined neighboring units 

for  all the units of the first sample is considered for a particular condition C, say y 

> 0. If any of the units in the initial sample satisfy condition C (yi ≤ c or yi ≥ c 

where c is a constant), there neighboring units are added to the sample and 

observed. In general, if the characteristic of interest is found at a particular area 

then we continue to locate around that area for more information. Further, if any 

neighboring unit satisfies the condition then its neighborhoods are also sampled 

and the process goes on. This iterative process stops when the new unit does not 

satisfy condition C. The neighborhood can be defined by social and institutional 

relationships between units and can be decided in two ways. The first-order 

neighborhood consists of the sampling unit itself and four adjacent units denoted 

as east, west, north, and south. The second-order neighborhood (Figure 1) consists 

of first-order neighboring units and the units including northeast, northwest, 

southeast, and southwest units. There are in total eight neighborhood quadrates 

including the first-order neighborhood and the second order neighborhood. All the 

units including the initial sample composed the final sample.  
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A network is a set consisting of units that satisfy the specified condition (usually y 

=1). A unit that does not satisfy the predefined condition in the first sample is the 

network of size one. The edge units are those which do not satisfy the specified 

criteria. A cluster is a mixture of network units with associated edge units. 

Clusters may have overlapping edge units. The networks do not have common 

elements such that the union of the networks becomes the population. Thus, it is 

possible to partition the population of all units into a set of exclusive and 

complete networks. The networks related to clusters can be denoted by A1, A2, A3 

,…, An or they can be shown with darker lines around the quadrates. These may be 

shaded as well. The edge units can be denoted with open circles (○). The entire 

region is partitioned into N rectangular or square units of equal size that can be set 

in a lattice system. The rectangular or square units are called quadrates. The units 

(u1,u2,…,uN) form a disjoint and exhaustive partition of the entire area so that 

units labels (1,2,…,N) categories the position of N quadrates. In ACS the 

population is measured in terms of quadrates only. The unit i which is related to 

the study variable yi has a population vector of y-values, y = ( 1 2 3, , ,, Ny y y y ). 

Now consider an example to understand the ACS procedure using first-order 

neighborhoods and the condition C that yi  ≥ 1.  
 

Figure 2 shows that the region is partitioned into N =50 quadrates of equal size 

and that the population is divided into three clusters of size greater than one. 

Figure 3 shows that the three networks are denoted with A1, A2, and A3 and the 

edge units are denoted with open circles (○). According to the network symmetry 

assumption any unit in Ai , a network will lead to the selection of all units in that 

network Ai . 

 

There are 35 networks of size one as any unit that does not meet the condition is a 

network of size one. There are three clusters. Each cluster can be decomposed 

into a network (that satisfies C) and individual networks of size 1 (that do not 

satisfy C) i.e. edge units. Thus, network A1 has 6 units with 8 edge units. Network 

A2 has 4 units with 9 edge units. Network A3 has 5 units with 7 edge units. Thus, 

the cluster containing A1 has 6 + 8 =14 units. The cluster containing A2 has 4 + 9 

=13 units and cluster containing A3 has 5 + 7 =12 units. Clusters are not 

necessarily disjoint and may have common edge units. The clusters containing A2 

and A3 have one overlapping edge unit.  

 

Figure 4 shows that the cluster containing A1 and the edge units are shaded, the 

overlapping edge unit of A2 and A3 is also shaded. 
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2. Some Estimators in Simple Random Sampling 

Let N be the total number of units in the population. A random sample of size n is 

selected by using Simple Random Sampling WithOut Replacement. The study 

variable and auxiliary variable are denoted by y and x with their population means  

   and   , population standard deviation  Sy and Sx , coefficient of variation Cy and 

Cx respectively. Also ρxy represent population correlation coefficient between X 

and Y, and   1 1

n N
   . 

Cochran (1940) and Cochran (1942) proposed the Classical Ratio and Regression 

Estimators  

1

X
t y

x

 
  

 
                                                                                                       (2.1) 

 2t y X x
yx

                  (2.2)                                           

The Mean Square Error (MSE) of the Estimators of eq. (2.1) and eq. (2.2) are 
2 2 2

1( ) 2y x xy x yMSE t Y C C C C     
 

                                                    (2.3) 

   2 2 2

2 1y xyMSE t Y C                                                                                   (2.4) 

respectively. 

 

Bahl and Tuteja (1991) proposed the Exponential Ratio and Exponential Product 

Estimators to estimate the population mean.  

3t  exp
X x

y
X x

 
   

                                                                                        (2.5) 

The Mean Square Error and Bias of the Exponential Ratio Estimator 3t  are 

MSE( 3t )
2

2 2

4

x
y xy x y

C
Y C C C

 
   

 

                                                        (2.6) 

2
3

3
( )

8 2

xy x y
x

C C
Bias t Y C

 
  

 

                                                                (2.7)  

 

3. Some Estimators in Adaptive Cluster Sampling 

 

Let an initial sample of n units is selected with a Simple Random Sample 

WithOut Replacement (SRSWOR). The neighboring units are added to the 
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sample if the y-value of a sampled unit meets a certain condition C, for example 

yi ≥ c where c is a constant. If Ai is the network including unit i, then unit i will be 

included in the final sample either, any unit of network Ai is selected as part of the 

initial Simple Random Sample or  any unit of a network for which unit i is an 

edge unit is selected. Suppose a finite population of size N is labeled as 1,2,3,…,N 

. Let the auxiliary variable ix  be correlated with the variable of interest iy , such 

that  1 2, , . Ny y y y   and  1 2, , . Nx x x x  .  

Let 
yiw  and xiw  denotes the average y-value and average x-value in the network 

which includes unit i such that, 1

i

yi j
j Ai

w y
m 

    and  1

i

xi j
j Ai

w x
m 

   

respectively, where mi is the size of the cluster Ai. ACS can be considered as 

Simple Random Sampling WithOut Replacement when the averages of networks 

are considered (Dryver and Chao, 2007 and Thompson, 2002). So, consider the 

notations 
yw  and 

xw  are the sample means of the study and auxiliary variables in 

the transformed population respectively, such that, 

1

1 n

y yi
i

w w
n 

  and 

1

1 n

x xi
i

w w
n 

 
. Consider Cwy and Cwx represents population coefficient of 

variations of the study and auxiliary variables respectively and ρwxwy represent 

population correlation coefficient between wx and wy in the ACS i.e. when 

average of the network assumed. Let us define,     

y
wy

w Y
e

Y


  and  x

wx

w X
e

X


 .                                                              (3.1)  

where,  

wye  and 
wxe  are the Relative Sampling Errors of the study and auxiliary 

variables respectively, such that,  

    0wy wxE e E e   and  wx wy wxwy wx wyE e e C C                          (3.2)

 2 2
wy wyE e C      and    2 2

wx wxE e C                                                       (3.3) 

 

Thompson (1990) developed an Unbiased Estimator for population mean Y in 

ACS based on a modification of the Hansen-Hurwitz Estimator which can be used 

when sampling is with replacement or without replacement. Units that do not 

satisfy C are ignored if they are not in the initial sample. In terms of the n 

networks (which may not be unique), intersected by the initial sample. 



Comparison of Estimators in Case of Low Correlation in  

Adaptive Cluster Sampling 
_______________________________________________________________________________ 

147 

4
1

1 n

yi y
i

t w w
n 

  ,             (3.4)  

where,   

1

i

yi j
j Ai

w y
m 

   is the mean of the mi observations in Ai. The variance of 4t  is,  

 
2

4
1

( )
1

N

yi
i

Var t w Y
N 


 


           (3.5) 

 

Dryver and Chao (2007) proposed a Modified Ratio Estimator for the population 

mean keeping in view Adaptive Cluster Sampling. 

0

0

5
ˆ

yi
i s

xi
i s

w

t X RX
w





 
 

  
 
 





            (3.6) 

The Mean Square Error of 5t  is 

 
2

5
1

( )
1

N

yi xi
i

MSE t w Rw
N 


 


          (3.7) 

where,   

R is the population ratio between xiw  and 
yiw in the transformed population.  

 

Chutiman (2013) proposed a Modified Regression Estimator for the population 

mean of the study variable in Adaptive Cluster Sampling. 

  

6 ( )y w xt w X w              (3.8) 

where,   

2 2

wxwy wxwy wx wy wxwy wy
w

wxwx wx

S S S CY

X CS S

 
                                             (3.9) 

The approximate Mean Square Error of 6t is 

2 2 2 2
6( ) (1 ) (1 )wy wxwy wy wxwyMSE t S YC           (3.10) 

Shahzad and Hanif (2015) proposed a Generalized Exponential Estimator for the 

population mean in ACS using two auxiliary variables. 

GEt exp
( 1) ( 1)

x z
y

x z

X w Z w
w

X a w Z b w

  
    

    

            (3.11) 
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For 1, 0, 2and a    , the Estimator 
GEt  may be obtained as 

7t exp x
y

x

X w
w

X w

 
  

 

         (3.12) 

The Bias and Mean Square Error of the Estimator 
7t are 

Bias( 7t )
23

8 2

wxwy wx wywx
C CC

Y
  

   
 

                                                   (3.13)  

MSE( 7t ) =  
2

2 2 2
7

4

wx
wy wxwy wx wy

C
E t Y Y C C C

 
     

 

               (3.14) 

   

4. Proposed Estimators in Adaptive Cluster Sampling 

Following the Bahl and Tuteja (1991) and Shahzad and Hanif (2015) the 

Proposed Modified Regression-Cum-Exponential Ratio Estimators in ACS with 

one auxiliary variable are 

8t exp x
y

x

X w
w

X w

 
   

 

          (4.1) 

9t 4 7t t  exp x
y y

x

X w
w w

X w

 
   

 

                 (4.2) 

4.1 Bias and Mean Square Error of Estimator 8t :  The Estimator eq. (4.1) may 

be written as 

 8t  
(1 )

1 exp
(1 )

wx
wy

wx

X X e
Y e

X X e

  
    

  

             (4.1.1) 

1

8 exp 1
2 2

wx wx
wy

e e
t Y Ye

   
     

   

                                      (4.1.2)  

2

8 exp
2 4

wx wx
wy

e e
t Y Ye

 
    

 

                                                  (4.1.3) 

     
2 2

8 1
2 4 8

wx wx wx
wy

e e e
t Y Ye

 
      

 

                                      (4.1.4)

2

8

3
1

2 8

wx wx
wy

e e
t Y Ye

 
     

 

                 (4.1.5) 
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Applying expectations on both sides of eq. (4.1.5), and using notations eq. (3.2), 

we get, 

Bias( 8t )=  
2

8

3
1

8

wxC
E t Y

 
    

 

                  (4.1.6) 

In order to derive Mean Square Error of eq. (4.1), we have eq. (4.1.3) by ignoring 

the term degree 2 or greater as 

8 1
2

wx
wy

e
t Y Ye

 
    

 

                                            (4.1.7) 

Taking square and expectations on the both sides of eq. (4.1.7), and using 

notations eq. (3.2 and 3.3), 

MSE( 8t ) =
2

2 2 2 2 2
8( ) .

4

wx
wy wxwy wx wy

C
E t Y Y C Y C C


        

                                                                                                              (4.1.8) 

Differentiate w.r.t to β and equate to zero, we get, 

2
.

2 1
4

wxwy wx wy

wx

Y C C

C


 

 
 

 

                                         (4.1.9) 

Substitute eq. (4.1.9) into eq. (4.1.8), we get minimum Mean Square Error, 

 
2 2

2 2
8 min 2

( ) 1

2 1
4

wxwy wx
wy

wx

C
MSE t Y C

C

 
 

   
  
  
   

                                    (4.1.10) 

4.2 Bias and Mean Square Error of Estimator 9t :  The Estimator eq. (4.2) may 

be written as 

9t    
(1 )

1 1 exp
(1 )

wx
wy wy

wx

X X e
Y e Y e

X X e

  
     

  

               (4.2.1) 

9t  
2

(1 )exp
2 4

wx wx
wy wy

e e
Y Ye Y e

 
     

 

               (4.2.2) 

2 2

9 (1 ) 1
2 4 8

wx wx wx
wy wy

e e e
t Y Ye Y e

 
       

 

                              (4.2.3)        

2 2

9 1
2 4 8 2

wx wywx wx wx
wy wy

e ee e e
t Y Ye Y e

 
        

 

   (4.2.4) 



Muhammad Shahzad Chaudhry and Muhammad Hanif 

_______________________________________________________________________________ 

 

150 

 

Applying expectations on both sides of eq. (4.2.4), we get, 

Bias ( 9t ) =  
2

9

3
1

8 2

wxwy wx wywx
C CC

E t Y Y
  

    
 

               (4.2.3) 

In order to derive mean square error of eq. (4.2), we have eq. (4.2.2) by ignoring 

the term degree 2 or greater as 

9t Y  1 exp
2

wx
wy wy

e
Ye Y e

 
    

 
    (4.2.4) 

9t Y
2

wx
wy wy

Ye
Ye Y Ye


         (4.2.5) 

Taking square and expectations on the both sides of eq. (4.2.5) 
2 2 2

2 2 2 2 2 2 2 2
9 9

2 2 2 2 2

( ) ( )
4

2 .

wx
wy wy

wy wxwy wx wy wxwy wx wy

Y C
MSE t t Y Y C Y Y C

Y C Y C C Y C C

 
       

     

  

                                                                                                              (4.2.6) 

Differentiate w.r.t to β and equate to zero, we get, 

2

2
2

2 .

1
4

wxwy wx wy
wy

wx
wy wxwy wx wy

C C
C

C
C C C


 

 
 
     

 

    (4.2.7) 

Substitute eq. (4.2.7) into eq. (4.2.6), we get minimum Mean Square Error, 

 

2

2 2
9 min 2

2 2

2( ) 1 .

1
4

wxwy wx wy
wy

wy

wx
wy wy wxwy wx wy

C C
C

MSE t Y C
C

C C C C

 


  
   
  
       
   

  

                                                                                                              (4.2.8) 

 

5. Results and Discussion 

 

To compare the efficiency of proposed Estimators with the other Estimators, a 

population is used and performed simulations for the thorough study. The 

condition C for added units in the sample is y > 0. The y-values are obtained and 

averaged for keeping the sample network according to the condition and for each 
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sample network x-values are obtained and averaged. For the simulation study ten 

thousands iteration was run for each Estimator to get accuracy estimates with the 

simple random sampling without replacement and the initial sample sizes of 5, 10, 

15, 20 and 25. 

 

The expected final sample size is sum of the probabilities of inclusion of all 

quadrates and it varies from sample to sample in ACS. Let, E(v) denotes the 

expected final sample size in ACS. For the comparison, the sample mean from a 

SRSWOR based on E(v) has variance using the usual formula.
2( ( ))

( )
( )

N E v
Var y

NE v

 
                       (5.1) 

The estimated Mean Square Error of the estimated mean is 

 
^

2
* *

1

1
( )

r

i

MSE t t Y
r 

                                    (5.2) 

where,  

*t  is the value for the relevant Estimator for sample i, and r is the number of 

iterations. The Estimated Relative Bias is defined as  

 
*^

1
*

1
( )

r

i

t Y
r

RBias t
Y








                    (5.3) 

The percentage relative efficiency is,  

 

 
^

*

( )
100

Var y
PRE

MSE t

 
                       (5.4) 

 

5.1 Population: This real population contains ring-necked ducks (RND) and blue-

winged teal (BWT) data collected by Smith et al., (1995) are counts of two 

species of waterfowl in 50 100-km
2 

quadrates in central Florida.  The ring-necked 

ducks (Table 1) is taken as the study variable the blue-winged teal (Table 2) is 

taken as auxiliary variable. There found a very low correlation 0.0978 between 

the both types of fowl and this correlation increases to 0.2265 in the transformed 

population (Table 3 and 4). Thus, there is a low correlation between the sampling 

unit level and high correlation at the network (region) level. Dryver and Chao 

(2007) showed that usual Estimators in SRSWOR perform better than ACS 

Estimators for strong correlation at unit level but performs worse when having the 

strong correlation at network level.  
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The overall variance of the study variable is 3972532 and for auxiliary variable 

the variance is 3716168 while in the transformed population these variances 

reduce to 747163.9 and 3716156, respectively. The within network variance of 

the study variable for the network (4000, 20, 13500, 200, 234, 75, 1335, 4, 97) is 

19755495 and for the corresponding values of the auxiliary variable (0, 0, 0, 3, 5, 

24, 14, 2) the within network variance is 69.25. The overall variances are found to 

low as compare to the within network variances in the study variable population. 

ACS is preferable than the Conventional sampling if the within network variances 

are large enough as compare to overall variance (Dryver and Chao 2007). 

 

6. Conclusion 

 

The Estimated Relative Bias (Table 5) of the Regression Estimators in ACS goes 

quickly to zero when sample size increases as compare to the other Estimators in 

usual sampling methods. The Percentage Relative Efficiency (Table 6) of the 

ACS Estimators is much higher than the SRS Estimators. The Regression 

Estimator in ACS has maximum Percentage Relative Efficiency for the initial 

sample size and starts increasing for comparable sample sizes, while proposed 

Exponential Regression Estimator 
8t also has higher PRE than the Ratio Estimator 

and Exponential Ratio Estimator in ACS. Thus, the Regression and Exponential 

Regression Estimators in ACS perform much better than the other Conventional 

Estimators and Ratio and Exponential Ratio Estimators in ACS even though there 

is a very low positive correlation among the study and the auxiliary variables, 

under the given conditions.  

 

Dryver and Chao (2007) treated 0/0 as zero for the Ratio Estimator. The usual 

Ratio Estimator and Ratio Estimator in ACS did not perform and return no value 

(*) and infinity (**) for the initial sample sizes 5, 10, 15 and 20, respectively. In 

this simulation study 0/0 is not assumed as 0. The use of Regression and 

Exponential Regression Estimators is better in ACS than assuming an unlikely 

assumption for the Ratio Estimator in Adaptive Cluster Sampling. Thus, 

Regression and Exponential Regression Type Estimators are much suitable and 

vigorous for patchy, rare and clustered population. The results of relative 

efficiencies have shown the poor performance of usual Estimators under 

SRSWOR and the Exponential Ratio Estimators because of the weak correlation 

between study variable and auxiliary variables at the unit level. For the future 

research, the case of low negative correlation between the study and auxiliary 

variables may also be explored in ACS. Moreover, the logarithmic, trigonometric, 
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inverse trigonometric and hyperbolic Estimators may also be studied and explored 

in Conventional and Adaptive Sampling. Some Estimators are given in Table  8 

for the future research. 
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Figure1: Second-order neighbourhoods (Diagonal cells) 

 

 

 

 

 

 

 

 

Figure 2:  Population with three clusters  

 

 

 

 

                                      

 

 

Figure 3: Networks with edge units  

 

 

 

 

 

        

 

 

Figure 4: Cluster containing A1, Common edge unit of A2 and A3 
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Table1: Ring-necked ducks data (Smith et al., 1995) as study variable(y) for population  

0 200 200 75 0 0 0 0 675 0 

4000 13500 234 1335 4 0 0 35 0 55 

0 0 0 0 97 0 4 0 1815 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 1283 

  

Table2: Blue-winged teal data (Smith et al., 1995) as auxiliary variable(x) for population  

0 0 3 5 0 0 0 0 0 0 

0 0 0 24 14 0 0 10 103 0 

0 0 0 0 2 3 2 0 13639 1 

0 0 0 0 0 0 0 0 14 122 

0 0 0 0 0 0 2 0 0 177 

 

Table3: Average of the network (wy) of study variable(y) for population  

0 2162.78 2162.78 2162.78 0 0 0 0 675 0 

2162.78 2162.78 2162.78 2162.78 2162.78 0 0 35 0 55 

0 0 0 0 2162.78 0 4 0 1815 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 1283 

  

Table4: Average of the network (wx) of auxiliary variable for population  

0 
5.33 5.33 5.33 

0 0 0 0 0 0 

5.33 5.33 5.33 5.33 5.33 0 0 10 103 0 

0 0 0 0 5.33 3 2 0 13639 1 

0 0 0 0 0 0 0 0 14 122 

0 0 0 0 0 0 2 0 0 177 
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Table 5: Estimated Relative Bias of the population for different sample sizes  

n E(v) 
1t  2t  3t  4t  5t  6t  7t  8t  9t  

5 16.14  * -0.016   1.245  0.003   * -0.003   1.233  0.015  0.230  

10 24.31  * 0.012  0.999  0.006  * 0.006  1.040  0.003  0.211  

15 29.33  ** -0.011  0.856  -0.001  ** -0.001   0.885  0.001  0.195  

20 33.17  ** -0.012  0.710  -0.003 29.805  0.004  0.723  0.001  0.174  

25 36.54 20.667 -0.009 0.594  -0.002 20.077 -0.003 0.586 0.005 0.158 

 

Table 6: Percentage Relative Efficiencies for the population for the Estimators based on E(v) 

 

Table 7: Descriptive measures of the population 

282.42X   
2 3716168x   682.5779xC   0.0979xy   

466.66Y   
2 3972532y 

 

427.1035yC   0.2265wxy 

 

282.42xw   
2 3716156wx   682.577wxC 

 
50N   

466.64yw 

 

2 747163.9wy 

 

185.2362wyC 

 
0C   

 

 

 

 

 

 

 

 

 

 

 Simple Random Sampling  Adaptive Cluster Sampling 

E(v) y  1t  2t  3t  4t  5t  6t  7t  8t  9t  

16.14  100 * 101.12  14.98  123.12  * 133.92  14.47  124.44  78.60   

24.31  100 * 100.66  16.01  139.26  * 147.81  12.90  140.85  90.20  

29.33  100 0 100.93  15.92  161.11  0.00  172.29  12.12  163.94  100.39  

33.17  100 0 101.08  16.09  179.03  0.01  192.51  11.55  182.46  108.95  

36.54 100 0 101.02 15.83 194.83 0.01 205.33   10.82 199.06 117.60 



Muhammad Shahzad Chaudhry and Muhammad Hanif 

_______________________________________________________________________________ 

 

156 

 

Table 8: Some Proposed Estimators for future research 

SRS ACS SRS ACS SRS ACS 

ln
X

y
x

 
 
 

 lny
x

X
w

w

 
 
 

 sin
X

y
x

 
 
 

 siny
x

X
w

w

 
 
 

 1sin
X

y
x

  
 
 

 siny
x

X
w

w

 
 
 

 

ln 1
X

y
x

 
 

 

 ln 1y
x

X
w

w

 
 

 

 sin 1
X

y
x

 
 

 

 sin 1y
x

X
w

w

 
 

 

 1sin 1
X

y
x

  
 

 

 sin 1y
x

X
w

w

 
 

 

 

ln
X x

y
X x

 
  

 ln x
y

x

X w
w

X w

 
 

 

 sin
X x

y
X x

 
  

 
sin x

y
x

X w
w

X w

 
 

 

 1sin
X x

y
X x

  
  

 
1sin x

y
x

X w
w

X w

  
 

 

 

sinh
X x

y
X x

 
  

 
sinh x

y
x

X w
w

X w

 
 

 

 1sinh
X x

y
X x

  
  

 
1sinh x

y
x

X w
w

X w

  
 

 

 
cosh

X x
y

X x

 
  

 1cosh x
y

x

X w
w

X w

  
 

 

 

In General SRS In General ACS 

ln
( 1) ( 1)

X x Z z
y

X a x Z b z

  
   

    

  ln
( 1) ( 1)

x z
y

x z

X w Z w
w

X a w Z b w

  
   

    

  

( 1) ( 1)

X x Z z
yTRG

X a x Z b z

  
   

    
 

( 1) ( 1)

x z
y

x z

X w Z w
w TRG

X a w Z b w

  
   

    

 

( 1) ( 1)

X x Z z
yINVTRG

X a x Z b z

  
   

    
 

( 1) ( 1)

x z
y

x z

X w Z w
w INVTRG

X a w Z b w

  
   

    

 

( 1) ( 1)

X x Z z
yTRGH

X a x Z b z

  
   

    
 

( 1) ( 1)

x z
y

x z

X w Z w
w TRGH

X a w Z b w

  
   

    

 

( 1) ( 1)

X x Z z
yINVHTRG

X a x Z b z

  
   

    
 

( 1) ( 1)

x z
y

x z

X w Z w
w INVHTRG

X a w Z b w

  
   

    
 

 

 

where, 

TRG = Trigonometric functions 

INVTRG = Inverse Trigonometric functions 

TRG H = Hyperbolic Trigonometric functions 

INVHTRG = Inverse Hyperbolic Trigonometric functions 
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