
ISSN 1684-8403 

Journal of Statistics  

Volume 22, 2015.  pp. 121-138 

____________________________________________________________________ 

 
Bayesian Analysis of Kumaraswamy Mixture Distribution under  

Different Loss Functions 

 

Tabassum Naz Sindhu
1
, Navid Feroze

2
 and Muhammad Aslam

3
 

 

Abstract 

 

This paper develops a Bayesian Analysis in the context of new improved 

informative Prior for the shape parameter of the mixture of Kumaraswamy 

Distribution using the censored data. The objective of this study is to mingle both 

the informative and non-informative Priors for the improvement of the Prior 

information for the unknown parameter of the considered Distribution. We 

modeled the heterogeneous population using two components mixture of the 

Kumaraswamy Distribution. A comprehensive simulation scheme has been 

carried out to highlight the properties and behavior of the Estimates in terms of 

sample size, corresponding risks and the mixing weights. A censored mixture data 

is simulated by probabilistic mixing for the computational purpose. The Bayes 

Estimators of the said parameters have been derived under the assumption of 

informative and non-informative Priors using different Loss functions. 
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1. Introduction 

 

Kumaraswamy (1980) has introduced the Kumaraswamy Distribution.  
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This Distribution is applicable to many natural phenomena whose outcomes have 

lower and upper bounds, such as the height of individuals, scores obtained on a 

test, atmospheric temperatures, hydrological data, such as daily rain fall, daily 

stream flow, etc.  Kumaraswamy (1980) and Ponnambalam et al. (2001) have 

pointed out that depending on the choice of the parameter 𝛼 and 

𝛽 Kumaraswamy’s Distribution can be used to approximate many Distributions, 

such as Uniform, Triangular, or almost any single model Distribution and can also 

reproduce results of Beta Distribution. Nadarajah (2008) has argued that 

Kumaraswamy’s Distribution is a special case of the three parameter Beta 

Distribution. The basic properties of the Distribution have been given by Jones 

(2009). Garg (2009) discussed Generalized Order Statistics from Kumaraswamy 

Distribution. Gholizadeh et al. (2011) have carried out the classical analysis of the 

Kumaraswamy Distribution under Progressively Type II censored data. Sindhu et 

al. (2013) considered the Posterior Analysis of the Kumaraswamy Distribution 

under Type II censored samples. 

 

In recent years, the mixture models have received a considerable attention in the 

area of Survival Analysis and Reliability. Mixtures of Lifetime Distributions 

occur when two different causes of failure are present, each with the same 

parametric form of Lifetime Distributions. Demidenko (2004), Landsay (1995), 

Mclachlan and Peel (2000), Mcculloch and Searle (2001) and Titterington et al. 

(1985) are amongst the authors considering the Analysis of the mixture models. 

The characterizations of mixtures has been studied by Ismail and Khodary (2001), 

Nassar (1988) and Nassar and Mahmoud (1985). Ahmad et al. (1997) deduced 

approximate Bayes Estimation for mixtures of two Weibull Distributions under 

Type II censoring. Further, a mixture of two Inverse Weibull Distributions has 

been studied by Sultan et al. (2007).The authors dealing with Bayesian Analysis 

of mixture models include: Feroze and Aslam (2012), Feroze and Aslam (2013), 

Majeed and Aslam (2012), Saleem et al. (2010), Saleem and Aslam (2008a), 

Saleem and Aslam (2008b) and Saleem and Irfan (2010). 

 

The article is outlined as follows. In Section 2, we defined the mixture model of 

Kumaraswamy.  The sampling and Likelihood function are presented in the 

Sections 3 and 4, respectively. In Sections 5, the expressions for the Posterior 

Distributions have been presented. The Section 6 contains the derivation of the 

Estimators and corresponding Posterior risks. Method of Elicitation of hyper-

parameter for the mixture of Kumaraswamy Distribution via PriorPredictive 

approach is discussed in the Section 7. Predictive Distributions, Predictive 

Intervals and Credible Intervals are derived in the Sections 8 and 9, respectively. 
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A simulation study is performed in the 10. Some concluding remarks are given in 

the Section 11. 
 

2. The population and the model 

 

A population is postulated to be composed of two sub-populations with specified 

parameters. The sub-populations are mixed in proportion w, (1-w), where 0<w<1. 

A Finite Mixture Distribution function with the two component densities of 

specified parametric form (but with unknown parameters, 1  and 2  and with 

unknown mixing weights, w and (1-w) is, 

1 2( ) ( ) (1 ) ( )F x wF x w F x   , 0 1w   

with the two component Distribution functions of specified parametric 

(Kumaraswamy) form  
1

1( ) 1 (1 )F x x
   and 2

2( ) 1 (1 )F x x     

Throughout we assume that 1 2    .The corresponding Finite Mixture density 

function has its probability density function as:  
1 21 11 1

1 2 1 2( | , , ) (1 ) (1 ) (1 )p x w w x x w x x             
 

𝛽𝑖 > 0, 𝑖 = 1, 2        0 < 𝑥 < 1          (2.1)
 

 

3. Sampling 

 

A random sample of n units from the above Mixture model is operating to a life 

testing experiment. The test is terminated at a fixed time T. Let, the test to be 

conducted and it is observed that out of n, r units have lifetime in the interval [0, 

T] and (n-r) units are still functioning when the test termination time T is over. 

Hence (n-r) units that have not failed by the time T are censored objects and yield 

no information. According to Mendenhall and Hader (1958), in many real life 

situations only the failed objects can easily be identified as member of either sub-

population 1 or sub-population 2. So, depending upon the causes of failure it may 

be observed that 1r and 2r objects are identified as members of the first sub-

population and the second population, respectively. Obviously, 1 2r r r   and 

remaining (n-r) units provide no information about the sub-population to which 

they belong. Furthermore, let ijx as the failure time of the j
th

 unit to the i
th

sub-

population, where 1 21,2,..., , 1,2;0 , .i j jj r i x x T   
 

 

 



Tabassum Naz Sindhu, Navid Feroze and Muhammad Aslam  

_______________________________________________________________________________ 

 

124 

 

4. The Maximum Likelihood function 

 

The Likelihood function for a two-component mixture with n items under study, 

the probability that 
1r will fail due to cause 1, 2r will fail due to cause 2 and 

remaining 1 2( )n r r  will survive at time T when test is terminated is given as: 

      
1 2

1 2 1 1 2 2

1 1

( , , x) 1
r r

n r

j j

j j

L w wf x wf x F T 


 

       

   

1 2

1 1 2 1

2 1 12 1 2

ln(1 ) ( )ln(1 ) ln(1 ) ln(1 )

1 2 1 2

0

, , x 1

r r

j j

j j

x n r k T x k Tn r
r kn r k r r

k

n r
L w w w e e

k

    

     

      
          

         



  
  

 
|

 

   
     1 1 1 2 2 222 1 2

1 2 1 2

0

, , x 1
j j j j

n r
x xr kn r k r r

k

n r
L w w w e e

k

   
   


  



 
  

 
|

         

(4.1)               

where 

1 211 12 1 21 22 2( , ) ( , ,..., , , ,..., )r rx x x x x x 1 2x x x is data,  

 
1

1 1 1

1

ln(1 ) ( ) ln(1 )
r

j j j

j

x x n r k T 


 
       

 


 
And 

 
2

2 2 2

1

ln(1 ) ln(1 )
r

j j j

j

x x k T 


 
     

 
  

 

5. Prior and Posterior Distributions 

 

The Posterior Distributions under the assumption of Uniform, Jeffrey’s and 

Jeffreys Gamma Priors have been derived and presented in the following. 

 

5.1 Bayesian Estimation under Uniform Prior: Let us assume a state of 

ignorance that 1 2,   are uniformly distributed over (0, )  and w  is uniformly 

distributed over (0,1) .  

Hence, 1 1 1 2 2 2( ) , ( ) , 0ip k p k     and 3( ) 1,0 1p w w            (3) 

Assuming independence, we have an improper joint Prior that is proportional to a 

constant. The Joint Prior is incorporated with the Likelihood equation (4.1) to 
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yield a proper joint Posterior Distribution of 1 2,  and w . The joint Posterior 

Distribution of 1 2,  and w is, 

     

   

2 1 1 1 2 2 22 1 2

1 2

( ) ( )

1 2

0

1 2

1 2
1 2 1 1

0
1 1 2 2

1

( , ,
( 1) ( 1)

( , )
( ) ( )

j j j j

n r
r k x xn r k r r

k

n r

r r
k

j j j j

n r
w w e e

k
p w

n r r r
B

k x x

   
 

 

 
 


   





 


 
 

 
     

 
 




| )x                (5.1.1) 

where 

1 2 1n r k     , 2 2 1r k     and 1 2( , )B   is Standard Beta function. 

 

5.2 Bayesian Estimation under Jeffrey’s Prior: Jeffrey’s Prior is locally Uniform 

and hence non-informative. An appealing property of Jeffrey’s Prior is that it is 

invariant with respect to one-to-one transformations. For the Kumaraswamy 

model given in section 2, the Jeffrey’s Priors are 

1 1 1

1

1( ) , 0 ,p   
   

2 2 2

1

2( ) , 0p   
    and 3( ) 1,0 1.p w w    

Assuming independence, the joint Prior  2

1

1 1 2( , ),g w  


 is incorporated with 

the Likelihood equation (4.1) to yield a proper joint Posterior Distribution of 

1 2,  and w .The joint Posterior Distribution under Jeffrey’s Prior is: 

     

   

2 1 1 1 2 2 22 1 2

1 2

( ) ( )1 1

1 2

0

1 2

1 2
1 2

0
1 1 2 2

1

( , ,
( ) ( )

( , )
( ) ( )

j j j j

n r
r k x xn r k r r

k

n r

r r
k

j j j j

n r
w w e e

k
p w

n r r r
B

k x x

   
 

 

 
 


     







 
 

 
   

 
 




| )x

                

(5.2.1) 

 

5.3 Bayesian Estimation under the Jeffrey’s-Gamma Prior: For the 

Kumaraswamy Model the Jeffrey’s Prior is, 

 2

1

1 1 2( ),g   



 

Now, let us suppose 
1 1 1 2 2 2

( , ), ( , )JGamma a b JGamma a b    and (0,1)w  , 

assuming independence, the joint Prior 1 2 1 1 2 2( 2) ( 2) ( )

1 2 1 2( , , )
a a b b

g w e  
   

   
  is 

incorporated with the Likelihood equation (4.1) to have the Posterior Distribution.  

The Joint Posterior Distribution under the Jeffrey’s-Gamma Prior 
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2 1 1 2 21 22
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( ) 1 ( ) 1

1 2

0

1 2
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1 2 ( ) ( )
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1 2

1

( , ,
( ) ( )

( , )
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w w e e
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| )x                    (5.3.1) 

where 

1 1 1 1k r a    , 2 2 2 1k r a    , 
1 1 1 1( )k j jb x   and 

2 2 2 2( )k j jb x   . 

 

6. Bayesian Estimator and Posterior risk 

 

The Posterior Distributions in equations (5.1.1), (5.2.1) and (5.3.1) have been 

used to derive the Bayes Estimators and Posterior risks of 1 2,  and w under 

Weighted Loss Function (WLF), Quadratic Loss Function (QLF) and Squared 

Error Loss Function (SELF). The definitions of these Loss functions along with 

formulas for Bayes Estimators and Posterior risks are as under: 

 

Weighted Loss Function can be defined as: 

   
21,WLF WLFL        

  
1

1

WLF 


   ;    WLF WLF       

The Squared Error Loss Function is defined as: 

   
2

, SELF SELFL      .
 

 SELF     ;       
22

SELF      
 

The Quadratic Loss Function can be defined as: 

    
2

1, QLF QLFL      

 
 
 

1

2QLF














 ;  
  
 

2
1

2
1QLF


 








 


 

 

6.1 The expressions for the Bayes Estimators and Posterior risks under 

Uniform Prior using WLF: For convenience following notation has been used.

 
   1 21 2

1 2 1 2
1 2,

0
1 1 2 2

( , ) ( ) ( )
,

( ) ( )

n r

r i r ir i r i
k

j j j j

n r B i r i r i
v i

k x x
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where       0,1,2i   

The Bayes Estimators and Posterior risks are evaluated under Weighted Loss 

Function are provided as: 

 

 

 
1 2

1 2

1 21, 1

1

1 2, 1

,
ˆ

,
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r r
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1 2 1 2
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v v

v v

   
 

   

   

  

   

 

 
1 2

1 2
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1 21,

,
ˆ
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r r

r r

v
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  and 
 

 

 

 
1 2 1 2

1 2 1 2

1 2 1 21, 2 1, 1

2

1 2 1 21, 1 1,

, ,
ˆ( )

, ,

r r r r

r r r r

v v

v v
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1 2
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1 21, 1
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ˆ
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r r

r r
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1 2 1 2
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v v
w

v v

   


   

   

   


 


 

 

6.2 The expressions for the Bayes Estimators and Posterior risks under 

Uniform Prior using QLF: The Bayes Estimators and Posterior risks are 

evaluated under Quadratic Loss Function are provided as: 

 

 

 
1 2

1 2

1 2, 1

1

1 21, 1

,
ˆ

,

r r

r r

v

v

 


 



 

 and 
  

     
1 2

1 2 1 2

2

1 2, 1

1

1 2 1 21, 1 1, 1

,
ˆ( ) 1

, ,

r r

r r r r

v

v v

 
 

   



   

   

 

 
1 2

1 2

1 21,

2

1 21, 1

,
ˆ

,

r r

r r

v

v

 


 



 

  and 
  

     
1 2

1 2 1 2

2

1 21,

2

1 2 1 21, 1 1, 1

,
ˆ( ) 1

, ,

r r

r r r r

v

v v

 
 

   



   

   

 

 
1 2

1 2

1 21, 1

1 21, 1

1,
ˆ

2,

r r

r r

v
w

v

 

 

 

 





 and 

  
     

1 2

1 2 1 2

2

1, 1 2

1 2 1 21, 1 1, 1

1,
( ) 1

, 2,

r r

r r r r

v
w

v v

 


   



   

 
 


 

 

6.3 The expressions for the Bayes Estimators and Posterior risks under 

Uniform Prior using SELF: The Bayes Estimators and Posterior risks are 

evaluated under Squared Error Loss Function are provided as: 

 

 
1 2

1 2

1 22, 1

1

1 21, 1

,
ˆ

,

r r

r r

v

v

 


 

 

 

 and 
 

 

 

 
1 2 1 2

1 2 1 2

2

1 2 1 23, 1 2, 1

1

1 2 1 21, 1 1, 1

, ,
ˆ( )

, ,

r r r r

r r r r

v v

v v

   
 

   

   

   

  
   

  

 



Tabassum Naz Sindhu, Navid Feroze and Muhammad Aslam  

_______________________________________________________________________________ 

 

128 

 

 

 
1 2

1 2

1 21, 2

2

1 21, 1

,
ˆ

,

r r

r r

v

v

 


 

 

 

  and 
 

 

 

 
1 2 1 2

1 2 1 2

2

1 2 1 21, 3 1, 2

2

1 2 1 21, 1 1, 1

, ,
ˆ( )

, ,

r r r r

r r r r

v v

v v

   
 

   

   

   

  
   

  

 

 

 
1 2

1 2

1 21, 1

1 21, 1

1,
ˆ

,

r r

r r

v
w

v

 

 

 

 


  and 

 

 

 

 
1 2 1 2

1 2 1 2

2

1 2 1 21, 1 1, 1

1 2 1 21, 1 1, 1

2, 1,
ˆ( )

, ,

r r r r

r r r r

v v
w

v v

   


   

   

   

   
   

  

 

 

The expressions for Bayes Estimators and Posterior risks under remaining Priors 

can be derived with little modifications.

 

 

7. Elicitation of hyper-parameters of Jeffrey’s-Gamma Prior through Prior 

Predictive probabilities 

 

To elicit a Prior density, Aslam (2003) forms some new methods base on the Prior 

Predictive Distribution. For the elicitation of hyper-parameters, he considers Prior 

Predictive probabilities, Predictive mode and confidence level. In this study, the 

method of Prior Predictive probabilities is used for obtaining the hyper-

parameters of the considered informative Prior. The equation of Prior Predictive 

under the Jeffrey’s-Gamma Prior is given as: 
1

1 2 1 2

0 0 0

( ) ( , , ) ( , , )p y p w p y w   
 

    |

                                                              

(7.1)    

where 
1 21 11 1

1 2 1 2
( , , ) (1 ) (1 ) (1 )p y w w y y w y y

    
   

  
    |  

and  
1 2

1 1 1 2 2 22 21 2
1 2 1 2

1 2

( , , )
( ) ( )

a a
a b a bb b

p w e e
a a

       

 

.  

Throughout we assume 1 2    . 

After some algebra,

   

1 2

1 2

1

2 1 1 2

2 1 1 2

( )
2(1 ) ( 1) ln(1 ) ( 1) ln(1 )

a a

a a

b b b by
p y

y a b y a b y



  




 
      

 
 
 
 

                      (7.2) 

As we have to elicit four hyper-parameters so we have to consider four integrals. 

The set of hyper-parameters with minimum values has been chosen to be the 

elicited values of the hyper-parameters. By considering the Prior Predictive 
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Distribution in equation (7.2), we have assumed the expert’s probabilities to be 

0.20 for each integral. We considered the following integrals:  

 
0.15

0.00

0.20g y dy  ,  
0.30

0.15

0.20g y dy  ,  
0.40

0.30

0.20g y dy   and  
0.60

0.45

0.20g y dy  . 

Now, these integrals have been simultaneously solved through a program written 

in SAS package using the “PROC SYSLIN” command and the elicited values of 

the hyper-parameters have been found to be 1 4.001269a  , 1 2.401326b   and

2 20.001596, 1.234217a b  . 

 

8. Predictive Distribution 

 

The Predictive Distribution contains the information about the independent future 

random observation given preceding observations. The more details can see from 

Bolstad (2004) and Bansal (2007). 

 

8.1 Posterior Predictive Distribution and Predictive Intervals: The Posterior 

Predictive Distribution of the future observation 1ny x  is, 

1

1 2 1 2 1 2

0 0 0

( ( , , ) ( , , )p y p w p y w dwd d     

 

  | ) = | x |x                                       (8.1.1) 

where 

   
1 21 1

1 1

1 2 1 2( , , ) 1 (1 ) 1p y w w y y w y y
 

      
 

     |  

is the future observation density and  1 2, ,p w  | x is the joint Posterior 

Distribution obtained by incorporating the Likelihood with the respective Prior 

distributions. A (1-k) 100% Bayesian Predictive Interval (L, U) can be obtained 

by solving the following two equations simultaneously. 

( (
2

L

U

k
p y dy p y dy




  | ) | )x x  

 

8.1.1 Posterior Predictive Distribution and Predictive Intervals assuming 

Uniform Prior: The Posterior Predictive Distribution of the future observation

1ny x  is, 
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             (8.1.1a)   

The lower and upper limits of the Posterior Predictive Interval  ,L U can be 

obtained by the simultaneous solution of the following two equations.  
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=     (8.1.1b) 

The Posterior Predictive Distributions and intervals under Jeffrey’s and Jeffrey’s 

Gamma Prior can be obtained in a similar manner. As the limits of the Posterior 

Predictive Intervals cannot be derived in the closed form, we have used iterative 

methods (such as Newton Raphson Method) on Mathematica software to obtain 

the numerical results of the limits. The Posterior Predictive Distributions and 

intervals under Jeffrey’s and Jeffrey’s Gamma Prior can be obtained in a similar 

manner. 

 

9. Credible Interval 

 

According to Eberly and Casella (2003), the Credible Interval can be defined as: 

0

( ) ,
2

L
k

g d   |x ( )
2

U

k
g d 



 |x  

where                                                   
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L and U are the lower and upper limits of the Credible Interval, respectively. And  

k  is the level of significance. 

 

9.1 Credible Interval for 1 2, 
 
and w using Uniform Prior: The (1 )100%k

Credible Interval for 1  on the basis of Uniform Prior can be obtained by the 

simultaneous solution of the following equations for L and U, respectively. For 

convenience following notations have been used. 

 
 

   1 21 2

1 2 1 1 1 2
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1 1 2 2
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where 

  1

0

,

q

p xp q x e dx    is an Incomplete Gamma function. 

The (1 )100%k  Credible Interval for 2  on the basis of Uniform Prior can be 

obtained by the simultaneous solution of the following equations for L and U, 

respectively. 
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The (1 )100%k  Credible Interval for w on the basis of Uniform Prior can be 

obtained by the simultaneous solution of the following equations for L and U, 

respectively. 
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The Credible Interval for the remaining Priors can be constructed by considering 

the mentioned method. As the limits of the Credible Intervals cannot be derived in 

the closed form, we have used iterative methods (such as Newton Raphson 

Method) on Mathematica software to obtain the numerical results of the limits. 

The Posterior Predictive Distributions and intervals under Jeffrey’s and Jeffrey’s 

Gamma Prior can be obtained in a similar manner. 

 

10.  Simulation study 

 

A simulation study is carried out to investigate the performance of Bayes 

Estimators and the impact of sample size and mixing proportion. We take random 

samples of sizes n = 50, 100 and 500 from the two component mixture of 

Kumaraswamy Distribution with
1 2

( , ) (2, 4)   , 0.4,0.6w  . To generate a 

mixture data, we make use of probabilistic mixing with probability; w and (1 )w . 

A uniform number u is generated n times and if u w the observation is taken 

randomly from 1F  (the Kumaraswamy Distribution with parameter 1 ) otherwise 

from 2F (from the Kumaraswamy Distribution with parameter 2 ). Hence, the 

parameters to be estimated are known to be 1 2,  and w . To implement censored 

sampling, all the observations greater than T are declared as censored ones. The 

tests termination time is considered to be so that the censoring rate in each sample 

is 20%. To avoid an extreme sample, we simulate 1000 data sets each of size n. 

The Bayes Estimates and Posterior risks are computed using Mathematica 7.0. 

The average of these Estimates and corresponding risks are reported in Tables 1-

9.Predictive Intervals and Credible Intervals are presented in Table 10-13. The 

comparison observed has been summarized in last Section. For convenience, we 

have assumed 1 2 1     . 

 

11.  Conclusion 

 

In order to form a new informative Prior, which perform better than the 

informative and non-informative Prior, a new methodology has been introduced 

to mingle the Prior information to update the information about the unknown 

parameters of mixture model under study. 

 

Tables 1-13, appended above give Bayes estimates, corresponding risks, 95% 

Predictive and Credible Intervals for the parameters of the mixture model. Which 

are empirically evaluated based on a Monte Carlo simulation study of samples. 
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This simulation study has displayed some interesting properties of the Bayes 

Estimates. The interesting remark concerning the Posterior risks of the Estimators 

of
1 2
,  and w is that increasing (decreasing) the proportion of a component in the 

mixture reduces (increases) the Posterior risk of the corresponding 
1  parameter’s 

Estimate. Further, the increase in the sample size reduces the Posterior risks of the 

Estimators of
1 2
,  and w . The Bayes estimates are underestimated with few 

exceptions, but the extent of this under-estimation is inversely proportional to the 

sample size. The Posterior risk of the mixing parameter w  is same under WLF 

assuming uniform and Jeffrey’s Prior.  The Bayes Estimates with new informative 

(Jeffrey’s-Gamma) Prior are more precise than existing non-informative 

counterparts. Tables 10-13, give the results of Interval Estimation which are in 

accordance with the Point Estimation. The credible and Predictive Intervals work 

quite well under the new informative Prior. The width of Predictive and Credible 

Interval is inversely proportional to sample size. The findings of the present study 

suggest that in order to estimate
1 2
,  and w , the use of Quadratic Loss Function           

under the new proposed  Prior can be preferred.  

 
 

Table 1: Bayes Estimates (Uniform) of Kumaraswamy  mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under WLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
2.10697 4.14820 0.39216 2.06893 4.19734 0.58824 

(0.105348) (0.138273) (0.011689) (0.068964) (0.209867) (0.007919) 

100 
2.05933 4.08328 0.39604 2.02702 4.10490 0.59406 

(0.051483) (0.068055) (0.005212) (0.033784) (0.102622) (0.003980) 

500 
2.01206 4.01600 0.39920 2.00730 4.02030 0.59880 

(0.010060) (0.013387) (0.001197) (0.006691) (0.020102) (0.000799) 

 

Table 2: Bayes Estimates (Jeffrey’s) of Kumaraswamy  mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under WLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
2.10462 3.98993 0.39216 1.99803 3.98411 0.58824 

(0.105063) (0.137584) (0.011689) (0.068899) (0.20969) (0.007919) 

100 
2.00318 3.99141 0.39604 1.99807 3.98436 0.59406 

(0.051338) (0.067651) (0.005212) (0.033765) (0.102163) (0.003980) 

500 
1.99904 3.99869 0.39920 2.00017 3.99596 0.59880 

(0.010045) (0.013368) (0.001197) (0.006684) (0.020082) (0.000799) 
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Table 3: Bayes Estimates (Jeffrey’s-Gamma) of Kumaraswamy mixture parameters and their risks 

(in parenthesis) with 
1 22, 4, 0.4,0.6w    under WLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
1.83500 3.28273 0.39266 1.88170 2.98415 0.58837 

(0.083405) (0.117234) (0.011579) (0.058801) (0.165771) (0.007910) 

100 
1.91087 3.63228 0.39614 1.94152 3.43705 0.59416 

(0.045496) (0.062624) (0.005210) (0.031314) (0.090445) (0.003978) 

500 
1.98205 3.92604 0.39930 1.98589 3.88560 0.59884 

(0.009812) (0.013175) (0.001191) (0.006576) (0.019624) (0.000791) 

 

Table 4: Bayes Estimates (Uniform) of Kumaraswamy mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under QLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
1.99642 3.99760 0.38000 1.99762 4.99875 0.58000 

(0.050000) (0.035712) (0.031000) (0.03333) (0.055556) (0.014000) 

100 
1.99798 3.99127 0.39125 1.99836 4.99572 0.59000 

(0.025000) (0.017241) (0.015250) (0.016667) (0.026315) (0.006833) 

500 
2.00176 4.00131 0.39800 1.99964 3.99419 0.59800 

(0.005000) (0.003356) (0.003010) (0.003333) (0.005050) (0.001340) 

 

Table 5: Bayes Estimates (Jeffrey’s) of Kumaraswamy mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under QLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
1.89940 3.85521 0.381421) 1.92727 3.79060 0.58315 

(0.052632) (0.034483) (0.030100) (0.034483) (0.052632) (0.01390) 

100 
1.95103 3.94053 0.39315 1.96743 3.88466 0.59210 

(0.025641) (0.016949) (0.151000) (0.016949) (0.025641) (0.006812) 

500 
1.98874 3.98976 0.39835 1.99339 3.97902 0.59873 

(0.005025) (0.003344) (0.003000) (0.003344) (0.005025) (0.001330) 

 

 

Table 6: Bayes Estimates (Jeffrey’s-Gamma) of Kumaraswamy mixture parameters and their risks 

(in parenthesis) with 
1 22, 4, 0.4,0.6w    under QLF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
1.74589 3.91531 0.38412 1.83078 2.80724 0.58425 

(0.045452) (0.033333) (0.030000) (0.031249) (0.050000) (0.013800) 

100 
1.86735 3.56320 0.39510 1.90543 3.36077 0.59420 

(0.023809) (0.008333) (0.150000) (0.016129) (0.025000) (0.006801) 
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n 1 2   
2 4   0.4w   1 2   

2 4   0.6w   

500 
1.97199 3.90531 0.39853 1.98127 3.86458 0.598913 

(0.004950) (0.003333 (0.002900) (0.003311) (0.005000) (0.001310) 

 

Table 7: Bayes Estimates (Uniform) of Kumaraswamy mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under SELF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
2.21144 4.28778 0.403846 2.13209 4.42284 0.59615 

(0.245958) (0.614637) (0.004543) (0.151891) (0.982007) (0.004520) 

100 
2.10026 4.13689 0.401961 2.06055 4.20677 0.59804 

(0.110418) (0.285314) (0.002334) (0.070759) (0.44288) (0.002333) 

500 
2.01695 4.02025 0.400040 2.01475 4.04145 0.59972 

(0.020340) (0.053876) (0.000477) (0.013530) (0.081668) (0.000475) 

 

Table 8: Bayes Estimates (Jeffrey’s) of Kumaraswamy mixture parameters and their risks (in 

parenthesis) with 
1 22, 4, 0.4,0.6w    under SELF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
2.11222 4.12871 0.40375 2.06245 4.23410 0.59625 

(0.235108) (0.588059) (0.004542) (0.146674) (0.947475) (0.004510) 

100 
2.04154 4.06376 0.401619 2.03417 4.10804 0.59903 

(0.106905) (0.280039) (0.002333) (0.070168) (0.4331160) (0.002330) 

500 
2.01358 4.01375 0.40038 2.00612 4.01965 0.59990 

(0.020372) (0.053823) (0.000472) (0.013461) (0.081201) (0.000470) 

 

Table 9: Bayes Estimates (Jeffrey’s-Gamma) of Kumaraswamy mixture parameters and their risks 

(in parenthesis) with 
1 22, 4, 0.4,0.6w    under SELF. 

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

50 
1.91686 3.41129 0.40360 1.94120 3.14402 0.59572 

(0.165449) (0.411474) (0.004540) (0.117184) (0.537526) (0.004500) 

100 
1.96132 3.68192 0.401423 1.97270 3.53184 0.59924 

().091401) (0.233202) (0.002301) (0.062673) (0.32622) (0.002310) 

       

n 1 2   2 4   0.4w   1 2   2 4   0.6w   

500 
1.99155 3.93020 0.40024 1.99437 3.90911 0.59995 

(0.019633) (0.051824) (0.00069) (0.013169) (0.077159) (0.000390) 
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Table 10: The Lower Limit (LL), the Upper Limit (UL) of the 95% Prediction Intervals for,

2 4  w=0.4 

n 
Uniform Prior Jeffreys Prior Jeffreys-Gamma 

LL UL LL UL LL UL 

50 0.089008 0.887352 0.087394 0.876921 0.096307 0.658140 

100 0.088953 0.879832 0.088071 0.874445 0.092474 0.630017 

200 0.088863 0.875641 0.088481 0.873502 0.090659 0.616520 

300 0.088822 0.874085 0.088515 0.872458 0.090049 0.613753 

500 0.088837 0.873411 0.088688 0.872423 0.089569 0.610101 

 

Table 11: The Lower Limit (LL), the Upper Limit (UL) of the 95% Credible Intervals under 

Uniform Prior 

n 1 2   2 4   0.4w   

LL UL LL UL LL UL 

50 1.806320 1.312590 1.303840 5.722060 0.27584 0.53886 

100 1.251330 1.469960 1.467730 5.144510 0.30931 0.49826 

500 0.556780 1.745730 1.742270 4.480240 0.35797 0.44358 

 

 

Table 12: The Lower Limit (LL), the Upper Limit (UL) of the 95% Credible Intervals under 

Jeffrey’s Prior 

n 1 2   2 4   0.4w   

LL UL LL UL LL UL 

50 1.22222 2.96846 1.22324 5.58370 0.27584 0.53885 

100 1.42851 2.66512 1.42754 5.06772 0.30931 0.49826 

500 1.73310 2.28744 1.73632 4.46147 0.35797 0.44358 

 

Table 13: The Lower Limit (LL), the Upper Limit (UL) of the 95% Credible Intervals under 

Jeffrey’s-Gamma 

n 1 2   2 4   0.4w   

LL UL LL UL LL UL 

50 1.18050 2.69680 1.17187 4.67150 0.27584 0.53886 

100 1.38818 2.53248 1.38924 4.60789 0.30931 0.49826 

500 1.71816 2.26305 1.71886 4.388247 0.35797 0.44358 
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