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Abstract 

 

The relation between excess return and risk of financial assets is frequently 

determined by the mean-standard deviation ratio. Previous research in this matter 

only derived Point Estimators of this parameter while Inference procedures are 

currently void. This paper derives a Bayesian procedure for making Inference of 

this ratio which is easy to apply. Specifically, a method for testing if two ratio 

coefficients are equal for two independent population segments is derived. This, 

hence, provides the analyst with a tool for assessing if, e.g. Technique Stocks and 

Forestry Stocks, have equal risk/return ratio. This paper demonstrates the 

procedure by an empirical application using data from the Stockholm Stock 

Exchange. 
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1. Introduction 

 

It is often of interest to compare the standard deviation with the mean value of a 

Distribution. For example, in financial economic theories it is stated that the higher 

the risk an investor is willing to take, the higher is the potential return from the 

investment. The standard deviation can be used to compare risks among 

investments that have the same expected return. Another way to assess risk/return 

ratios is to use the reciprocal of the coefficient of variation, which corresponds to 

the mean value divided by the standard deviation.  
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This has been used in many fields such as finance, Osteryoung et al. (1977) and 

imaging, Lopes et al. (1993),etc. This measure indicates the expected return per 

unit of risk. Hence, a larger value of this quotient signifies a greater return relative 

to the risk.  

 

In financial theory, this measure is known as the Sharpe Ratio, (Sharpe (1966)). 

While this ratio is traditionally calculated for a single Stock, Holgersson et al. 

(2012) derived a related ratio to describe the common risk/return ratio, say  , for 

a whole segment of Stocks, e.g. for Large Cap Stocks. Three different Estimators 

of   were proposed using the Frequentist approach. However, that paper did not 

provide any theories for Inference of this parameter and it is questionable if such 

procedures can be derived at all within a Frequentist framework. This paper, 

therefore, derives procedures for Statistical Inference, in particular Interval 

Estimation and hence Hypothesis Testing, for assessing if two population 

segments, e.g. Technique Stocks and Forestry Stocks or Large Cap and Small Cap 

Stocks, have equal risk/return ratio. This in turn should be a useful tool for 

investors since they would typically like to have the highest possible financial 

award for taking a given risk, while Point Estimates alone will be insufficient for 

important decisions. Specifically, we propose the use of a vague Prior, which is a 

Non-informative Prior popular in the Bayesian literature (see for example; Box 

and Tiao (1973), Tiao and Zellner (1964) and Zellner (1971)). By using this Prior, 

one can connect the Bayesian modeling result with Frequentist results proposed 

by Holgersson et al. (2012). In order to demonstrate the use and application of the 

proposed method it is applied on a data set from the Stockholm Stock Exchange 

where the possible equality between 
Small  (Small Cap parameter) and Large  

(Large Cap parameter) is tested. 

 

The paper is organized as; in Section 2 the underlying model is specified along 

with the proposed method. Then in Section 3, the empirical application is 

provided and, finally, in Section 4 a brief summary and a conclusion are given.   

 

2.  Model specification 

 

To model the link between the standard deviation and mean of a variable itX , e.g. 

the return of Stock iX  at time t, we consider the following functional form 

between the mean and standard deviation, 

i i                                                                                            (2.1) 
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where 

itX is a normally distributed variable such that  , i itE X   
2

i it iE X   , 

1,..., ,  1,...,i n t T   and   i , 0   (Holgersson et al. (2012)). 

 

Hence, the functional form of the relationship between the mean and standard 

deviation corresponds to a linear one. Such a setting may be justified by looking 

at Figure 1 (further investigations are supplied in the Appendix). In that figure, 

the relationship between the sample mean and standard deviation of the S&P 100 

Stocks is applied as an illustration. The data used are retrieved from the database 

Data-Stream involving monthly returns covering the time period 1995- 2010.  
 

The problem of making Inference of the Beta parameter of equation (2.1) should 

not be confused with traditional Financial Risk Analysis which is typically 

concerned only with Risk Estimation of a single Stock or of a portfolio of Stocks.  

In order to make Inference of the   parameter we note that 1
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   are Sufficient Statistics for  i and i respectively. 

Hence, the model specified in equation (2.1) can be written as: 

i i itX                                                                        (2.2) 

where 

it  allows the relationship/points to fall away from the line with slope   and
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The Likelihood Function as a function of the parameters  and    can then be 

written as: 
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The expression in equation (2.4) is the Likelihood Function to be combined with a 

suitable Prior probability density function for the parameters of interest. In recent 

Bayesian literature, Non-informative Priors are used for fidelity reason and the 

reason behind the use of a vague Prior is that one can conveniently link the 

Bayesian modeling result with Frequentist results. Numerically, the Frequentist 

and the Bayesian approach usually yield similar results in case the Bayesian 

procedure uses a vague Prior. In our context, however, no Frequentist Inference 

procedures are currently available due to the complexity of the parameter Point 

estimate (Holgersson et al. (2012)). For the Prior Distribution of   and  we 

here assume that only little Prior information is available about these parameters. 

A specific Non-informative Prior proposed by Zellner (1971) is defined as:

( , ) ( ) ( ) .p p p                                                            (2.5) 

Using equation (2.5), the Prior probability density function (p.d.f) for   and   

can be written as: 

1
( , )p 



 


 (2.6) 

where 

    and  0   .  

By combining equation (2.4) and (2.6) the Joint Posterior p.d.f for   and   

becomes as follows: 
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The Joint Posterior p.d.f of  and    given in equation (2.7) facilitates 

estimation of the Marginal Posterior p.d.f of  . This is defined as follows: 
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In this paper, Particular interest is to test if the   coefficients for two 

independent segments, or sub-samples, are equal. Specifically, we wish to test 

0 0: 0 vs : 0d dH H   , where d  is defined as the difference between two 
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Beta parameters, e.g., 1 2 .   Hence, we are dealing with the two-sample 

problem of comparing slope parameters of two Regression models, i.e. the  

coefficients of two independent segments following equation (2.1) of Holgersson 

et al. (2012). In order to test 0 1 2 1 1 2: 0 . : 0   H vs H    , we first calculate 

the Bayes Estimators 
1̂  and 

2̂ ,and their variances 
1

2

ˆs


, and 
2

2

ˆs


,and  then plug in 

the values into the equation given as: 

2

/2
ˆ ( )d dt s                                                          (2.9) 

where 

1 2
ˆ ˆ ˆ

d     is the difference between the Estimators of 1  and 2 , and 

1 2

2 2 2

ˆ ˆ ds s s
 

is the corresponding combined variance of the difference between 

the slope parameters. Equation (2.9) hence gives the appropriate Credible Interval 

for d . The reason for broadening the Credible Interval by using t-distribution 

critical values is to account for the increased uncertainty due to not knowing 2

 . 

Further details on Credible Intervals are available in Bolstad (2007). By the 

Credible Interval, defined in equation (2.9) above, we are able to test 

0 1 2 1 1 2: 0 . : 0   H vs H    at the  level of significance in a convenient 

way. If the value 0 lies outside the Interval we reject the null hypotheses in 

favour of the alternative hypotheses. 

Whereas, no Frequentistic method presently exists for making Inference of the 

difference between two Beta parameters of equation (2.1), other than Point 

Estimates, the above procedure for Interval Estimation of the difference of two β 

parameters of equation (2.2) provides investors with a fully operational and fairly 

simple tool for comparing risk premiums of two segments of Stocks. In order to 

demonstrate the proposed method further, we will in the following section apply it 

on a real data set. 

 

3. Empirical application 

 

The empirical analysis is performed on Stocks listed on the Stockholm Stock 

Exchange during the period from June 1995 to June 2010, retrieved from the 

database Data-Stream. The data set consists of monthly excess returns. The 

population is split into two segments, namely Large Cap and Small Cap. This 

division is determined by the market capitalization of each company following the 



A Bayesian Approach for Estimating Mean-Standard Deviation  

Ratios of Financial Data 

_______________________________________________________________________________ 

97 

Stockholm Stock Exchange segmentation. The Large Cap segment consists of 77 

Stocks and the Small Cap consists of 131 Stocks. Scatter plots of the two different 

sub-populations can be found in Figures 2 and 3. By looking at the scatter plots 2 

to 3, it is seen that there is an upward trend for the Large Cap while the Small Cap 

slope is not so steep though both are positive. Hence, as the standard deviation of 

the excess return increases, so does the mean excess return.  

 

Using the software package WINBUGS (Ntzoufras, 2009), 10000 iterations 

(updates) have been conducted and the first 1000 iterations are discarded to 

reduce eventual start-up effects. In Figures 4 and 5, the Posterior density plots of 

the slope parameter of the Large Cap and Small Cap, respectively, can be found. 

Similarly, for the Large Cap and Small Cap the iterations from WINBUGS are 

shown in Figures 6 and 7. These plots show that the parameters traces are stable 

and there are no upward or downward trends. Besides, the density plots show 

bell-like Posterior Distributions indicating tight Posteriors. 

 

The separate   parameters, Posterior means, standard deviations and Credible 

Interval of the parameter obtained from the Posterior Distribution in equation 

(2.8) are given in Table 1 while the 95% Credible Interval of the difference  

( Large Small  ) using equation (2.9) is given in Table 2.From Table 1, it is seen 

that the Posterior mean of the ˆ
Large  is larger than the one for ˆ

Small . This is in 

line with what was expected based on the preliminary inspection of the scatter 

plots in Figure 2 and 3. The standard deviation is also larger for ˆ
Large  than ˆ

Small  

even though the variation of the observations seems to be larger for Large Cap 

than Small Cap when looking at Figures 1 and 2. This is also expected since there 

are more observations for Small Cap than Large Cap, which in turn decreases the 

standard deviation. 

 

From Table 2, it is seen that the 95%  Credible Interval of the difference  

( Large Small  ) is (0.0416; 0.0807). The decision rule to use this Credible Interval 

to test 0 : 0Large SmallH    against the alternative hypothesis  

1 : 0Large SmallH    is to reject 0H  if the value 0is not included in the Interval. 

Since 0 is not included in the Interval in Table 2, it is concluded that the 

Regression coefficient for the Large Cap and Small Cap are significantly 

different. 
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4.   Summary and conclusion 

 

Financial Analysis frequently involves Risk Estimation of portfolios or estimation 

of excess return to standard deviation of single Stocks. However, recent research 

has proposed a method for estimation of a global ratio of excess return to standard 

deviation with respect to a specific segment of a market. In this view, an investor 

can compare the risk reward for two separate segments. These methods, however, 

only provides theories for Point Estimation which in turn limit the relevance of 

them. In this paper, it is shown that hypothesis testing of the possible difference 

between return-to-risk ratios of two market segments can easily be conducted by 

Bayesian Credible Intervals. Moreover, the specific use of a vague Prior 

facilitates the use of previously proposed Frequentistic result with the important 

enhancement of Inference methods. Hence, a simple but yet comprehensive tool is 

available for investors to quantify and compare risk rewards of different markets. 

The use of the method is demonstrated through an empirical investigation of the 

Small Cap and Large Cap segments of the Stockholm Stock Exchange. 
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Table 1: Estimates of 
Large

 and 
Small

  

 Posterior mean Posterior SD 2.5
th

 Percentile 97.5
th

 Percentile 

arg
ˆ

L e  
0.1195 0.00795 0.1042 0.1353 

ˆ
Small  

0.0583 0.0059 0.0470 0.0699 

 

Table 2: Estimates of (
Large Small

  ) 

 ˆ
d  ds  95% Credible Interval 

arg
ˆ

L e - ˆ
Small  

0.0612 0.0099 (0.0416; 0.0807) 
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Figure 1: Mean values and standard deviation of the S&P 100 

 

 
Figure 2: Scatter Plot of Large Cap 

 

 
 

Figure 3: Scatter Plot of Small Cap 
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Figure 4: Posterior density plot for ˆ

Large
  
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Figure 5: Posterior density plot for ˆ

Small
  
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Figure 6: Trend plot for arg
ˆ

L e  



A Bayesian Approach for Estimating Mean-Standard Deviation  

Ratios of Financial Data 

_______________________________________________________________________________ 

101 

beta

iteration

1000 2500 5000 7500 10000

   0.02

   0.04

   0.06

   0.08

    0.1

 

Figure 7: Trend plot for ˆ
Small  
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Appendix 

The scatter plot of Figure 1 suggests a linear relationship between the mean 

values and the standard deviations of the excess returns of S&P 100 Stocks. In 

order to confirm this relationship more formally, we wish to test 
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0 0: 0 vs : 0 H H   of (2.2). This is conveniently done through a 95% 

Bayesian Credible Interval (ranging between the 2.5
th

 and 97.5
th

 percentiles). 

From Table A1, below it is seen that this Interval of   is (0.1252; 0.15). The 

trend plot and Posterior density plot in Figures A1 and A2, respectively, confirm 

convergence of the Estimate and a tight Posterior. The decision rule to use the 

Credible Interval to test 
0 : 0H   against the alternative hypothesis 1 : 0H   

is to reject 0H  if the value 0 is not included in the Interval. Since 0 is not included 

in the Interval i.e. (0.1252; 0.15), we conclude that the Regression coefficient of 

model (2.2) is significantly different from zero and that a linear Regression 

relationship exists. 

 

Table A1: Estimates of ̂  

 Posterior mean Posterior SD 2.5
th

 percentile 97.5
th

 Percentile 

̂  0.1347 0.0063 0.1252 0.15 
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Figure A1: Trend plot of ̂  
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Figure A2: Posterior density plot of ̂  

 


