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Abstract 

 

The study aims to estimate the parameter of the Generalized Pareto Distribution 

under Type II censored samples. The Bayes Estimators have been derived under a 

class of informative and non-informative Priors using different symmetric and 

asymmetric Loss functions. The Credible Intervals, Highest Posterior Density 

(HPD) intervals, Posterior Predictive Distributions and Posterior Predictive 

Intervals have been constructed under each Prior. The Bayesian hypothesis testing 

scheme has also been employed. The performance of the Point and Interval 

Estimators of the parameter has been evaluated under a simulation study. The 

findings of the study suggest that in order to have a Point Estimate of the 

parameter of the Generalized Pareto Distribution under a Bayesian framework, 

the use of Inverse Gamma Prior along with Entropy Loss Function can be 

preferred. The Bayesian Interval Estimates and the Posterior Predictive Intervals 

are also more precise under the assumption of Inverse Gamma Prior. 
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1. Introduction 

 

The Generalized Pareto Distribution (GPD), introduced by Pickands (1975), has 

been extensively used for reliability modeling and life testing.  
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It has been used by many authors to model exceedances in several fields such as 

hydrology, finance, insurance and environmental science. In general, GPD can be 

applied to any situation in which the Exponential Distribution might be employed 

but in which some robustness is required against heavier tailed or lighter tailed 

alternatives. For more details see: Al-Zahrani (2012), Jockovic (2012) and the 

references cited there-in.  

 

Nadarajah and Kotz (2005) derived the exact Distributions of 𝑅 =  𝑋 +  𝑌, 

𝑃 =  𝑋𝑌 and 𝑊 =  𝑋/(𝑋 +  𝑌) and the corresponding moment properties when 

𝑋 and 𝑌 follow Muliere and Scarsini’s Bivariate Pareto Distribution. Shawky and 

Abu-Zinadah (2008) derived the exact form of the probability density function 

and moments of single, double, triple and quadruple of lower record values from 

Exponentiated Pareto Distribution (EPD). The several recurrence relations 

between single, double, triple and quadruple moments of lower record values 

from EPD have also been established. Pandey and Rao (2009) discussed the 

Bayes Estimators of the shape parameter of the Generalized Pareto Distribution 

by taking Quasi, Inverted Gamma and Uniform Prior Distributions under the 

LINEX, precautionary and entropy Loss functions. Afify (2010) obtained Bayes 

and Classical Estimators for two parameters Exponentiated Pareto Distribution 

when sample is available from complete, Type I and Type II censoring scheme. 

Bayes Estimators have been developed under Squared Error Loss Function 

(SELF) as well as under LINEX Loss function using non-informative type of 

Priors for the parameters. Al-Zahrani (2012) dealt with the Estimation problem 

for the Generalized Pareto Distribution based on progressive Type-II censoring 

with random removals. Jockovic (2012) gave the review of the classical 

techniques for estimating GPD quantiles, and applied these methods in finance to 

estimate the Value at Risk (VaR) parameter, and discussed certain difficulties 

related to this subject. Lee (2012) focused on modeling and estimating tail 

parameters of Loss Distributions from Taiwanese commercial fire loss severity. 

Using extreme value theory, the Generalized Pareto Distribution (GPD) was 

employed and compared with standard parametric modeling based on Lognormal, 

Exponential, Gamma and Weibull Distributions. 

 

Aban et al. (2006) derived Estimators for the Truncated Pareto Distribution, 

investigated their properties, and illustrated a way to check for fit. These methods 

have been illustrated with applications from finance, hydrology, and atmospheric 

science. Lee and Lim (2009) considered the characterizations of the Lomax, 

Exponential and Pareto Distributions by conditional expectations of record values. 
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Odat (2010) addressed the problem of estimation of 𝑝(𝑥 >  𝑦) when 𝑥 and 𝑦 are 

two independent variables following Pareto Distribution. The Maximum 

Likelihood and its asymptotical Distribution were also obtained. Shanubhogue 

and Jain (2012) dealt with the problem of Uniformly Minimum Variance 

Unbiased Estimation of the parameter of Pareto Distribution of first kind based on 

Progressive Type II censored data with Binomial removals. 

 

From the above discussion, it can be assessed that many authors have dealt with 

Generalized Pareto Distribution but none of them has considered the Interval 

Estimation of the parameter of the Distribution especially in Bayesian field. 

Further the Bayesian predictions for the future values from the Distribution 

haven’t been seen. Pandey and Rao (2009) have considered the Bayesian Point 

Estimation of the Distribution but their article is silent towards the issue of 

Interval Estimation and predictions from the Distribution. We have addressed the 

problem of Point and Interval Estimation of the parameter of Generalized Pareto 

Distribution under a Bayesian framework. Moreover, the Posterior Predictive 

Intervals have been constructed and evaluated. The Bayesian hypothesis testing 

has also been considered. The paper provides precise arguments to explain the 

anomalous behavior of the Bayesian Estimation and prediction when sampling is 

done from the GPD. The other authors considering the Analysis of Distributions 

under MLE and Bayesian framework are: Feroze and Aslam (2012a), Feroze and 

Aslam (2012b), Feroze and Aslam (2012c), Feroze and Aslam (2012d), Feroze 

and Aslam (2012e), Feroze and Aslam (2014), Sindhu et al. (2013a) and Sindhu et 

al. (2013b),  

 

The rest of the paper is organized as follow: In Section 2, the Model and 

Likelihood function for the Generalized Pareto Distribution has been presented. 

Section 3 contains the definition of Prior Distribution and derivation of Posterior 

Distributions. The derivation of Bayes Estimators and Posterior risks has been 

given in the Section 4. The construction of Credible Intervals and the highest 

Posterior density intervals has been discussed in the Section 5. Section 6 

represents the Bayesian hypothesis testing scheme. The Posterior Predictive 

Distributions and Predictive Intervals have been constructed in the Section 7. 

Section 8 shows the simulation study for all the Estimators. Section 9 deals with 

real life application of the results. Finally, the conclusions regarding the study 

have been presented in the Section 10. 
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2. Model and Likelihood function 

 
The probability density function of the Generalized Pareto Distribution as used by 

Pandey and Rao (2009) is given as: 

 

1
1

1
1

x
f x



 



 
  

 
  ,  0 x   ,  0   

For 1  , the probability density function of the Generalized Pareto Distribution 

is, 

   
1

11
1f x x 




    ,  0 1x  ,  0                     (2.1)

 
And the cumulative distribution function of the Distribution is,

 

   
1

1 1F x x                                      (2.2) 

 

The problem of censoring can be considered in two ways. Firstly, the sample can 

be incomplete, that is, all information regarding a portion of the sample are 

omitted or do not exist.  Secondly, the situation may arise when complete 

information regarding all the units in the sample cannot be obtained. These two 

kinds of censored samples will be denoted as Type I and Type II respectively. We 

have used Type II censoring for the Bayesian Estimation of the parameter of the 

Generalized Pareto Distribution. The Likelihood function for the Type II censored 

sample can be derived as: 
 

 

Suppose n items are put on a life-testing experiment and only first m failure times 

have been observed, that is, 1 2... mx x x   and remaining n – m items are still 

working. Under the assumptions that the lifetimes of the items are independently 

and identically distributed (i.i.d) Generalized Pareto random variable, the 

Likelihood function of the observed data without the multiplicative constant can 

be written as: 

     
1

x 1
m
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i m

i

L f x F x




 
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 
                                 (2.3)

 
The Likelihood function for the Generalized Pareto Distribution is, 
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3. Prior and Posterior Distributions 

 

A probability distribution that expresses uncertainty about parameter   or 

underlying variable before the data are taken into account is called the Prior 

Distribution of the parameter  . The parameters of a Prior density are called 

Hyper-parameters, to discriminate them from the parameters of the model. The 

Prior Distribution is an important part of Bayesian inference and one of the main 

differences between classical and Bayesian inference. To choose the Prior 

Distribution/information is a vital issue in Bayesian inference, together with the 

sensitivity or robustness of the inferences to the choice of Prior, and the 

Likelihood of conflict between Prior and data. Detailed information regarding the 

derivation of Posterior Distribution can be seen from: Feroze and Aslam (2012a), 

Feroze and Aslam (2012b) and Pandey and Rao (2009). 

 

The Priors can be categorized into uninformative and informative Priors. An 

uninformative Prior is a function which is used in place of a subjective Prior 

Distribution when little or no Prior information is available. These are also called 

diffuse, minimal, non-informative, objective, reference, uniform, or vague Priors. 

The Uniform Prior, introduced by Laplace (1812) and Jeffrey’s Prior, proposed by 

Jeffrey’s (1961), are the most commonly used uninformative Priors. So among 

uninformative Priors, the Uniform and Jeffrey’s Priors have been used for the 

Posterior Analysis. 

 

The Uniform Prior is assumed to be 

  1p   , 0                                    (3.1) 

The Jeffrey’s Prior is defined as: 

   p I  , where  I   is Fisher information matrix.  
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Here     
2

2 2

ln ( ) 1f x
I E

 

 
   

 
 

Therefore      
1

p I 


       

 (3.2) 

This is Jeffrey’s Prior for the Generalized Pareto Distribution.
  

If Prior information exists about parameter  then, it should be utilized in the 

Prior Distribution of . For example, if the present model form is similar to a 

Prior model form, and the present model is proposed to be a rationalized version 

based on more existing data, then the Posterior Distribution of   from the Prior 

model may be utilized as the Prior Distribution of   for the current model. We 

have assumed Inverse Gamma, Inverse Chi-square and Inverse Exponential Priors 

as informative Priors for the Bayesian Analysis of the parameter of the 

Generalized Pareto Distribution. 

 

The Inverse Gamma Prior is assumed to be 

   1
b

a
p e  

 
  , 0  , , 0a b                      (3.3) 

where 

a and b  are Hyper-parameters. 

 

The Inverse Chi-square Prior is assumed to be 

 
1

1
22

v

p e  
 

  , 0  , 0v                                  (3.4) 

where 

v  is the Hyper-parameter. 

 

The Inverse Exponential Prior is assumed to be  

  2

1 1
exp( )p

h


 
    , 0  , 0h                                  (3.5) 

where 

h  is a Hyper-parameter. 

The Posterior Distribution summarizes the current state of knowledge about all 

the uncertain qualities in a Bayesian Analysis. Analytically, the Posterior 
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Distribution is the product of the Prior density and the Likelihood. It can be 

defined as: 

     x xp p L    or   
   
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where 

 p x ,  p   and  L x are Posterior Distribution, Prior Distribution and 

Likelihood function, respectively. 

 

The Posterior Distribution under the assumption of Uniform has been derived as: 
Using equation (3.6)     
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Therefore, the Posterior Distribution under Uniform Prior becomes 

 
     

 

     
1 1

1

1

1 1
1

ln 1 ln 1
1

ln 1 ln 1
1

x
1

m

i m

i

m
m

mi m x n m x
i

x n m x

p e
m






 





 
  

     
   

 
         

   


 , 0                  

(3.7) 

The Posterior Distributions under the assumption of Jeffrey’s, Inverse Gamma, 

Inverse Chi-square and Inverted Exponential Priors are derived respectively as: 
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(3.8)
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                                                                                                                          (3.11) 

 

4. Bayes Estimators and associated risks 

 

The decision theory states that in order to select the best Estimator a Loss function 

must be specified and used to estimate the risk associated with each of the 

possible Estimates. Since, there is no definite analytical process that allows us to 

identify the proper Loss function to be used, most of the analysts use the Squared 

Error Loss Function which is symmetrical and associates equal importance to the 

losses due to over-estimation and under-estimation of equal magnitude and obtain 

the Posterior mean as Bayesian Estimate. It is mostly used in situations where the 

loss is symmetric. The progress of the Loss functions can be compared in terms of 

amount of risk associated with each Estimator. We have used Squared Error Loss 

Function (SELF), proposed by Legendre (1805) and Gauss (1810); Quadratic 

Loss Function (QLF), Precautionary Loss Function (PLF), introduced by 

Norstrom (1996); Entropy Loss Function (ELF), suggested by Calabria and 

Pulcini (1996); Squared Logarithmic Loss Function (SLLF) due to Brown (1968); 

and Weighted Loss Function (WLF), defined by DeGroot (1970), for Estimation 

of the parameter of the Generalized Pareto Distribution. The Bayes Estimators 

and corresponding risks have been discriminated by attaching the abbreviations of 

the concerned Loss functions as subscripts to the parameter θ. The results have 

been presented under the assumption of Uniform Prior. The formulae to derive the 
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Bayes Estimators and Posterior risks under these Loss functions have been 

presented in Table 1. 

 

The formula for the derivation of risk under SELF is, 

 SELF    

Here
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The Bayes Estimators under Uniform Prior based on QLF, PLF, ELF, SLLF and 

WLF are 
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     

  

1 1

1

ln 1 ln 1

2 3

m

i m

i

PLF

x n m x

m m


 



 
    

 
 


        (4.3)

 

     
1 1

1

ln 1 ln 1

1

m

i m

i

ELF

x n m x

m


 



 
    

 



        (4.4)

 

     
1

1 1

1 1

1
exp ln ln 1 ln 1

m m

SLLF i m

g i

x n m x
g

 


 

 

  
        

  
        (4.5) 
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     
1 1

1

ln 1 ln 1

1

m

i m

i

WLF

x n m x

m


 



 
    

 



        (4.6)

 
The formula for the derivation of risk under SELF is, 

      
22

SELF        

Here     

 
     

1 1

1

ln 1 ln 1

2

m

i m

i

x n m x

m


 



 
    

  



 

 

and    

 
       

       

1

1 1

12

3

1 1

1

ln 1 ln 1 3

1 ln 1 ln 1
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m

i m

i

m
m

i m

i

x n m x m

m x n m x





 





 



 
      

  
 

      
 





 

     

  

2

1 1

1

ln 1 ln 1

2 3

m

i m

i

x n m x

m m

 



 
    

 
 


 

Therefore

 
     

  

     

 

2 2

1 1 1 1

1 1

2

ln 1 ln 1 ln 1 ln 1

2 3 2

m m

i m i m

i i

SELF

x n m x x n m x

m m m
 

   

 

   
          

    
  

 

 

Hence, the Posterior risk under SELF using Uniform Prior becomes 

 
     

   

2

1 1

1

2

ln 1 ln 1

2 3

m

i m

i

SELF

x n m x

m m
 

 



 
    

 
 


        (4.7) 

The expressions for Posterior risks associated with the Bayes Estimators using 

Uniform Prior on the basis of QLF, PLF, ELF, SLLF and WLF are 

 
1

QLF
m

                                                 (4.8) 
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       
  

1 1

1

1 1
2 ln 1 ln 1

22 3

m

PLF i m

i

x n m x
mm m

 
 



   
       

    


     

(4.9) 

   
1

1

1
ln 1

m

ELF

g

m
g

  




                       (4.10) 

where 

0.57721   is an Euler constant. 

      
22ln lnSLLF                          (4.11) 

where 

       
1

1 1

1 1

1
ln ln ln 1 ln 1

m m

i m

g i

x n m x
g

 


 

 

 
        

 
   

and  

 2ln  has been evaluated numerically. 

 
     

  

1 1

1

ln 1 ln 1

1 2

m

i m

i
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x n m x

m m
 

 



 
    

 
 


      (4.12) 

The expressions for Bayes Estimators and corresponding Posterior risks under 

remaining Priors can be derived in a similar manner. 

 

5. Credible and Highest Posterior Density (HPD) Intervals 

 

The classical theory of confidence intervals for parameter estimates is not 

insightful; saying that 95% confidence interval means that if the repeated 

confidence intervals are constructed for different samples then 95% of them will 

contain the true value of the parameter. The particular confidence interval from 

any one sample may or may not contain the true parameter value. While, 95% 

Bayesian Credible Intervals contains the true parameter value with approximately 

95% confidence. The Credible Intervals is defined as:  

Let  x   be the Posterior Distribution then a  100 1 %  Credible Intervals 

in any set C is such that
   

x
1P C

 
  . The  100 1 % Credible Intervals on 

the basis of Uniform Prior is given as: 
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     

    

     

    

1 1 1 1

1 1

2 2

1 2 1 2 1
2 2

2 ln 1 ln 1 2 ln 1 ln 1
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i i
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x n m x x n m x

 


 

   

 

  

   
          

    

 

      

(5.1) 

The interested readers may refer to Feroze and Aslam (2012a) and Feroze and 

Aslam (2012b). The Credible Intervals based on remaining Priors can be 

constructed accordingly. 

 

The highest Posterior density intervals for   can be obtained by solving the 

following two equations simultaneously. 

   1 2x xp p  ,  
2

1

x 1p d





     

By simplifying the above equations for the Posterior Distribution in equation (3.7) 

the resultant equations become 

       
1 12

11 1 2

1 1
ln ln 1 ln 1 0

m

i m

i

m x n m x


  

 



    
          

    
       (5.2) 
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      
             

              
   
   
   

 
 (5.3) 

 

Now, the HPD Intervals can be obtained by solving the above equations 

simultaneously. Similarly, the HPD Intervals under Jeffrey’s, Inverse Gamma, 

Inverse Chi-square and Inverse Exponential Priors can be constructed. 

 

6. Bayesian Hypothesis Testing and Bayes Factor 

 

This section covers the Bayesian hypothesis testing and corresponding Bayes 

factor for different values of the parameter of Generalized Pareto Distribution 

under Uniform, Jeffrey’s, Inverse Gamma, Inverse Chi-square and Inverse 

Exponential Priors. The Posterior probabilities are defined for the hypotheses 

0 0:H    and 1 0:H    as:  

     
0

0 0

0

xP H P p d



        ,  

where     
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 xp   is Posterior Distribution of   

The Posterior probabilities are calculated under null and alternative hypothesis. 

The purpose is to show how well the Bayesian hypothesis for Generalized Pareto 

Distribution work under different Priors. Following scale, due to Jeffrey’s (1961), 

can be used for the interpretation of Bayes factor which will facilitate the decision 

making process. 

 

7. Posterior Predictive Distribution and Intervals 

 

The Posterior Predictive Distribution can be obtained as:

 
   

0

x ( x) ;p y p f y d  


            (7.1)

 
The Posterior Predictive Distribution under the assumption of Uniform Prior is 

derived to be 
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

 
     

 
 

       
 





, 0y        (7.2) 

The Posterior Predictive Distribution based on remaining Priors can be obtained 

by following the same lines. 

 

The Posterior Predictive Interval can be obtained by solving the following two 

equations. 

 
0

x
2

L

p y dy


 ,  x
2

U

p y dy




  

The Posterior Predictive Interval under the assumption of Uniform Prior is 

constructed as: 

           
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                                                       

 

          

(7.3) 

With little modifications, the Posterior Predictive intervals under Jeffrey’s, 

Gamma, Chi-square and Exponential Priors can be constructed. 
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8. Simulation study 

 

Simulation is a technique that can be used to examine the performance of 

different estimation procedures. In this technique, random samples are generated 

in such a way that Estimators under different estimation procedure can be 

compared and are in accordance with the real life problem. The major advantage 

of simulation is that its implementation is straightforward. In general, the 

simulation methods are easier to apply than analytical methods. Whereas, 

analytical methods may require user to employ many simplifying assumptions, 

simulation model has few such limitations, thus allowing much greater flexibility 

in representing the real system. Once a model is built, it can be used repeatedly to 

analyze different parameters or designs. Data simulations are often criticized 

because they are much cleaner than real data. However, simulating data remains 

an important component for most of the development projects. To this end, any 

developments to improve the complexity of the data simulations will permit 

investigators to better assess new analytical methods.  

 

Here the simulation study has been carried out for estimates under Uniform, 

Jeffrey’s, Inverse Gamma, Inverse Chi-square and Inverse Exponential Priors 

based on SELF, QLF, PLF, ELF, SLLF and WLF. The parametric space 

 3,6,9   has been assumed for Estimation. The amounts of Posterior risks 

associated with each Point Estimate have been presented in the parenthesis in the 

tables. All the calculations have been performed by assuming the samples to be 

20% Type II censored. These samples have been drawn by following steps: 

 

Step 1: Draw samples of size ‘n’ from the Generalized Pareto model using Inverse 

transformation technique, from the random no. generator  1 1X U


    , 

where,U is uniformly distributed random variable.  

Step 2: Determine the test termination points on right, that is, determine the values 

            of mx  

Step 3: The observations which are greater than mx  have been considered to be 

censored. 

Step 4: Use the remaining observations for the analysis. 

Step 5: Repeat step 1 to 5, 1,000 times. 
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The purpose of the simulation study is to evaluate and compare the performance 

of different estimates. In order to save the space in the tables the following 

abbreviations have been used: 

 

Uniform Prior:   U.P  Lower Limit:   LL 

Jeffrey’s Prior:       J.P  Upper Limit:   UP 

Inverse Gamma Prior:     I.G.P  Credible Intervals:  C.I 

Inverse Chi Square Prior:    I.CS.P  Posterior Predictive Interval: P.P.I 

Inverse Exponential Prior:   I.E.P 

 

The simulation study explored some interesting properties of the Bayes 

Estimators. The rate of under estimation is 70% (i.e. 70% of the Estimates have 

been under estimated) with a significant proportion for the Estimates under 

Quadratic Loss Function for each Prior. This simply shows that the concerned 

Posterior Distributions are negatively skewed in majority of the cases. As 

suggested by corresponding formulae the estimates on the basis of Entropy and 

Weighted Loss Functions are same. As for as the Priors are concerned, the 

informative Priors (under each Loss function) have bigger contribution in under 

estimation, especially for larger choice of Hyper-parametric values. In case of 

non-informative Priors the added tendency of over estimation is assessed with the 

use of Uniform Prior. The degree of under estimation increases with increase in 

sample size. However, the rate of convergence of the estimates towards the true 

parametric values is positively affected by increasing the sample size. The greater 

true parametric values result in slower convergence of the estimates and higher 

level of under Estimation. The Estimates under Jeffrey’s and Uniform Priors 

based on Squared Error, Entropy and Weighted Loss Functions (respectively) are 

same and provide the best convergence towards the true value of the parameter.   

 

Similarly, the amounts of Posterior risks associated with the Bayes Estimates are 

observed to be decreasing with increasing the sample sizes. The minimum 

magnitudes of Posterior risks have been seen under Entropy Loss Function for 

each Prior. Two groups of Bayes risks (in terms of their magnitudes) can be 

identified one containing Estimates under Quadratic and Squared Logarithmic 

Loss Functions and the other containing Estimates based on Precautionary and 

Weighted Loss Functions. The performance of the Squared Error Loss Function is 

the worst as the corresponding Posterior Distributions are not symmetric. The 

larger choice of true parametric values tends to inflate the Posterior risks. On the 

other hand, the Estimates under Inverse Gamma Prior are having the least 

amounts of risks. In comparisons of the informative and non-informative Priors it 
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can be observed that the informative Priors provide the better Estimates as the 

corresponding magnitudes of risks are lower. This simply indicates that the 

informative Priors are superior to non-informative Priors. A better choice of 

Hyper-parametric values or some Prior elicitation technique may further justify 

these findings. On the whole, it can be said that in order to have a Point Estimate 

of the parameter of the Generalized Pareto Distribution under a Bayesian 

framework, the Inverse Gamma Prior under Entropy Loss Function can 

affectively be employed.  

 

The Bayesian Credible Intervals under different informative and non-informative 

Priors have been calculated. The widths of Credible Intervals tend to decrease by 

increasing the sample size. This property is similar under each Prior. In case of 

non-informative Priors, the minimum width of intervals is observed under 

Jeffrey’s Prior. While for informative Priors, the Credible Intervals with least 

lengths are based on Inverse Gamma Prior. It is interesting to note that each 

Credible Intervals contains the true and estimated value of the parameter. The 

higher choices of Hyper-parametric values result in shorter intervals but at the 

cost of inflated Posterior risks (in some cases). On the other hand, the greater true 

parametric values lead to bigger widths of the Credible Intervals. Hence, the 

preference of the Prior Distribution is in accordance with that in the Point 

Estimation, that is, the performance of the Inverse Gamma Prior is found superior 

to that of other Priors. 

 

The 95% Posterior Predictive Intervals follow the similar patterns as observed in 

case of Credible Intervals. The widths of the Posterior Predictive Intervals are 

inversely proportional to the sample size, while these are directly proportional to 

the true parametric values. The Posterior Predictions on the basis of Inverse 

Gamma Prior are seemed to be the most precise. 

 

The Bayesian hypothesis testing indicates that the trend of information to support 

the null hypothesis starts (at least) from H0: β ≤ 3.0 and H1: β > 3.0 under each 

Prior. The evidence in favor of H0 increases as the hypothesized value of the 

parameter becomes closer to the true parametric range. However, the strength of 

the information to favor the H0 under Inverse Gamma Prior is greater than that 

based on other Priors. The evidence in favor of H0 increases with increase in the 

value of the parameter and vice versa. Again the Inverse Gamma Prior provides 

more reasonable Bayesian hypothesis testing for the Generalized Pareto 

Distribution. 
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9. Real life example 

 

As Generalized Pareto Distribution is considered a suitable model in reliability 

studies, the application of a real life data regarding failure times of certain 

product(s) would be appropriate to illustrate the practical aspects of the study. So 

in this section, the data set of repair times (in days) of 30 air conditioning systems 

presented by Sinha and Prabha (2010) have been used to discuss the practical 

applications of the results obtained in previous sections. 

 

The Table 12 shows the Bayes Estimators and posterior risks under different 

Priors and various Loss functions. From the results, it can be observed that the 

performance of the informative Priors is superior to the non-informative Priors. 

On the whole, the Inverse Gamma Prior provides the best estimates among all 

informative and non-informative Priors, as the amounts of Posterior risks 

associated with these Estimates are the minimum for each Loss function. In 

comparison of different Loss functions it can be assessed that the risks associated 

with Estimates under ELF are the least for every Prior. So, the patterns of results 

using the real life data are similar to those under simulation study. This simply 

indicates that the results derived in the previous sections are capable to be 

employed in the real situations. 

 

Table 13 shows the details regarding 95% Credible Intervals (C.I) and Posterior 

Predictive Intervals (P.P.I) under different Priors. The results suggest that the 

widths of 95% Credible Intervals under informative Priors are smaller than those 

under non-informative Priors. The least amounts of the widths of the Credible 

Intervals are observed under the assumption of Inverse Gamma Prior. Similarly, 

the width of 95% Posterior Predictive Intervals, based on Inverse Gamma Prior, is 

the minimum. Therefore, the findings of Interval Estimations are again 

completely in accordance with the simulation study. This is another indication of 

the authenticity of the different Estimators derived above. 

 

10.  Conclusions 

 

The study has been conducted in order to have suitable Bayesian Point and 

Interval Estimates of the parameter of the Generalized Pareto Distribution under 

Type II censored samples. Different Priors and Loss functions have been assumed 

for the estimation. The framework for the prediction of the future values from the 

Distribution has also been discussed. From the above Analysis it can be assessed 

that the performance of the Inverse Gamma Prior is the best for Bayesian Point 
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and Interval Estimation. The Bayesian hypothesis testing scheme also indicated 

the preference of the Inverse Gamma Prior. Similarly, the Posterior Predictive 

Intervals are also more precise under the assumption of Inverse Gamma Prior. 

The Analysis under real life data further strengthened these beliefs. On the other 

hand, the performance of the Entropy Loss Function is supreme among all Loss 

functions. Therefore, for Bayesian Estimation and prediction of Generalized 

Pareto Distribution based on Type II censored samples, the use of Inverse Gamma 

Prior along with Entropy Loss Function can be preferred. 
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Table 1: Formulae for Bayes Estimators and Posterior risks under different Loss functions 

Loss Function Bayes Estimator Posterior Risk 

SELF  SELF          
22

SELF        

QLF     
1

1 2

QLF  


            
2 1

1 21QLF   


      

PLF   
1

2 2
PLF        2PLF PLF      

ELF   
1

1

ELF 


        ln lnELF ELF       

SLLF   exp lnSLLF          
22ln lnSLLF        

WLF   
1

1

WLF 


      WLF WLF       

 

Table 2: Jeffrey’s scale of evidence for Bayes factor interpretation 

Value of Bayes Factor (B) Interpretation 

B ≤ 0.10 Strong evidence for H1 

0.10 < B ≤ 0.33 Moderate evidence for H1 

0.33 < B ≤ 1.00 Weak evidence for H1 

1.00 < B ≤ 3.00 Weak evidence for H0  

3.00 < B ≤ 10.00 Moderate evidence for H0 

B > 10.00 Strong evidence for H0 
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Table 3:  Bayes estimates and risks under different Priors and Loss functions for θ = 3 

n Priors 
Loss Functions 

SELF QLF PLF ELF SLLF WLF 

50 

U.P 
3.1618 3.0037 3.2042 3.0807 3.1269 3.0807 

(0.2701) (0.0250) (0.0848) (0.0119) (0.0262) (0.0810) 

J.P 
3.0807 2.9304 3.1210 3.0037 3.0488 3.0037 

(0.2497) (0.0250) (0.0805) (0.0117) (0.0257) (0.0770) 

I.G.P 
2.9317 2.7953 2.9681 2.8619 2.9048 2.8619 

(0.2148) (0.0238) (0.0728) (0.0112) (0.0245) (0.0698) 

I.CS.P 
3.0162 2.8726 3.0546 2.9426 2.9868 2.9426 

(0.2332) (0.0243) (0.0768) (0.0115) (0.0251) (0.0735) 

I.E.P 
3.0087 2.8654 3.0470 2.9353 2.9793 2.9353 

(0.2321) (0.0238) (0.0766) (0.0113) (0.0250) (0.0738) 

70 

U.P 
3.0688 2.9592 3.0976 3.0130 3.0582 3.0130 

(0.1776) (0.0178) (0.0576) (0.0085) (0.0187) (0.0557) 

J.P 
3.0130 2.9073 3.0408 2.9592 3.0036 2.9592 

(0.1681) (0.0178) (0.0555) (0.0084) (0.0183) (0.0538) 

I.G.P 
2.9082 2.8096 2.9340 2.8580 2.9009 2.8580 

(0.1510) (0.0172) (0.0517) (0.0081) (0.0177) (0.0501) 

I.CS.P 
2.9681 2.8658 2.9950 2.9160 2.9598 2.9160 

(0.1601) (0.0175) (0.0537) (0.0082) (0.0180) (0.0520) 

I.E.P 
2.9628 2.8606 2.9896 2.9108 2.9544 2.9108 

(0.1596) (0.0172) (0.0536) (0.0082) (0.0181) (0.0522) 

100 

U.P 
3.0220 2.9464 3.0415 2.9837 3.0285 2.9837 

(0.1156) (0.0125) (0.0391) (0.0059) (0.0131) (0.0382) 

J.P 
2.9837 2.9100 3.0028 2.6190 2.6583 2.6190 

(0.1141) (0.0125) (0.0381) (0.0058) (0.0128) (0.0372) 

I.G.P 
2.9107 2.8405 2.9288 2.8752 2.9183 2.8752 

(0.1059) (0.0121) (0.0362) (0.0057) (0.0125) (0.0354) 

I.CS.P 
2.9527 2.8807 2.9713 2.9162 2.9600 2.9162 

(0.1103) (0.0123) (0.0372) (0.0058) (0.0127) (0.0364) 

I.E.P 
2.9489 2.8770 2.9675 2.9125 2.9562 2.9125 

(0.1100) (0.0121) (0.0372) (0.0058) (0.0128) (0.0365) 
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Table 4: Bayes estimates and risks under different Priors and Loss functions for θ = 6 

n Priors 
Loss Functions 

SELF QLF PLF ELF SLLF WLF 

50 

U.P 
6.2671 5.9537 6.3512 6.1064 6.1980 6.1064 

(1.0615) (0.0250) (0.1682) (0.0119) (0.0262) (0.1606) 

J.P 
6.1064 5.8085 6.1862 5.9537 6.0430 5.9537 

(0.9812) (0.0250) (0.1596) (0.0117) (0.0257) (0.1526) 

I.G.P 
5.8097 5.5395 5.8819 5.6714 5.7565 5.6714 

(0.8438) (0.0238) (0.1443) (0.0112) (0.0245) (0.1383) 

I.CS.P 
5.9662 5.6821 6.0422 5.8207 5.9080 5.8207 

(0.9127) (0.0243) (0.1520) (0.0115) (0.0251) (0.1455) 

I.E.P 
5.9587 5.6750 6.0346 5.8134 5.9006 5.8134 

(0.9104) (0.0238) (0.1518) (0.0113) (0.0250) (0.1458) 

70 

U.P 
6.1429 5.9235 6.2005 6.0312 6.1216 6.0312 

(0.7119) (0.0178) (0.1153) (0.0085) (0.0187) (0.1116) 

J.P 
6.0312 5.8196 6.0868 5.9235 6.0123 5.9235 

(0.6736) (0.0178) (0.1111) (0.0084) (0.0183) (0.1077) 

I.G.P 
5.8204 5.6231 5.8722 5.7201 5.8059 5.7201 

(0.6049) (0.0172) (0.1034) (0.0081) (0.0177) (0.1003) 

I.CS.P 
5.9324 5.7278 5.9861 5.8283 5.9158 5.8283 

(0.6398) (0.0175) (0.1073) (0.0082) (0.0180) (0.1040) 

I.E.P 
5.9270 5.7227 5.9807 5.8231 5.9104 5.8231 

(0.6387) (0.0172) (0.1072) (0.0082) (0.0181) (0.1042) 

100 

U.P 
6.0861 5.9339 6.1255 6.0090 6.0992 6.0090 

(0.4688) (0.0125) (0.0787) (0.0059) (0.0131) (0.0770) 

J.P 
6.0090 5.8607 6.0474 5.2746 5.3537 5.2746 

(0.4629) (0.0125) (0.0767) (0.0058) (0.0128) (0.0751) 

I.G.P 
5.8613 5.7200 5.8978 5.7898 5.8766 5.7898 

(0.4294) (0.0121) (0.0730) (0.0057) (0.0125) (0.0714) 

I.CS.P 
5.9402 5.7953 5.9776 5.8668 5.9548 5.8668 

(0.4466) (0.0123) (0.0749) (0.0058) (0.0127) (0.0733) 

I.E.P 
5.9364 5.7916 5.9739 5.8631 5.9511 5.8631 

(0.4460) (0.0121) (0.0749) (0.0058) (0.0128) (0.0734) 

 
 

 



Bayesian Estimation and Prediction of Generalized Pareto Distribution Based  

on Type II Censored Samples

 _______________________________________________________________________________ 

159 

Table 5: Bayes estimates and risks under different Priors and Loss functions for θ = 9 

n Priors 
Loss Functions 

SELF QLF PLF ELF SLLF WLF 

50 

U.P 
9.4250 8.9537 9.5515 9.1833 9.3210 9.1833 

(2.4008) (0.0250) (0.2530) (0.0119) (0.0262) (0.2416) 

J.P 
9.1833 8.7353 9.3033 8.9537 9.0880 8.9537 

(2.2193) (0.0250) (0.2400) (0.0117) (0.0257) (0.2295) 

I.G.P 
8.7365 8.3302 8.8451 8.5285 8.6565 8.5285 

(1.9081) (0.0238) (0.2170) (0.0112) (0.0245) (0.2080) 

I.CS.P 
8.9662 8.5392 9.0804 8.7475 8.8787 8.7475 

(2.0613) (0.0243) (0.2284) (0.0115) (0.0251) (0.2186) 

I.E.P 
8.9587 8.5321 9.0728 8.7402 8.8713 8.7402 

(2.0579) (0.0238) (0.2282) (0.0113) (0.0250) (0.2189) 

70 

U.P 
9.2355 8.9056 9.3222 9.0675 9.2036 9.0675 

(1.6093) (0.0178) (0.1734) (0.0085) (0.0187) (0.1679) 

J.P 
9.0675 8.7494 9.1511 8.9056 9.0392 8.9056 

(1.5226) (0.0178) (0.1671) (0.0084) (0.0183) (0.1619) 

I.G.P 
8.7503 8.4536 8.8280 8.5994 8.7284 8.5994 

(1.3672) (0.0172) (0.1555) (0.0081) (0.0177) (0.1508) 

I.CS.P 
8.9145 8.6071 8.9952 8.7582 8.8895 8.7582 

(1.4449) (0.0175) (0.1613) (0.0082) (0.0180) (0.1563) 

I.E.P 
8.9092 8.6020 8.9898 8.7529 8.8842 8.7529 

(1.4431) (0.0172) (0.1612) (0.0082) (0.0181) (0.1565) 

100 

U.P 
9.15022 8.9214 9.2094 9.0343 9.1699 9.0343 

(1.0598) (0.0125) (0.1184) (0.0059) (0.0131) (0.1158) 

J.P 
9.0343 8.8113 9.0921 7.9301 8.0491 7.9301 

(1.0464) (0.0125) (0.1154) (0.0058) (0.0128) (0.1129) 

I.G.P 
8.8119 8.5996 8.8668 8.7044 8.8350 8.7044 

(0.9706) (0.0121) (0.1098) (0.0057) (0.0125) (0.1074) 

I.CS.P 
8.92771 8.7099 8.9840 8.8175 8.9497 8.8175 

(1.0089) (0.0123) (0.1126) (0.0058) (0.0127) (0.1102) 

I.E.P 
8.9239 8.7063 8.9802 8.8137 8.9460 8.8137 

(1.0080) (0.0121) (0.1126) (0.0058) (0.0128) (0.1102) 
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Table 6: 95% Confidence Intervals (C.I) and Posterior Predictive Intervals (P.P.I) for θ = 3 

n Priors 
95% C.I 95% P.P.I 

LL UL UL – LL LL UL UL – LL 

50 

U.P 2.3036 4.3324 2.0288 0.0656 1.0000 0.9344 

J.P 2.2536 4.2045 1.9509 0.0719 1.0000 0.9281 

I.G.P 2.2068 4.0853 1.8785 0.0728 1.0000 0.9272 

I.CS.P 2.2150 4.1006 1.8856 0.0729 1.0000 0.9271 

I.E.P 2.1920 4.1226 1.9306 0.0710 1.0000 0.9290 

70 

U.P 2.3520 3.9996 1.6476 0.0735 1.0000 0.9265 

J.P 2.3148 3.9175 1.6027 0.0722 1.0000 0.9278 

I.G.P 2.2795 3.8398 1.5603 0.0735 1.0000 0.9265 

I.CS.P 2.2857 3.8502 1.5645 0.0737 1.0000 0.9263 

I.E.P 2.2707 3.8614 1.5907 0.0711 1.0000 0.9289 

100 

U.P 2.4214 3.7688 1.3474 0.0751 1.0000 0.9249 

J.P 2.3941 3.7159 1.3218 0.0733 1.0000 0.9267 

I.G.P 2.3679 3.6652 1.2973 0.0751 1.0000 0.9249 

I.CS.P 2.3724 3.6722 1.2998 0.0754 1.0000 0.9246 

I.E.P 2.3629 3.6777 1.3148 0.0716 1.0000 0.9284 

 
Table 7: 95% Confidence Intervals (C.I) and Posterior Predictive Intervals (P.P.I) for θ = 6 

n Priors 
95% C.I 95% P.P.I 

LL UL UL – LL LL UL UL – LL 

50 

U.P 4.5659 8.5872 4.0213 0.1277 1.0000 0.8723 

J.P 4.4669 8.3338 3.8669 0.1395 1.0000 0.8605 

I.G.P 4.3732 8.0958 3.7227 0.1412 1.0000 0.8588 

I.CS.P 4.3814 8.1111 3.7297 0.1413 1.0000 0.8587 

I.E.P 4.3413 8.1647 3.8235 0.1367 1.0000 0.8633 

70 

U.P 4.7080 8.0060 3.2980 0.1416 1.0000 0.8584 

J.P 4.6336 7.8417 3.2081 0.1393 1.0000 0.8607 

I.G.P 4.5622 7.6850 3.1227 0.1417 1.0000 0.8583 

I.CS.P 4.5684 7.6954 3.1270 0.1418 1.0000 0.8582 

I.E.P 4.5426 7.7247 3.1822 0.1370 1.0000 0.8630 

100 

U.P 4.8765 7.5900 2.7135 0.1433 1.0000 0.8567 

J.P 4.8215 7.4835 2.6620 0.1400 1.0000 0.8600 

I.G.P 4.7683 7.3807 2.6124 0.1433 1.0000 0.8567 

I.CS.P 4.7728 7.3877 2.6149 0.1436 1.0000 0.8564 

I.E.P 4.7566 7.4034 2.6468 0.1379 1.0000 0.8621 

 

 



Bayesian Estimation and Prediction of Generalized Pareto Distribution Based  

on Type II Censored Samples

 _______________________________________________________________________________ 

161 

Table 8:   95% Confidence Intervals (C.I) and Posterior Predictive Intervals (P.P.I) for θ = 9 

n Priors 
95% C.I 95% P.P.I 

LL UL UL – LL LL UL UL – LL 

50 

U.P 6.8666 12.9142 6.0476 0.1857 1.0000 0.8143 

J.P 6.7177 12.5330 5.8153 0.2022 1.0000 0.7978 

I.G.P 6.5763 12.1744 5.5981 0.2045 1.0000 0.7955 

I.CS.P 6.5845 12.1897 5.6051 0.2046 1.0000 0.7954 

I.E.P 6.5269 12.2754 5.7484 0.1983 1.0000 0.8017 

70 

U.P 7.0782 12.0366 4.9584 0.2052 1.0000 0.7948 

J.P 6.9663 11.7895 4.8232 0.2019 1.0000 0.7981 

I.G.P 6.8587 11.5533 4.6946 0.2052 1.0000 0.7948 

I.CS.P 6.8649 11.5637 4.6988 0.2054 1.0000 0.7946 

I.E.P 6.8281 11.6114 4.7832 0.1987 1.0000 0.8013 

100 

U.P 7.3316 11.4113 4.0796 0.2075 1.0000 0.7925 

J.P 7.2490 11.2512 4.0022 0.2029 1.0000 0.7971 

I.G.P 7.1687 11.0962 3.9275 0.2075 1.0000 0.7925 

I.CS.P 7.1732 11.1032 3.9299 0.2078 1.0000 0.7922 

I.E.P 7.1504 11.1291 3.9787 0.2000 1.0000 0.8000 

 
Table 9: Posterior probabilities and Bayes factors under Uniform and Jeffrey’s Priors 

Null 

Hyp. 
Alt. Hyp. 

Uniform Prior Jeffrey’s Prior 

Posterior 

Probabilities 

Bayes 

Factor 

Posterior 

Probabilities 

Bayes 

Factor 

H0 H1 P(H0) P(H1) B P(H0) P(H1) B 

θ ≤ 2.0 θ > 2.0 0.0015 0.9985 0.0015 0.0025 0.9975 0.0025 

θ ≤ 2.5 θ > 2.5 0.0802 0.9198 0.0871 0.1057 0.8943 0.1182 

θ ≤ 3.0 θ > 3.0 0.4130 0.5870 0.7035 0.4758 0.5242 0.9078 

θ ≤ 3.5 θ > 3.5 0.7661 0.2339 3.2762 0.8132 0.1868 4.3523 

θ ≤ 4.0 θ > 4.0 0.9342 0.0658 14.2080 0.9530 0.0470 20.2974 
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Table 10: Posterior probabilities and Bayes factors under Inverse Gamma and Inverse Chi-square 

Priors 

Null 

Hyp. 
Alt. Hyp. 

Inverse GammaPrior Inverse Chi Square Prior 

Posterior 

Probabilities 

Bayes 

Factor 

Posterior 

Probabilities 

Bayes 

Factor 

H0 H1 P(H0) P(H1) B P(H0) P(H1) B 

θ ≤ 2.0 θ > 2.0 0.0038 0.9962 0.0039 0.0035 0.9965 0.0036 

θ ≤ 2.5 θ > 2.5 0.1358 0.8642 0.1572 0.1304 0.8696 0.1500 

θ ≤ 3.0 θ > 3.0 0.5377 0.4623 1.1632 0.5283 0.4717 1.1199 

θ ≤ 3.5 θ > 3.5 0.8529 0.1471 5.8000 0.8477 0.1523 5.5653 

θ ≤ 4.0 θ > 4.0 0.9670 0.0330 29.2911 0.9654 0.0346 27.8709 

 

Table 11: Posterior probabilities and Bayes factors under Inverse Exponential Prior 

Null Hyp. Alt. Hyp. 

Inverse Exponential Prior 

Posterior Probabilities Bayes Factor 

H0 H1 P(H0) P(H1) B 

θ ≤ 2.0 θ > 2.0 0.0037 0.9963 0.0038 

θ ≤ 2.5 θ > 2.5 0.1340 0.8660 0.1548 

θ ≤ 3.0 θ > 3.0 0.5346 0.4654 1.1486 

θ ≤ 3.5 θ > 3.5 0.8512 0.1488 5.7205 

θ ≤ 4.0 θ > 4.0 0.9665 0.0335 28.8080 

 
Table 12: Bayesian Estimation under different Loss functions using real life data 

Priors 
Loss Functions 

SELF QLF PLF ELF SLLF WLF 

U.P 
1.6992 1.4732 1.7272 1.5149 1.6430 1.5499 

(0.1386) (0.1242) (0.1359) (0.0606) (0.1039) (0.1372) 

J.P 
1.5432 1.3967 1.6974 1.5307 1.5204 1.5380 

(0.1398) (0.1313) (0.1378) (0.0695) (0.1179) (0.1278) 

I.G.P 
1.5154 1.2965 1.5111 1.3954 1.4357 1.3943 

(0.1133) (0.1165) (0.1170) (0.0533) (0.1066) (0.1125) 

I.CS.P 
1.4846 1.4062 1.5288 1.5027 1.4846 1.4270 

(0.1248) (0.1313) (0.1119) (0.0567) (0.1114) (0.1188) 

I.E.P 
1.6972 1.3945 1.7253 1.4931 1.6031 1.4401 

(0.1296) (0.1240) (0.1176) (0.0629) (0.1138) (0.1248) 
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Table 13: 95% Credible Intervals (C.I) and Posterior Predictive Intervals  (P.P.I) under different 

Priors using real life data 

Priors 

95% C.I 95% P.P.I 

LL UL UL – LL LL UL UL – LL 

U.P 0.7542 2.1252 1.3709 0.0956 0.9310 0.8354 

J.P 0.7631 2.2296 1.4664 0.1114 0.9432 0.8318 

I.G.P 0.8769 2.1705 1.2936 0.1089 0.8736 0.7647 

I.CS.P 0.7756 2.1846 1.4090 0.1047 0.8944 0.7898 

I.E.P 0.8076 2.0517 1.2441 0.0995 0.8856 0.7860 
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