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Abstract

This paper aims to discuss the Bayesian Analysis of Burr Type V Distribution
based on Left, Singly Type Il and Doubly Type Il censored samples. The Bayes
Point and Interval Estimators of the parameter for the said Distribution have been
derived under four Priors (Informative and Non-informative) using a couple of
Loss Functions. The Posterior Predictive Intervals have also been constructed. The
performance of the Bayes Estimators has been compared under a Simulation
study. A real life data set has also been analyzed for illustration. The results
indicate that the performance of the estimates under Inverse Levy Prior based on
Generalized Entropy Loss Function using Singly Type Il censored samples is
superior to their counter-parts.
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1. Introduction

Burr family of Distributions consists of twelve Distributions. These Distributions
can be used to fit almost any given set of Uni-modal data. Burr (1942) proposed
these Distributions. Among these twelve Distributions, Burr Type X and XII have
received the sizeable attention of the analysts. Surles and Padgett (2001)
introduced two-parameter Burr Type X Distribution and showed that this
particular skewed Distribution can be used quite effectively in analyzing time to
failure data. Soliman (2002) derived the Bayes Estimates of the parameter of Burr
Type XII Distribution three Loss Functions.
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The Bayes and Maximum Likelihood Estimates have been compared by using
Lindley’s approximation. Shao (2004) addressed the problem of Maximum
Likelihood Estimation for the three-parameter Burr Type XII Distribution. Shao
et al. (2004) applied the Burr Type XII Distribution for flood Frequency Analysis.
Soliman (2005) argued that the versatility and flexibility of the Burr Type XIlI
Distribution turns it quite attractive as a tentative model for data whose
underlying Distribution is unknown. Wu et al. (2007) considered the estimation of
Burr Distribution based on progressive Type Il censoring with random removals.
Silva et al. (2008) proposed a Location-Scale Regression Model based on Burr
XI1 Distribution and referred it as the Log-Burr XI1 Regression Model. Dasgupta
(2011) discussed that under certain conditions, the Distribution of Burr can be
shown to follow an Extreme-value Distribution. Makhdoom and Jafari (2011)
obtained Bayesian Estimators for the shape parameter of the Burr Type XIlI
Distribution using grouped and un-grouped data. Panahi and Asadi (2011)
considered the statistical inferences based on a Type Il Hybrid censored sample
from a Burr Type XII Distribution. Feroze and Aslam (2012a) dealt with Posterior
Analysis of Burr Type X Distribution using complete and censored data. The
other authors dealing with Bayesian and Classical Inference of Burr Type X and
XI1 Distribution include: Aludaat et al. (2008), Amjad and Ayman (2006), Mousa
and Jaheen (2002), Wahed (2006), Wu and Yu (2005), Yarmohammadi and
Pazira (2010). The remaining types of the Burr family of Distributions haven’t
received a considerable interest of the analysts; same is the case with Burr Type V
Distributions. The Burr Type V Distribution can also be used to model the
lifetime data. We have considered the Bayesian Estimation of the Distribution.
The application of the Distribution in Reliability Analysis further gave the
motivation to carry out the analysis under censored samples.

Censoring is very important technique which has wide range of applications in
reliability studies. It has many types each of whom can be used in analysis of
different kinds of data representing various real life circumstances. We have used
Left, Singly Type Il and Doubly Type Il censoring for the Bayes Estimation of
the parameter of Burr Type V Distribution. The introduction of all types of
censoring has been presented in the following.

The left censored data is very likely to occur in Survivor Analysis. It can happen
where an event of interest has already occurred at the observation time, but it is
not known exactly when. For example, the situations including: the infection with
a sexually-transmitted disease such as HIV/AIDS, onset of a pre-symptomatic



130 Navid Feroze and Muhammad Aslam

illness such as cancer and time at which teenagers begin to drink alcohol can lead
to left censored data. In such cases, we can only observe those individuals whose
event time is greater than some truncation point. This truncation point may or may
not be the same for all individuals. For example, in case of actuarial life studies,
the individuals those died in the womb are often ignored. Another example:
suppose we wish to study how long patients who have been hospitalized for a
heart attack survive taking some treatment at home. In such situations, the starting
time is often considered to be the time of the heart attack. Only those patients who
survive their stay in hospital are able to be included in the study. The more
illustrations on left censoring can be seen from Antweller and Taylor (2008),
Asselineau et al. (2007), Jerald and Lawless (2003), Sinha et al. (2006),
Thompson et al. (2011).

On the other hand, suppose it is desired to estimate the average life of electric
bulb produced in a certain factory. The simple method would be to take a certain
number of bulbs at random and burn them out to get the required number of bulbs
for analysis. Instead of wasting the bulbs it might be decided to stop the
experiment when a fixed number have burnt out. The random sample hence
obtained would be a Type Il censored sample. Further, the biologists are often
required to perform experiments on animals (say, rabbits or mice) to determine
the effect of certain drugs on them. A fixed number of animals are exposed to the
drug for this purpose and their reaction times are observed. Experience shows that
some animals take an extremely long time to react. If instead of waiting until all
animals have reacted, the experiment is stopped when a fixed number have
reacted, it will be called Type Il censoring, which may result in economical
experimentation. The authors considering analysis under Singly and Doubly Type
Il censored samples are: Akhter and Hirai (2009), Al-Hussaini and Hussein
(2011), Fauzy (2004), Feroze and Aslam (2012b) and Yarmohammadi and Pazira
(2010).

The organization of the paper is as follows: Section 2 contains the Model and
expressions for Likelihood Functions under Left, Singly Type 1l and Doubly Type
Il censored samples. The Posterior Distributions under different Priors based on
above mentioned censoring methods have been derived and presented in section
3. Section 4 contains the introduction of the Loss Function and expressions for
Bayes Estimates and Posterior Risks under these Loss Functions. Section 5 deals
with construction of Bayesian Credible Intervals. On the other hand, the Posterior
Predictive Intervals have been derived in section 6. The elicitation of the hyper-
parameters in Informative Priors has been discussed in section 7. Section 8
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includes the numerical results and discussions based on a Simulation study. The
applicability of the results has been discussed by analyzing a real life data in
section 9. Finally the conclusion is presented in section 10.

2. Model and Likelihood Functions

The probability density function of the Distribution is,
f(y)=0e"""sec’ y(lJre‘“"‘y)%1 , —% <y< % ,0>0 (2.1)

The cumulative distribution function of this Distribution is,

F(y)=(1+e™)" (2.2)
where @ is the location parameter of the Distribution.

2.1 Likelihood Function under Left Censored Sample: Let Y, ,,...,Y, be last n-r

Order Statistics from a sample of size n from Burr Type V Distribution. Then the
Likelihood Function for the Y, Y, left censored observations is,

rlreen

L(0ly) o {F (v} TT 1 (%)

i=r+l

L(0|y) oc ™" exp{—a{—r In (1+ g @ ym)_ Zn: In (1+ oY, )H
i=r+l (211)

2.3 Likelihood Function under Singly Type Il Censored Sample: Suppose ‘n’
items are put on a life-testing experiment and only first ‘m’ failure times have
been observed, that is, y, <Y,...<Y, and remaining n-m items are still working.
Under the assumptions that the lifetimes of the items are independently and
identically distributed Burr Type V random variable, then the Likelihood
Function for the Singly Type Il censored sample is,

L(6]y) {Hf Y, }[1 F(y.)]
(9|y)ocn 0( 1)’[n_j jemexp{—e{—: In(1+e“a”yi)—jln(1+e‘ta“ym)H (2.3.1)

j=
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2.4 Likelihood Function under Doubly Type Il Censored Sample: Consider a
random sample of size ‘n’ from an Burr Type V Distribution, and let y,,..., ys be
the ordered observations remaining when the ‘r — 1’ smallest observations and the
‘n — s’ largest observations have been censored, the Likelihood Function for 6
given the Type Il Doubly censored sample y = (Y,..., Ys), IS,

L(oly) <[ F (v l6)] " [1-F (xl0)] " TT* (wlo)

L(6]y) o n75(-1)" [ngsjak exp —9{—iln(1+ e )~(r-1)In(L+e ™ )~ jin(L+e ™" )H (2.4.0)

j=

3. Prior and Posterior Distributions

Bayesian methods can provide more precision of estimate than the classical
methods of inference. This happens due to additional information that is present
in terms of Prior information and the estimates are obtained from the combined
sources of information. Thus Bayesian inference is one that modifies one’s initial
probability statements about the parameters before observing the data to updated
or Posterior knowledge that combines both Prior information and the data at hand.
Therefore, Prior subject-matter knowledge about a parameter is a vital aspect of
the inference process. We have considered Uniform, Jeffreys, Gamma and Inverse
Levy Priors to derive the Posterior Distributions and to complete the
corresponding analysis. The expressions for each Prior are given below:

Uniform Prior: 9(0)ecl (3.1)
Jeffreys Prior: g(6)c o™ 0>0 (3.2)
. b®
Gamma Prior: 0)= 6> e ™ 6>0, a,b>0 3.3
9(0)=- @ (3:3)
Inverse Levy Prior:  g(0)= 21 (6)*°e®  6>0,c>0 (3.4)
T

where a,b and c are the hyper-parameters.

The Posterior Distribution summarizes the current state of knowledge about all
the uncertain qualities in a Bayesian Analysis. Analytically, the Posterior
Distribution is the product of the Prior Density and the Likelihood. Consider the

Prior Distribution p (&) which reflects the Prior information before collecting the
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data y and the Likelihood Function L(9| y) that represents the observed data

then the Posterior Density p(9|y)is calculated as proportional to the
multiplication of Prior Distribution and the Likelihood Function i.e.

Posterior Density oc (Prior Density)x(Likelihood Function)

p(6ly)=p(0)L(6ly)  oOr p(<9|y)=wp(0)|‘(9|y)

[ p(o)L(0]y)de

—00

The Posterior Distribution updates the information. All inferences and
interpretations about parameters are made through the Posterior Distribution.

The Posterior Distribution under Uniform Prior based on left censored samples is,

{_r " (1+ e_tan " )_ i In (1+ e—tan % )}nHl n
p(e‘y) - r(ni_zrf:—l) 6" eXp[—ﬁ{—r |n(1+ e“a”ym)_ z In(l_l_e—tanyl )H (3.5)

i=r+1

The Posterior Distribution under Uniform Prior based on Singly Type Il censored

samples is,
p(6ly)= A jZ:(—l)jln_jmjem exp{—&{—iln(he“”“)— jln(1+e‘ta”ym)H (3.6)

A= :Z_(;(—l)j ( _jmJF(m”){—gln(u e )~ jIn(L+e )}_m_l

The Posterior Distribution under Uniform Prior based on Doubly Type Il
censored samples is,
p(@\x) :AtZ(‘l)j [“;Sjek exp[—@{—Zln(H g )—(r —l)In(1+ g )— j In(l+ g )H (3.7)
j i=0 i=r
—k-1
= i(n-
A, =Z(—1)’[ ] k+1{ Zln(l+e“a”y')—(r—l)ln(1+eta"y')—jln(1+e‘ta”ys)}
=0 J
The Posterior Distributions under the assumption of remaining Priors have been
presented in the appendix.
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4. Loss Functions and Bayes Point Estimation

The performance of the Bayes Point Estimates can be compared in terms of
magnitudes of Posterior Risks. The Posterior Risk is defined to be the expected
value of the Loss Function. So, the employment of Loss Function is fundamental
in order to draw conclusion about the performance of the Bayes Estimators. Here,
Generalized Entropy and Linear Exponential Loss Function have been used for
Bayes estimation of the parameter of Burr Type V Distribution. Their description
IS as under

4.1 Generalized Entropy Loss Function (GELF): The generalized Entropy Loss

Function suggested by Calabria and Pulcini (1996) can be given as
1

L(0,0se1r ) =(00see ) — PIN(0 7 0sgyr ) —1where Gy, :[E(&*p)] Pis  the

Bayes Estimator under this Loss Functions and p is the shape parameter of the

Loss Function.

4.2 LINEX Loss Function (LLF): LINEX (Linear Exponential) Loss Function
has been defined by Klebanov (1972). The expression of the Loss Function is

L(HLLF,H):¢{e”(9LLF‘9)—w(@LLF—49)—1}. Without loss of generality we can

assumeg =1, thenL(4,.,0)= {e‘“(eLLF‘g) ~ (0, —49)—1} . And the Bayes
Estimator based on this Loss Function is,

O =—0*In [E(e‘“’a )}

Now, the GELF and LLF have been used to derive the Bayes Estimators and
Posterior Risks under each Prior for all three censoring schemes. The expressions
for the derived results have been presented in the following. The comparisons
among the performance of these Estimators have been made in sections 8-9.

The Bayes Estimator and Posterior Risk under Uniform Prior for left censored
samples using GELF are,
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r(n-r-p +1){—r In(1+e ) - Zn: In(1+e " )}p
i=r+l

9 =
CELF r(n-r+1)

n

F(n-r-p +1){—r 'n(rl(tit:n:))_i;lm(l%my] )} N p{w(“ ~r+1)-In {—r In {1+ ) - zn: In(1+e )H

i=r+l

p(HGELF ) =In

where y(z)is a Di-gamma Function.

The Bayes Estimator and Posterior Risk under Uniform Prior for left censored
samples using LLF are,

n-r+1 _rln(1+e_tany”l)— Zn: |n(1+e‘“"”yi)

QLLF =— |n ni:r+1
@ —rln(1+ e’ta“yrﬂ)_ Z |n(1+e—tanyi )+a)
i=r+l
—rin(l+e )~ Zn: In(1+e ™™
p(6.)=(n-r+1)In | ) ril ( ) + w(n—r:l)
—rin(lee ™)=Y In(l+e ™ J+o| —rin(l+e ™)=Y In(1+e ™)
i=r+l i=r+l

The Bayes Estimator and Posterior Risk under Uniform Prior for Singly Type 1l

censored samples using GELF are,
1

n m m p-m-1 |~
QGELF =|:l"(mAip+1 (n Jm]{ Zln(l+e tanyl) jln(l_i_eftanym )} :| p
j J=0 i=1

i =]

LSOl ot

i j=0

P(Geere ) = nlwnﬁm(—l) [” mj{ Zm:|n(1+e-ta“y.) fin(Lre o )}p_m_ll

The Bayes Estimator and Posterior Risk under Uniform Prior for Singly Type I
censored samples using LLF are,
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eLLF:_%In{F(mH)n-_m(_l) (” mj{ z'”(“etany) jln(1+e“a”y”)}ml}

i=1

P8 )=In {F(m +1) n_m(_l)j (n j mJ{w—iln(H e ™ )= jIn(1+e )}ml}

The Bayes Estimator and Posterior Risk under Uniform Prior for Doubly Type II
censored samples using GELF are,

1

o | IS 1) et

i=0 i=r

Pl { s (J]{-im(m-‘a“y'>—<r—1>m<1+e-m)—un<1+ewnyﬁ}p_k_l]

J:O i=r

The Bayes Estlmator and Posterior Risk under Uniform Prior for Doubly Type II
censored samples using LLF are,

ur = _al’ " [F(Ltl)ni(_l)j (n Isj{a)—i In (1+ e )—(r ~1)In (1+ e )— jln (1+ g )}kl_

i =0 i=r

Plfus)= In[r(z:l) :_:(_1)1 (ngsj{w_gm(“e_tany' )—(r—l)ln(1+ g )— j In(1+ g s )}“:
+w1"&k2j+2) T:(—l) [”15]{ Zln(l+e“a”y) (r‘1)|“(1+e_my’)—jln(1+e-tanys)}”

The expressions for Bayes Estimators and associated Posterior Risks under
Jeffreys, Gamma and Inverse Levy Priors have been reported in the appendix.
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5. Credible Intervals

The Credible Interval for & based on Uniform Prior using Left, Singly Type Il
and Doubly Type Il censored samples, as discussed by Feroze and Aslam
(2012b) have respectively been presented in the following.

(10‘) nr+l (0/) r+1
2T} <0< 20T, ]

where T,; =—rIn(1+e ™ )— Zn: In(1+e )

i=r+1

il -m-1 2 = ifhn—m -m-1
1—0/ J{2(m1)} Z ( j{TZJ} X (%){2(m+1)}j2=(;(_1) ( j J{TZJ'}

=0
] <f<

2 ”"<—1>J[“im]{n,-}“ SYC e

=0 J

where T, Z In (1+ g Y

)-
" S ) =3 ifn—s —k-1
(1—0/){2 (k+1)} ( ]{ } X (%5)(2(k+1)} 4 (_1) ( j J{Tﬁ}

j In(1+ e“a”ym)

2:_:(—1)j(n;5j{Tsj}_k_2 R

where T,; = —ZS: In(1+e ™)~ (r=1)In(1+e ™ )= jin(1+e ")

The Credible Intervals on the basis of rest of the Priors have been presented in the
appendix.

6. Posterior Predictive Distributions and Intervals
The Posterior Predictive Distribution is used to make predictions of future

observations, based on the inferences drawn from the data at hand. It can be
defined as:

p(x|y)=T pO|y) f (x;0)0 (6.1)
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where X = yn+1 be the future observation given the sample information y =y, y,,
..., Yn, from the model (3.5), (3.6) and (3.7). The Posterior Predictive Distribution
under Uniform Prior based on left censored sample is,

p(x|y): (n—r+1)e“‘”Xsecz(x){Tl,-}nni1
(1+ e‘ta”X){le ~In(1+ e‘ta”)}

The Posterior Predictive Distribution under Uniform Prior based on Singly Type
Il censored sample is,

I'(m+2)e ™ sec?(x) i j(n—mj yem2
x|y)= -1 o 1T, —In(1+e ™ 6.3
p( |y) Aij (1+e—tanx) j=0( ) j { 2j ( )} ( )
The Posterior Predictive Distribution under Uniform Prior based on Doubly Type
Il censored sample is,

[(k+2)e ™ sec’ (X) &3, .\ (n —Sj k2
x|y)= -1 o HT, —In(1+e™™ 6.4
p( |y) Azj (1+e—tanx) ;( ) j { 3j ( )} ( )
The Posterior Predictive interval for prediction of the future observation of the

variable following Burr Type V Distribution can be defined as:
L 72

J p(dyjax=Z. [ p(xy)ax=7

-zl2 U

The Posterior Predictive Interval for the future observation from the Burr Type V
Distribution under Uniform Prior on the basis of left censored samples can be
obtained by solving the following two equations.

n-r+1 n-r+l
T, T,
. —tanL =1_g and . —tanU = g
T, —In(1+e ™) 2 T, —In(l+e ™) 2

The Posterior Predictive Interval under Uniform Prior using Singly Type Il
censored sample can be derived as:

SeCl (T

r(m+2) & i(n—m —m- -m-1
L(m+2) Z(—l)'( _ ][{sz} l—{sz—ln(1+er‘fmu )} }:1—3
A;(m+1) 45 j 2

The Posterior Predictive Interval under Uniform Prior using Doubly Type Il
censored sample can be given as:

(6.2)
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As in some cases, the closed form expressions for L and U cannot be obtained, we
have used the numerical solutions of these limits by Iterative Methods. The
Posterior Predictive Intervals based on remaining Priors have been reported in the
appendix.

7. Prior Elicitation

Elicitation is a process that can be used to formulate an expert’s knowledge or
belief about a certain quantity in probabilistic form. In the context of Bayesian
inference, it can be regarded as a method for specifying the Prior Distribution for
one or more unknown parameters of a statistical model. In literature, there are
various methods for Elicitation of a Prior Distribution. We have used the method
of Elicitation proposed by Aslam (2003) which is based on the Prior Predictive
approach. In order to Elicit the Prior by the mentioned method, we have to derive
the Prior Predictive Distribution for each Informative Prior. The Prior Predictive
Distribution can be defined as:

9 = J; 9O)f (¥16)d(6) (7.1)
According to (7.1), the Prior Predictive Distribution under Gamma Prior is,

ab®e ™Y sec’ y
g y = a+ (7'2)
) (Lre ™ ) b-In(1re ™))"

As we have to Elicit two Hyper-parameters so we have to consider two integrals.
The set of Hyper-parameters with minimum values has been chosen to be the
Elicited values of the Hyper-parameters. By considering the Prior Predictive
Distribution in (7.2), we have assumed the expert’s probabilities to be 0.30 for

each integral. We considered the following integrals:
1.0

Tg(y)=0-30, Ja(y)=0:30.

-11 0.1
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Now, these integrals have been simultaneously solved through a program written
in SAS package using the “PROC SYSLIN” command and the Elicited values of

the Hyper-parameters have been found to be (a,b) =(0.687645,0.478683).
Again, by (7.1), the Prior Predictive Distribution under Inverse Levy Prior is,

'(3/2)cY%e " sec?
a(y)= (372) y (7.3)

(272_)1/2 (l+ etany){; —In (l+ e’tany )}3/2

Following the similar process as mentioned above, the Elicited value of the
Hyper-parameter is ¢ =1.026478.

8. Numerical Results and Discussions

As the analytical comparisons among the Estimators derived above are not
possible, we have carried out a Simulation study to make the comparisons
numerically. The performance of the Point Estimates has been compared in terms
of magnitudes of Posterior Risks associated with each estimate. While, the
Interval Estimators have been judged against their widths. The samples of size n =
20, 30, 50, 100 and 150 have been generated by inverse transformation method
from the Burr Type V Distribution by using the function

X :Tanfl{—ln(u U —1)} where U is a uniformly distributed random variable

over(0,1). All the samples have been assumed to be 15% censored. The
parametric space includes: 6 (0.50,1.00,1.50).

By assuming different values of the parameters in GELF and LLF it has been
found that the results for p = -0.50 and ® = 1 are the most precise. So, the Bayes
Estimates and Posterior Risks have been presented for these parametric values
only. All the results have been replicated 10,000 times and their average has been
presented in the following Tables. The amounts of Posterior Risks have been
given in parenthesis in Tables.

It is immediate from Tables 1-9 that the estimated value of the parameter becomes
close to the true value as sample size increases. The parameter has been under
estimated in almost all the cases. The degree of under estimation is more serious
for larger values of the parameter. It can also be assessed that the amounts of
Posterior Risks tend to decrease by increasing the sample size. This simply
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indicates that the Estimators are consistent. The estimates under Inverse Levy
Prior are having the least amounts of Posterior Risks. The larger choice of true
parametric values inflates the magnitudes of Risks associated with estimates
under LLF. How, the amounts of Risks under GELF are independent of the choice
of true parametric values. It is interesting to note that the performance of the
estimates under Informative Priors is better than those under Non-informative
Priors. Similarly, the estimates under GELF are significantly superior to those
under LLF. The level of efficiency achieved under n = 20 for GELF can be
obtained for n = 100 to 150 in case of LLF. So, implementation of the GELF can
save 80% of the time and cost on experimentation. It can also be observed that the
performance of the Estimates using Singly Type Il censored samples is better than
those based on rest of censoring schemes. Therefore, the Simulation study
suggests the use of GELF under Inverse Levy Prior for estimation.

Here, LL: Lower Limit; UL: Upper Limit; LC: Left Censoring; STTC: Singly
Type 11 Censoring; DTTC: Doubly Type Il Censoring.

Tables 10-11 contain the 95% Bayesian Credible and Posterior Predictive
Intervals under different Priors. The widths of intervals are declining with
increasing the sample size. Both of the Interval Estimates tend to be more specific
under Informative Priors especially in case of Inverse Levy Prior. Further, the
estimates based on the Singly Type Il censored samples are more precise than
their counterparts. So, the Interval Estimation replicated the findings reached in
case of the Point Estimation. The most efficient Interval Estimation (Credible and
Prediction) has been observed under the assumption of Inverse Levy Prior using
Singly Type Il censoring.

8.1 Concluding Remarks: The results from the Tables 1-11 suggest that the
efficiency of the Estimates (Point and Interval) increases by increasing the sample
size. The performance of the Informative Priors is found to be superior to Non-
informative Priors. Moreover, the most efficient Bayes Estimation of the
parameter of the Burr Type V Distribution has been observed under the
assumption of Inverse Levy Prior along with Generalized Entropy Loss Function.
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9. Real Life Example

In order to discuss the practical applicability of the results obtained under above
sections, the real life data presented by Bekker et al. (2000) regarding cancer
Survival times have been used for analysis.

From Tables 12-14, it can be assessed that the findings from the analysis of the
real life data are completely in accordance with those of the Simulation study.
Here, the Point Estimation is more accurate under Inverse Levy Prior based GELF
using Singly Type Il censored samples. The shortest widths of the Bayesian
Credible Intervals have been reported under Inverse Levy Prior using Singly Type
Il censored samples. The Posterior Predictions also tend to be more precise under
the said case/combination.

10. Conclusion

The paper discusses the Bayesian Estimation and Prediction of the Burr Type V
Distribution under different censoring schemes using GELF and LLF based on a
class of Priors. It has been assessed that the Point Estimation of the parameter of
the said Distribution is more precise under the assumption of Inverse Levy Prior
using GELF on the basis of Singly Type Il censored samples. The use of GELF
significantly reduces the cost and time of experimentation. The Bayesian Credible
Intervals and Posterior Predictive Intervals tend to be more specific again under
Levy Prior. The real life data analysis further strengthened these findings. The
proposed Estimators are consistent and can work efficiently even in the small
samples. The findings of the article are useful for analysts from various fields
dealing with analysis of the censored data under a Life-time Model.
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Appendix

Derivation of Posterior Distributions, Bayes Estimators, Risks, Credible
Intervals and Posterior Predictive Intervals under Jeffreys, Gamma and
Inverse Levy Priors

As the re-written of the different formulas with little modifications is not
economical, we have derived various results in a generalized version. The results
for Jeffreys, Gamma and Inverse Levy Priors can be obtained as special cases by

puttingt, =1t, =0,t;=0; t, =0,t, =1t, =0andt, =0,t, =0,t; =1, respectively, in
the following expressions.
The Generalized Posterior Distribution based on left censored samples is,

n—r—t +t,(a-1)-0.5t;+1
o(0 ):{é(xli)+tzb+0.5t3c}

T(n-r-t+t,(a-1)-05t,+1)
where &(x,)=-rIn (1+ g Y ) > In (1+ gt )
i 1

1=r+.

en—r—t1+t2(a—1)—0.5t3 exp |:_0 {é ( X ) + tzb + OStSCﬂ (Al)

The Generalized Posterior Distribution based on Singly Type Il censored samples
IS,

o(0ly)- Ali n.—m(_l)j(n—jmJ G-t (2-D)-05t exp[—H{f(Xm)+t2b+0.5t3c}] (A2)
i =0

where

A= (1) [n__mjl“(m—tﬁtz(a—l)—0.5t3+1){§(x2i)+t2b+0.5t3c

j=0 J
and f(XZi ) = —i In (l+ e Y )_ J In (1+ o Yn )
i=1

The Generalized Posterior Distribution based on Doubly Type 1l censored
samples is,

p(0ly)= ig(—l)j (n ] Sj g1 0% expl —0{& (%) + b+ 051, | (A3)

}—m—{—t1+t2(a—1)—0.5t3}—1

where

A, = nz_s:(—l)j [nfsjl“(k —t,+1,(a—1) - 0.5t +1){£(xy ) +t,b+0.5t,c

}—k—{—t1+t2(a—l)—0.5t3}—l
i—0 J
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and &(x;)= Zln(l+e“a”y') (r=1)In(1+e )= jIn(1+e™%)

The Generallzed Bayes Estimator and Posterior Risk for Left censored samples
using GELF are,

o [F(n r—t,+t,(a=1)— 0.5t — p+1){£(x,) +1,b+0.5tc)’ ]p

T'(n-r—t+t,(a—-1)—0.5t, +1)

T(n-r-t +t,(a-1)-05t,— p+1){£(x,) +t,b+05tc}"
[(n-r-t +t,(a-1)-05t,+1)

p(HGELF):m{ 1+p[y/(n—r—tl+t2(a 1)-0.5t +1)-In{£(x, ) + b +05tc} |

where y(z)is a Di-gamma Function.

The Generalized Bayes Estimator and Posterior Risk for Left censored samples
using LLF are,

n—r—t +t,(a-1)-0.5t, +1In £(x;)+t,b+0.5tc
£(x;)+t,b+0.5t,c+w
£(x;)+th+05tc +a)(n—r—tl+t2(a—1)—0.5t3+1)
£(%;)+t,b+05tc+w &(x;)+t,b+0.5tc

‘9|_LF ==
[0}

p(@LLF)=(n—r—t1+t2(a—l)—0.5t3+l)|n{

The Generalized Bayes Estimator and Posterior Risk for Singly Type Il censored
samples using GELF are,

I'(m- t -1)-0.5t, - 1) n=m e I _
QGELF{ (m-t+ Z(aAl) =P+ (—1)’(n jmj{é(XZi)+t2b+O.5t3c+w}p Ft(ect-os}1
i j=0

T(m-t,+t,(a—1)-0.5t, - p+1) m
A; 10

J (n mJ{ ( . )+ '[zb N O_5t3C . w} p-m—{~t,+t,(a~1)-0.5t;}-1

p(eeELF ) = In[

n-m

+ DL&] S (- 1)1(n_jmJ{V,(m_t1+t2(a—1)—0.5t3+1)—In{(§(x2i)+t2b+0.5tgc+a)}}

j=0
The Generalized Bayes Estimator and Posterior Risk for Singly Type Il censored
samples using LLF are,
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r(m-t+t,(a-1)-05t,+1)en  (n-
QLLF:_lm ( tl+ 2( ) 3t ) _11 n .m
Au =0 J

>

{o+&(x)+th+ 0.5tgc}_m_{_t”‘“a‘”")-s%}—l}
m—t, +t,(a—1)-05t,+1) oo m
p(HLLF):Ir{ ( (Alj )l

ol (M-t +t,(a—1)-05t,+2) . j[n—m

A 2.

{a) +¢ (X2i ) +t,b+ 0.5t30}m{tﬁtZ(al)O's%}l]

+

]{5 ( X5 ) + tzb + 0-5t30}7m7{7t1+t2(a71)70'5t3}72

The Generalized Bayes Estimator and Posterior Risk for Doubly Type Il censored
samples using GELF are,

F(k-t+t,(a=1)-05t, - p+1)s, (n- N
o { e Z(aAQ) — )Z(_ly(njS]{f(xsi)+tzb+o.5tgc}p |-t (a-2)-08t -
j j=

I'(k-t,+t,(a-1)-05t,-p+1)es i (n- ot a0t
p(HGELF):In{ - Z(aAz) = )Z(—l)J[njS]{i(xsi)+tzb+o.5t3c}pk“ l1)-05)-1
j i |

+ p{Alzjni(‘l)" (n}sj{w(k —t,+t,(a-1)-0.5t, +1)~In {g(xsi)+t2b+0.5t3c}}}

i j=0

The Generalized Bayes Estimator and Posterior Risk for Doubly Type Il censored
samples using LLF are,

k-t +t 1 -0.5t,+1 ”3 +y(a-
QLLF:_llr{ ( b Z(a ! ) J[n_sj{w+§( )+tb+05t C} lurtlat-ost)- }
[0

A2j j=0

T(k—t,+t,(a-1)-0.5t,+1) os "
P(@LLF)zlnl: ( t+ 2(2-‘Z +) J(n s]{a)-l—f( 3I)-I—'[b+05tC} [t +t,(a-1)-05t ) ]
j J:O

a)F(k—tl+t2(zz 1) o5t+2)ns J(n sj{ )+tb+05tc} {tyty(a-1)-05t)-2
i i=0

The Generalized Credible Interval for 6 based on Left, Singly Type Il and
Doubly Type 11 censored samples have respectively been presented in the
following.
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1-2 n—r—t +t,(a-1)- 0.5t3+1 @ 2 n—r—t,+t,(a—1)-0.5t;+1
1) Pl )
{g(xﬂ)+t b+0.5t,c} {é(xli)+t2b+0.5t c}
&= -{-tytya-1)- 05t} a m i(n- M-ty (a-1)-05t L
;(( o0 Z ( ) j{ le +tb+05t } ! j i 5] [ j{ &(xy +t2b+0.5t3c} \ }
iE <0< 0
n-m n-m M-t 4ty (D)0t |- al Tl M|y (2-1)-05t -
2%(-1)‘[ J_ ]{§(x2i)+t2b+0.5tac} B 2120 ( _ j{ Jthste) T

ﬂS n-s

i ~{#ty(a-1)-05t -1 i K={-t+ty(a-1)-05t}-1
l( 2kt #t5(a-1)-05t+1)} : [ i j{ i +tb+05t } |2(k-t;+ty(a-1)-0.5t+1)} Z{; [ i ]{ 3 +tb+05t }
E <€< I

ZZ [ . J{ Xs. +tb+05t C}k{*tﬁtz(afl)’o.m}’z 22 [ . ]{ Xs. +tb+05t C} {~ty#ty(a-1)-05t,}-2

The Generallzed Posterior Predictive Distribution based on Left censored sample

IS,
p(x|y) _ (n -r—t +t, (a—l)—0.5t3 +1)e—tanX sec’ (x){f(xh )+t2b +0.5t,c
(1+ eitanx ) {é: (Xil ) + tzb + 0.5t30 - In (1‘|' e*tan " )}n7r7t1+t2(a71)70-513+1

The Generalized Posterior Predictive Distribution based on Singly Type 11
censored sample is,

p(X‘y) _ r(m_t1 +t2 (a;:)(lf.:_ti;;)etaﬂx sec (X) rf(—].)J [n_jm]{é‘(xﬁ )+t2b+0.5t3c_ |n(1+ eflanx)}_

The Generalized Posterior Predictive Distribution based on Doubly Type Il
censored sample is,

I'(k-t,+t,(a—1)-0.5t,+2)e ™ sec’ (x) &= s
p(X‘Y)= ( t’l 2( ) 3 )

Azj (1+e—tanx) =

}n—r—t1 +t,(a-1)-0.5t5+1

m—{~t,+t,(a-1)-0.5, -2

'[n sj{ K )+t 08I (Lg )| O

The Generalized Posterior Predictive Interval for the future observation from the
Burr Type V Distribution on the basis of Left censored samples can be obtained
by solving the following two equations.

n—r—t +t,(a—1)-0.5t;+1
&(%;)+1,b+0.5t,c L
¢ ( X ) + tzb + 0.51'3C —In (1+ ptnt )

2

-
2

n—r—t,+t,(a-1)-0.5t;+1
£(%;)+t,b+05tc
é(xh ) +t2b + 05t3C - In (l+ e*tanU )
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The Generalized Posterior Predictive Interval using Singly Type Il censored
sample can be derived as:

F(m—t1+t2(a—1)—0.5t3+2) n-m i n_m]' _m_{_11+12(a-1)-0.5t3}—1_ _ tanl.
Alj(m—tl+t2(a—1)—0.5t3+1)jz_;‘( 1)( j _{f(xﬁ)+t2b+0.5t3c} {§(x2i)+t2b+0.5tsc In(1+e )}

M4ty (a-0)-05tL |

n-ttfa--05,0 [ ]

=M=~ | a-1)-0.0k - _tan 7m7{’[1“z(ﬁ*1)70.5t3},1_
A ( -t +,(a-1)-0% *1) {é(XZi)+t2b+0,5t3c} e 1_{§(X2i)+t2b+0.5t3C—|n(1+e t U)}
j=0 L

The Generalized Posterior Predictive Interval using Doubly Type Il censored
sample can be given as:

I(k-t+t,(a-1)-05t +2) ¢
Ay, (K-t +t,(a-1)-05t,+1)

k|-t (a-1)-05t, )1 |

=
&
A

&l ngs)_{f( s.)+tb+05tc} AR {i(xgi)+t2b+0.5t3c—ln(l+e“a”L)}

4

>

k-t +t,(a-1)-05t,+2)
Ay (k= +t,(a-1)-05t,+1) =

Kttt a-0-05t) |

E l)j n}S]-{f(x3l)+tb+05tc} tfad 05 {f(xgi)+t2b+0.5t3C—|n(1+€’an)}

N
A
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Table 1: Bayes Estimates and Posterior Risks under Left censored samples for § = 0.50
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.44783 0.42856 0.43887 0.41999 0.44140 0.42675 0.44582 0.43102
(0.01628) | (0.05808) | (0.01596) | (0.05692) | (0.01449) | (0.04789) | (0.01228) | (0.04587)
30 0.47014 0.45840 0.46074 0.44923 0.46340 0.45647 0.46803 0.46103
(0.00817) | (0.03303) | (0.00801) | (0.03237) | (0.00727) | (0.02723) | (0.00616) | (0.02608)
50 0.48717 0.48047 0.47742 0.47086 0.48018 0.47845 0.48498 0.48323
(0.00409) | (0.01806) | (0.00401) | (0.01770) | (0.00364) | (0.01489) | (0.00309) | (0.01427)
100 0.49435 0.48966 0.48446 0.47986 0.48726 0.48759 0.49213 0.49247
(0.00273) | (0.01248) | (0.00268) | (0.01224) | (0.00243) | (0.01029) | (0.00206) | (0.00986)
150 0.49531 0.49178 0.48540 0.48194 0.48820 0.48971 0.49308 0.49460
(0.00205) | (0.00932) | (0.00201) | (0.00914) | (0.00183) | (0.00769) | (0.00155) | (0.00736)
Table 2: Bayes Estimates and Posterior Risks under Left censored samples for 6 = 1.00
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.88771 0.84952 0.86995 0.83253 0.87497 0.84594 0.88372 0.85440
(0.01628) | (0.07585) | (0.01596) | (0.07433) | (0.01449) | (0.06254) | (0.01228) | (0.05990)
30 0.93194 0.90867 0.91330 0.89049 0.91857 0.90484 0.92776 0.91389
(0.00817) | (0.04313) | (0.00801) | (0.04227) | (0.00727) | (0.03556) | (0.00616) | (0.03406)
50 0.96569 0.95242 0.94637 0.93337 0.95183 0.94841 0.96135 0.95789
(0.00409) | (0.02359) | (0.00401) | (0.02312) | (0.00364) | (0.01945) | (0.00309) | (0.01863)
100 0.97993 0.97062 0.96033 0.95121 0.96588 0.96653 0.97553 0.97620
(0.00273) | (0.01630) | (0.00268) | (0.01598) | (0.00243) | (0.01344) | (0.00206) | (0.01288)
150 0.98182 0.97483 0.96219 0.95533 0.96774 0.97072 0.97742 0.98043
(0.00205) | (0.01217) | (0.00201) | (0.01193) | (0.00183) | (0.01004) | (0.00155) | (0.00961)
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Table 3: Bayes Estimates and Posterior Risks under Left censored samples for 6 = 1.50
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 1.34288 1.28511 1.31603 1.25941 1.32362 1.27969 1.33686 1.29249
(0.01628) | (0.12511) | (0.01596) | (0.12260) | (0.01449) | (0.10316) | (0.01228) | (0.09880)
30 1.40979 1.37459 1.38159 1.34710 1.38957 1.36880 1.40347 1.38248
(0.00817) | (0.07114) | (0.00801) | (0.06972) | (0.00727) | (0.05866) | (0.00616) | (0.05618)
50 1.46084 1.44078 1.43163 1.41196 1.43989 143471 1.45429 1.44906
(0.00409) | (0.03891) | (0.00401) | (0.03813) | (0.00364) | (0.03208) | (0.00309) | (0.03073)
100 1.48239 1.46831 1.45275 1.43894 1.46113 1.46212 147574 1.47674
(0.00273) | (0.02689) | (0.00268) | (0.02635) | (0.00243) | (0.02217) | (0.00206) | (0.02124)
150 1.48526 1.47468 1.45555 1.44519 1.46395 1.46847 1.47859 1.48315
(0.00205) | (0.02008) | (0.00201) | (0.01968) | (0.00183) | (0.01656) | (0.00155) | (0.01586)
Table 4: Bayes Estimates and Posterior Risks under Singly Type 1l censored samples for
0=10.50
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.45086 0.43147 0.44185 0.42284 0.44440 0.42965 0.44884 0.43394
(0.01590) | (0.05671) | (0.01558) | (0.05557) | (0.01415) | (0.04676) | (0.01199) | (0.04478)
30 0.47333 0.46151 0.46386 0.45228 0.46654 0.45956 0.47120 0.46416
(0.00798) | (0.03224) | (0.00782) | (0.03160) | (0.00710) | (0.02659) | (0.00602) | (0.02547)
50 0.49047 0.48373 0.48066 0.47406 0.48343 0.48169 0.48827 0.48651
(0.00400) | (0.01764) | (0.00392) | (0.01728) | (0.00356) | (0.01454) | (0.00302) | (0.01393)
100 0.49770 0.49298 0.48775 0.48312 0.49056 0.49090 0.49547 0.49581
(0.00267) | (0.01219) | (0.00261) | (0.01195) | (0.00237) | (0.01005) | (0.00201) | (0.00963)
150 0.49866 0.49511 0.48869 0.48521 0.49151 0.49303 0.49643 0.49796
(0.00200) | (0.00910) | (0.00196) | (0.00892) | (0.00178) | (0.00750) | (0.00151) | (0.00719)
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Table 5: Bayes Estimates and Posterior Risks under Singly Type Il censored samples for
0=1.00
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.89373 0.85528 0.87585 0.83817 0.88091 0.85167 0.88972 0.86019
(0.01590) | (0.07405) | (0.01558) | (0.07257) | (0.01415) | (0.06106) | (0.01199) | (0.05848)
30 0.93826 0.91483 0.91949 0.89653 0.92480 0.91097 0.93405 0.92008
(0.00798) | (0.04211) | (0.00782) | (0.04127) | (0.00710) | (0.03472) | (0.00602) | (0.03326)
50 0.97223 0.95888 0.95279 0.93970 0.95829 0.95484 0.96787 0.96439
(0.00400) | (0.02303) | (0.00392) | (0.02257) | (0.00356) | (0.01899) | (0.00302) | (0.01819)
100 0.98658 0.97720 0.96684 0.95766 0.97242 0.97308 0.98215 0.98282
(0.00267) | (0.01592) | (0.00261) | (0.01560) | (0.00237) | (0.01313) | (0.00201) | (0.01257)
150 0.98848 0.98144 0.96871 0.96181 0.97430 0.97731 0.98404 0.98708
(0.00200) | (0.01189) | (0.00196) | (0.01165) | (0.00178) | (0.00980) | (0.00151) | (0.00939)
Table 6: Bayes Estimates and Posterior Risks under Singly Type Il censored samples for
0=1.50
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 1.35199 1.29382 1.32495 1.26795 1.33260 1.28837 1.34592 1.30125
(0.01590) | (0.12214) | (0.01558) | (0.11970) | (0.01415) | (0.10071) | (0.01199) | (0.09646)
30 1.41935 1.38391 1.39096 1.35623 1.39899 1.37808 1.41298 1.39186
(0.00798) | (0.06945) | (0.00782) | (0.06807) | (0.00710) | (0.05727) | (0.00602) | (0.05485)
50 1.47075 1.45055 1.44134 1.42154 1.44966 1.44444 1.46415 1.45888
(0.00400) | (0.03799) | (0.00392) | (0.03723) | (0.00356) | (0.03132) | (0.00302) | (0.03000)
100 1.49245 1.47827 1.46260 1.44870 1.47104 1.47204 1.48575 1.48676
(0.00267) | (0.02626) | (0.00261) | (0.02573) | (0.00237) | (0.02165) | (0.00201) | (0.02074)
150 1.49533 1.48468 1.46542 1.45499 1.47388 1.47842 1.48862 1.49321
(0.00200) | (0.01960) | (0.00196) | (0.01921) | (0.00178) | (0.01616) | (0.00151) | (0.01548)
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Table 7: Bayes Estimates and Posterior Risks under Doubly Type Il censored samples for 6 =

0.50
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.44436 0.42524 0.43547 0.41674 0.43798 0.42345 0.44236 0.42768
(0.01657) | (0.05911) | (0.01624) | (0.05792) | (0.01474) | (0.04874) | (0.01250) | (0.04668)
30 0.46650 0.45485 0.45717 0.44575 0.45981 0.45293 0.46440 0.45746
(0.00832) | (0.03361) | (0.00815) | (0.03294) | (0.00740) | (0.02771) | (0.00627) | (0.02654)
50 0.48339 0.47675 0.47372 0.46722 0.47646 0.47474 0.48122 0.47949
(0.00417) | (0.01838) | (0.00408) | (0.01801) | (0.00371) | (0.01516) | (0.00314) | (0.01452)
100 0.49052 0.48586 0.48071 0.47614 0.48349 0.48381 0.48832 0.48865
(0.00278) | (0.01271) | (0.00273) | (0.01245) | (0.00247) | (0.01048) | (0.00210) | (0.01003)
150 0.49147 0.48797 0.48164 0.47821 0.48442 0.48591 0.48926 0.49077
(0.00209) | (0.00949) | (0.00205) | (0.00930) | (0.00186) | (0.00782) | (0.00157) | (0.00749)
Table 8: Bayes Estimates and Posterior Risks under Doubly Type Il censored samples for 6 =
1.00
n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 0.88083 0.84293 0.86321 0.82608 0.86820 0.83938 0.87688 0.84778
(0.01657) | (0.07719) | (0.01624) | (0.07564) | (0.01474) | (0.06364) | (0.01250) | (0.06096)
30 0.92472 0.90163 0.90622 0.88359 0.91145 0.89783 0.92057 0.90681
(0.00832) | (0.04389) | (0.00815) | (0.04301) | (0.00740) | (0.03619) | (0.00627) | (0.03466)
50 0.95820 0.94504 0.93904 0.92614 0.94446 0.94106 0.95391 0.95047
(0.00417) | (0.02401) | (0.00408) | (0.02353) | (0.00371) | (0.01979) | (0.00314) | (0.01896)
100 0.97234 0.96310 0.95289 0.94384 0.95839 0.95904 0.96798 0.96863
(0.00278) | (0.01659) | (0.00273) | (0.01626) | (0.00247) | (0.01368) | (0.00210) | (0.01310)
150 0.97422 0.96728 0.95473 0.94793 0.96024 0.96320 0.96985 0.97283
(0.00209) | (0.01239) | (0.00205) | (0.01214) | (0.00186) | (0.01022) | (0.00157) | (0.00978)
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Table 9: Bayes Estimates and Posterior Risks under Doubly Type Il censored samples for 6 =
1.50

n Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
20 1.33248 1.27515 1.30583 1.24965 1.31337 1.26978 1.32650 1.28248
(0.01657) | (0.12731) | (0.01624) | (0.12477) | (0.01474) | (0.10498) | (0.01250) | (0.10055)
30 1.39887 1.36394 1.37089 1.33666 1.37880 1.35819 1.39259 1.37177
(0.00832) | (0.07240) | (0.00815) | (0.07095) | (0.00740) | (0.05969) | (0.00627) | (0.05718)
50 1.44953 1.42962 1.42054 1.40103 1.42874 1.42359 1.44302 1.43783
(0.00417) | (0.03960) | (0.00408) | (0.03880) | (0.00371) | (0.03265) | (0.00314) | (0.03127)
100 1.47091 1.45694 1.44149 1.42780 1.44981 1.45080 1.46431 1.46530
(0.00278) | (0.02737) | (0.00273) | (0.02682) | (0.00247) | (0.02257) | (0.00210) | (0.02161)
150 1.47375 1.46325 1.44427 1.43399 1.45261 1.45709 1.46714 1.47166
(0.00209) | (0.02043) | (0.00205) | (0.02003) | (0.00186) | (0.01685) | (0.00157) | (0.01614)

Table 10: 95% Credible Intervals under different Priors and censoring techniques for
0 =0.50

) Uniform Jeffreys Gamma Inverse Levy
n | Censoring
LL UL LL UL LL UL LL UL
LC 0.30267 | 0.59207 | 0.31355 | 0.58596 | 0.31629 | 0.58282 | 0.32766 | 0.57680

20 STTC 0.30650 | 0.58873 | 0.31752 | 0.58265 | 0.32029 | 0.57953 | 0.33180 | 0.57355

DTTC 0.30109 | 0.59410 | 0.31191 | 0.58797 | 0.31463 | 0.58482 | 0.32594 | 0.57878

LC 0.31775 | 0.58871 | 0.32917 | 0.58264 | 0.33205 | 0.57951 | 0.34398 | 0.57353

30 STTC 0.32177 | 0.58539 | 0.33334 | 0.57935 | 0.33625 | 0.57624 | 0.34834 | 0.57030

DTTC 0.31609 | 0.59073 | 0.32745 | 0.58464 | 0.33031 | 0.58150 | 0.34218 | 0.57550

LC 0.32926 | 0.58075 | 0.34109 | 0.57475 | 0.34408 | 0.57168 | 0.35644 | 0.56577

50 STTC 0.33343 | 0.57747 | 0.34541 | 0.57151 | 0.34843 | 0.56845 | 0.36095 | 0.56258

DTTC 0.32753 | 0.58274 | 0.33930 | 0.57673 | 0.34227 | 0.57364 | 0.35457 | 0.56772

LC 0.33412 | 0.56850 | 0.34612 | 0.56263 | 0.34915 | 0.55962 | 0.36170 | 0.55384

100 STTC 0.33834 | 0.56529 | 0.35050 | 0.55946 | 0.35357 | 0.55646 | 0.36628 | 0.55071

DTTC 0.33237 | 0.57045 | 0.34431 | 0.56456 | 0.34732 | 0.56154 | 0.35980 | 0.55574

LC 0.37577 | 0.55474 | 0.38562 | 0.54901 | 0.39268 | 0.54607 | 0.40298 | 0.54043

150 STTC 0.38053 | 0.55161 | 0.39050 | 0.54591 | 0.39765 | 0.54299 | 0.40808 | 0.53738

DTTC 0.37380 | 0.55664 | 0.38360 | 0.55090 | 0.39063 | 0.54794 | 0.40086 | 0.54229
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Table 11: 95% Posterior Predictive Intervals under different censoring techniques for

0=0.50
n | Censoring Uniform Jeffreys Gamma Inverse Levy
LL uL LL uL LL UL LL UL
LC 0.10435 | 1.91514 | 0.10810 | 1.89537 | 0.10905 | 1.88522 | 0.11296 | 1.86576
20 STTC 0.10567 | 1.90433 | 0.10947 | 1.88468 | 0.11043 | 1.87458 | 0.11439 | 1.85523
DTTC | 0.10380 | 1.92171 | 0.10753 | 1.90188 | 0.10847 | 1.89169 | 0.11237 | 1.87216
LC 0.10955 | 1.90428 | 0.11349 | 1.88462 | 0.11448 | 1.87453 | 0.11859 | 1.85517
30 STTC 0.11094 | 1.89353 | 0.11492 | 1.87398 | 0.11593 | 1.86395 | 0.12009 | 1.84470
DTTC | 0.10898 | 1.91081 | 0.11289 | 1.89109 | 0.11388 | 1.88096 | 0.11797 | 1.8615 4
LC 0.11352 | 1.87852 | 0.11760 | 1.85913 | 0.11862 | 1.84917 | 0.12289 | 1.83008
50 STTC 0.11495 | 1.86792 | 0.11908 | 1.84863 | 0.12013 | 1.83873 | 0.12444 | 1.81975
DTTC | 0.11292 | 1.88497 | 0.11698 | 1.86551 | 0.11800 | 1.85551 | 0.12224 | 1.83636
LC 0.11519 | 1.83889 | 0.11933 | 1.81991 | 0.12037 | 1.81016 | 0.12470 | 1.79148
100 STTC 0.11665 | 1.82852 | 0.12084 | 1.80964 | 0.12190 | 1.79995 | 0.12628 | 1.78137
DTTC | 0.11459 | 1.84520 | 0.11871 | 1.82616 | 0.11974 | 1.81637 | 0.12405 | 1.79762
LC 0.12955 | 1.79438 | 0.13295 | 1.77586 | 0.13538 | 1.76634 | 0.13893 | 1.74811
150 STTC 0.13119 | 1.78425 | 0.13463 | 1.76583 | 0.13710 | 1.75638 | 0.14069 | 1.73824
DTTC | 0.12887 | 1.80054 | 0.13225 | 1.78195 | 0.13467 | 1.77241 | 0.13820 | 1.75411

Table 12: Bayes Estimates and Posterior Risks under real life data

Censoring Uniform Jeffreys Gamma Inverse Levy
GELF LLF GELF LLF GELF LLF GELF LLF
Lc 1.13982 | 1.09079 | 1.11703 | 1.06897 | 1.12347 | 1.08619 | 1.13471 | 1.09705
(0.02223) | (0.17083) | (0.02179) | (0.16741) | (0.01978) | (0.14086) | (0.01677) | (0.13492)
STTC 1.14755 | 1.09818 | 1.12460 | 1.07622 | 1.13109 | 1.09355 | 1.14240 | 1.10449
(0.02171) | (0.16678) | (0.02127) | (0.16345) | (0.01932) | (0.13752) | (0.01637) | (0.13172)
DTTC 1.13099 | 1.08233 | 1.10837 | 1.06069 | 1.11477 | 107777 | 112592 | 1.08855
(0.02263) | (0.17385) | (0.02217) | (0.17037) | (0.02013) | (0.14335) | (0.01707) | (0.13730)
Table 13: 95% Credible Intervals for real life data
. Uniform Jeffreys Gamma Inverse Levy
Censoring
LL UL LL UL LL UL LL UL
LC 0.77354 | 1.42973 | 0.75807 | 1.40114 | 0.76245 | 1.40922 | 0.77007 | 1.42332
STTC 0.78682 | 1.36759 | 0.77108 | 1.34024 | 0.77553 | 1.36183 | 0.78329 | 1.37545
DTTC | 0.73128 | 1.38406 | 0.71666 | 1.35637 | 0.72079 | 1.37822 | 0.72800 | 1.39201
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Table 14: 95% Posterior Predictive Intervals based on real life data

. Uniform Jeffreys Gamma Inverse Levy
Censoring
LL UL LL UL LL UL LL UL
LC 0.08018 | 1.61050 | 0.07858 | 1.57829 | 0.07903 | 1.58740 | 0.07982 | 1.60327

STTC 0.08156 | 1.54050 | 0.07992 | 1.50969 | 0.08039 | 1.53401 | 0.08119 | 1.54935

DTTC 0.07580 | 1.55905 | 0.07428 | 1.52786 | 0.07471 | 1.55248 | 0.07546 | 1.56800
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