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Abstract 

This paper presents some characterizations and properties of certain new 

Distributions. First, various characterizations of the Distribution of the ratio of 

two independent Maxwell and Rayleigh random variables are presented. Then we 

establish characterizations results related to two Distributions, Modified Burr XII 

- Geometric Distribution (MBGD) and Folded t Distribution. We also 

characterize a Distribution due to Bondesson (1979). These characterizations are 

based on: (i) a simple relationship between two Truncated moments; (ii) 

conditional expectations of functions of Order Statistics and (iii) conditional 

expectation of a power of a random variable. 
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1. Introduction 

 

As pointed out by Nadarajah and Kotz (2006), the Distribution of U / V for 

independent random variables U and V  is of interest in biological and physical 

sciences, econometrics, and ranking and selection. Examples include Mendelian 

Inheritance ratios in genetics, mass to energy ratios in nuclear physics, target to 

control precipitation in meteorology, and inventory ratios in economics.  

 
__________________________________________________ 
1
 Department of Management Sciences, Rider University, Lawrenceville, NJ 08648, USA. 

2
 Department of Mathematics, Statistics and Computer Science, Marquette University,  

   Milwaukee, WI 53201-1881, USA. 
3
 Department of Mathematics and Statistics, Florida International University, University Park, 

   Miami, FL 33199, USA. 
4 
Department of Mathematics, Miami Dade College, Hialeah Campus, Hialeah, FL 33012, USA. 



Mohammad Ahsanullah, Ghulam Hussein G. Hamedani, B. M. Golam Kibria
  

and Mohammad Shakil 

_______________________________________________________________________________ 

 

76 

 

They also referred to another important example which is the stress-strength Model 

in context of Reliability. It describes the life of a component which has a random 

strength V and is subject to a random stress U. 

 

The Distribution of U / V have been studied by several authors when these 

random variables come from the same family of Distributions. Recently, Shakil 

and Ahsanullah (2011) also pointed out that the Distribution of the ratio of 

independent random variables arises in many fields of studies in engineering. For 

the detailed explanation of the importance of the Distribution of the ratio of 

independent random variables, we also refer the interested reader to Shakil and 

Ahsanullah (2011) where they consider the Distributional properties of record 

values of the ratio of independent Rayleigh random variables. Nadarajah (2010) 

studied the Distributional properties as well as estimation of the ratio of 

independent Weibull random variables. For the detailed discussion, domain of 

applicability and practical examples we refer the interested reader to Nadarajah 

(2010). A more interesting case, however, is when the random variables have 

different Distributions. Nadarajah and Kotz (2006) considered the case when the 

independent random variables U and V have deferent but similar Distributions 

(Gamma and Weibull) and obtained the exact Distribution of the ratio U /V. 

Shakil et al. (2007) obtained the Distribution of U / V when U and V are 

independent Maxwell and Rayleigh random variables. 

 

In the applications where the underlined Distribution is assumed to belong to a 

certain family of Distributions, the investigator needs to verify that the underlying 

Distribution is in fact the assumed one. To this end, the investigator has to rely on 

the characterizations of the assumed Distribution and determine if the 

corresponding conditions are satisfied. Thus, the problem of characterizing 

Distributions becomes important and essential. Consequently, the field of 

characterization of Distributions has attracted the attention of many researchers 

and hence, various characterizations have been established in many different 

directions. The goal of the present work is to establish various characterizations of 

the Distribution of the ratio of certain independent random variables as well as for 

three other Distributions mentioned in the next paragraph. 

 

In Section 2, we present characterizations of the Distribution of the ratio of two 

independent Maxwell and Rayleigh (RMR) random variables. Our results in 

subsections 2.1- 2.2, will be based on a simple relationship between two 

Truncated moments; and on conditional expectations of certain functions of Order 
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Statistics, respectively. In Section 3, we present characterizations of the Modified 

Burr XII - Geometric Distribution (MBGD). Section 4 presents characterizations 

of the Folded t-Distribution. In Section 5, we present a characterization of a 

Distribution due to Bondesson (1979). The concluding remarks are given in 

Section 6. 

 

2.  Characterizations of the RMR Distribution 

 

Let U and V have Maxwell and Rayleigh Distributions, respectively.  The p.d.f.’s   

(probability density functions) Uf  and Vf  are given respectively by
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where   and   are positive parameters. 

The p.d.f. (f) and c.d.f. (F) of the Distribution of the ratio,
V
UX   , of two 

independent Maxwell and Rayleigh random variables U and V (given above) are 

respectively (see Shakil et al. (2007)) 

 ( )   (     )  
    ⁄     

(       )  ⁄                                (1.1) 

and 

 ( )  
   ⁄     

(       )  ⁄                        (1.2) 

We denote the random variable X with c.d.f., equation (1.2) by RMR.  

 

As pointed out in the introduction, the Distribution of the ratio of independent 

random variables has applications in many fields of study.  So, an investigator 

will be vitally interested to know if their model fits the requirements of RMR   

Distribution.  To this end, the investigator relies on characterizations of this 

Distribution, which provide conditions under which the underlying Distribution is 

indeed that of RMR. In this section, we will present several characterizations of 

this Distribution. 

 

Throughout this paper we assume, where necessary, that the Distribution Function 

F is twice differentiable on its support. 
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2.1. Characterization based on Two Truncated Moments: In this subsection, we 

present characterizations of RMR Distribution in terms of Truncated moments.  

We like to mention here the works of Galambos and Kotz  1978 , Glanzel  (1987, 

1988, 1990), Glanzel et al. (1984), Glanzel and Hamedani (2001), Hamedani  

(1993, 2002, 2006) and Kotz and Shanbhag   1980 ,  and  among others.  Our 

characterization results presented here will employ an interesting result due to 

Glanzel  1987 , (Theorem 1 below). 

 

Theorem 1: Let (Ω, F, P) be a given probability space and let  baH ,  be an 

Interval for some a < b (a = -∞, b = ∞ might as well be allowed). Let   

HX : be a continuous random variable with the Distribution Function F    

and let ‘g’ and ‘h’ be two real functions defined on H such that  

     xXXhxXXg   | E | E     ,x         Hx     

is defined with some real function  . Assume that g ,  HCh 1 ,  HC 2    

and F is twice continuously differentiable and strictly Monotone Function on the 

set H. Finally, assume that the equation gh  has no real solution in the interior 

of H. Then F is uniquely determined by the functions ‘g’, ‘h’ and  , particularly

 
 

     
   ,  exp duus

uguhu

u
CxF
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a





  


 where the function ‘s’ is  a solution of 

the differential equation gh

hs
   

 




 


and C is a constant, chosen to make 1 dF

H
. 

 

Remarks 2.1.1:  a In Theorem 1, the Interval H need not be closed.  b The goal 

is to have the function   as simple as possible. For a more detailed discussion on 

the choice of  , we refer the reader to Glanzel and Hamedani  2001  and 

Hamedani   2006,2002,1993 . 

 

Proposition 2.1.2: Let   ,0:X be a continuous random variable and let   

  1 xxh and    221 1 xaxxg  
 for  .,0 x  The p.d.f. of X is equation 

 1.1  if and only if the function   defined in Theorem 1 has the form 

    . 0   , 13 22  xxax   
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Proof:  Let X  have p.d.f., equation  1.1 , then 

        , 0     , 1 | E 1
2/3 222/1 


xxaaxXXhxF   

and 

        , 0    ,13 | E 1
2/1 222/1 


xxaaxXXgxF   

and finally, 

        .0    , 012 221   xforxaxxgxhx   

Conversely, if   is given as above, then 

 
   

     
  , 0    ,13 
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and hence      ).1ln(
2/322xaxs   

Now, in view of Theorem 1 (with 2/1aC  ), X has c.d.f., equation  2.1  , and 

p.d.f., equation  1.1 . 

 

Corollary 2.1.3:  Let   ,0:X be a continuous random variable and let   

  1 xxh for   ,0x . The p.d.f. of X  is equation  1.1  if and only if there 

exist functions g  and   defined in Theorem 1 satisfying the differential equation: 

 
   

  .0    ,13
 

 1222

1

1
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

 
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xgxx
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Remarks 2.1.4:  i The general solution of the differential equation given in 

Corollary (2.1.3) is, 

        , 13 1
2/522222/322 Ddxxgxaxaxax 



   

for 0x , where   D    is a constant.  One set of appropriate functions is given in 

Proposition (2.1.2) with   .0D   

 ii  Clearly there are other triplet functions  ,, gh  satisfying conditions of 

Proposition (2.1.2). 

 

2.2. Characterization based on Conditional Expectations of Certain Functions 

of Order Statistics: Let nnnn XXX ::2:1 ...  be n  Order Statistics from a 

continuous c.d.f. .F  We present here characterization results based on some 

functions of these Order Statistics. We refer the reader to Ahsanullah and 

Hamedani  2007 , Hamedani et al.  2008  and Hamedani  2010  among others, 

for characterizations of other well-known continuous Distributions in this 
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direction.  The proof of the following proposition is similar to that of Theorem 2.5 

of Hamedani (2010) in which   xxk   for some .0  We give a brief proof, 

however, for the sake of completeness. 

Proposition 2.2.1: Let  baX ,:  , 0a  be a continuous random variable 

with c.d.f., F and k(x) be a differentiable function such that 

ax lim      .0
n

xFxk  Let  nxq ,  be a real-valued function which is 

differentiable with respect to x and  
  .

, 



dx

nxq

xkb

a
 Then 

 ⌊ (    )       ⌋   ( )   (   )                          (2.2.1) 
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Proof:   Condition  1.2.2   and assumption  ax lim       0
n

xFxk   imply that 

∫   ( )( ( ))
 
    (   )( ( ))  

 
      (2.2.2) 

Differentiating equation  2.2.2  with respect to ‘t’, we have 
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              (2.2.3) 

Integrating equation  3.2.2    with respect to ‘t’ from ‘x’ to ‘b’,  results in: 
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Remarks 2.2.2:  a In Proposition (2.2.1), the interval  ba,  is allowed to be 

unbounded, as we mentioned in the Introduction.  b In Hamedani (2010), no 

applications of his Theorem 2.5 was provided.  We are pleased to see here that 

there are Distributions for which Proposition (2.2.1) (or Theorem 2.5) can be 

employed to characterize them.   

 

We now present characterizations of RMR Distributions based on certain 

functions of the n
th

 Order Statistic, Xn:n: For     2/3223 1


 xaxxk  and   

    2/3223

1  
1 1,




 xaxnxq

n
 , Proposition (2.2.1) gives a characterization of 
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equation  2.1 . There are clearly other pairs of functions ‘k’ and ‘q’ which satisfy 

conditions of Proposition (2.2.1). 

 

Let jX , nj ,...,2,1  be ‘n’ independently and identically distributed random 

variables with c.d.f. (F) and corresponding p.d.f. (f) and let   

nnnn XXX ::2:1 ...   be their corresponding Order Statistics. Let   


 1:1 inX be 

the 1
st
 Order Statistic from a sample of size 1 in , i>1 of  random variables 

with c.d.f.      
 tF

tFxF

t xF



1

, tx  (t is fixed) and corresponding p.d.f.    
 tF

xf

t xf



1

,  

tx  . Then 

, )     (   ) | ( 1:1:1: ondistributiinequalmeansXtXX
d

in

d

nini  

  

that is, 

        
 
 

,  ,
1
 11|

1:1:1:  | tx
tF

xf
xFinxftxf

in

tXXX
innini










 

Now we can state the following characterization of RMR Distribution in yet 

somewhat different direction.  The proof is similar to that of Propositions  

(2.2.1) and hence is omitted. 

 

Corollary 2.2.3: Let   ,0:X  be a continuous random variable with c.d.f.  

(F). Then  

   
3/2 3/2

 3 2  2 3 2 2

: : 1:E  1  |    1 ,    0 ,  
1

i n i n i n

n i
X a X X t t a t t

n i
 

 



     
    

 

for  1 in    if and only if   X    has  c.d.f., equation  .2.1   

 

3.  Characterizations of the MBGD Distribution 

 

The p.d.f. (f), c.d.f. (F) and Hazard Function F  of the MBGD Distribution are 

given, respectively, by 

       
2

1; , , ,  ,    0 x xf x f x p p x x e p x e x         


                 (3.1)

   
1

1  ,    0 xF x p p x e x 


             (3.2) 

and 

         
1

1 1 ,   0 x x

F x x F x x x e p x e x         


                     (3.3) 

where   10  p ,   ,  0  and 0  are parameters.   
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3.1. Characterization based on Two Truncated Moments: 
 

Proposition 3.1.1:  Let   ,0:X  be a continuous random variable and let   

  1xh  and     2/1xexpxg  for  .,0 x  The p.d.f. of X is equation  1.3  

if and only if the function   defined in Theorem 1 has the form 

    . 0   ,2
2/1

 xexpx x  

 

Proof:  Let X  have p.d.f., equation  1.3 , then 

        , 0     ,  | E 1
1




xexppxXXhxF x  

and 

        , 0    , 2 | E 1
2/1




xexppxXXgxF x  

and finally 

        . 0
2/1
 xexpxgxhx   

Conversely, if   is given as above, then 

 
   

     
    , 0    ,

 

 11 





 xexpexx
xgxhx

xhx
xs xx  




 

and hence 

    ,ln 1cexpxs x    

where  1c  is a constant. Now, in view of Theorem 1 (with   1c
peC  ), X  has 

c.d.f., equation  2.3  , and p.d.f., equation  1.3 . 

 

Corollary 3.1.2: Let   ,0:X be a continuous random variable and let   

  1xh  for   ,0x . The pdf  of X is equation  1.3  if and only if there exist 

functions g  and   defined in Theorem 1 satisfying the differential equation: 

 
   

    .0    ,
11 



  xexpexx
xgx

x xx  



 

 

Remark 3.1.3: The general solution of the differential equation given in Corollary 

(3.1.2) is, 

          , 
21 Ddxexpexxxgexpx xxx 



   
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for   0x   , where   D   is a constant.  One set of appropriate functions is given in 

Proposition 3.1.1 with   .0D   

 

3.2. Characterization based on Hazard Function: For the sake of completeness, 

we state the following simple fact. Let F  be an absolutely continuous 

Distribution with the corresponding p.d.f. (f). The Hazard Function corresponding 

to  F  is, 

 
 

 
 ,       

1
F

f x
x x Supp F

F x
  


       (3.2.1) 

where   Supp F    is the support of   F . 

 

It is obvious that the Hazard Function of a twice differentiable Distribution 

Function satisfies the first Order differential equation: 

 

 
   F

F

F

x
x k x

x








           (3.2.2) 

where  xk  is an appropriate integratable function. Although this differential 

equation has an obvious form since 

 
 

 
 

  ,  
 

 
x

x

x

xf

xf
F

F

F 







 

for many Uni-variate Continuous Distributions, equation  2.2.3  seems to be the 

only differential equation in terms of the Hazard Function.  The goal here is to 

establish a differential equation which has as simple form as possible and is not of 

the trivial form equation  2.2.3 .  For some general families of Distributions this 

may not be possible.  Here is our characterization result for the MBGD 

Distribution. 

 

Proposition 3.2.1: Let   ,0:X  be a continuous random variable. The   

p.d.f. of X  is equation  1.3  if and only if its hazard function F  satisfies the 

differential equation: 

        
1 1

1 2 ,    0x x x

F Fx p x p x e x x e p x e x           
 

                   (3.2.3) 

Proof:  If X has p.d.f., equation  1.3 , then obviously equation  3.2.3  holds. If 

F  satisfies equation  3.2.3 , then 

        , 21   xxexxpxepx F

x

F

x  
 

 



Mohammad Ahsanullah, Ghulam Hussein G. Hamedani, B. M. Golam Kibria
  

and Mohammad Shakil 

_______________________________________________________________________________ 

 

84 

 

or 

     ,2  xxepx
dx

d
F

x   

 

or 

    Cxxepx F

x   1
 

where   C    is a constant.  Then 

 
 
 

  .0  ,
1

1 










  xexpex

C
x

xF

xf
x xx

F

 


  

 

Integrating both sides of the above equation with respect to x  from 0  to x  and 

after some computations, we arrive at equation  2.3   with  C . 

 

4. Characterizations of the Folded t-Distribution 
 

The p.d.f. (f), c.d.f. (F) and Hazard Function F  of a Folded t Distribution are 

given, respectively, by 

   
3/2

22 2  ,    0 ,             f x x x


                    (4.1)

   
1/2

2 2  ,    0 ,                                F x x x x


           (4.2) 

and 

     
1/2 1

2 22 2 ,   0 ,             F x x x x x
 

              (4.3) 

 

4.1. Characterization based on Two Truncated Moments: 
 

Proposition 4.1.1: Let   ,0:X  be a continuous random variable and let   

  xxh   and     2/12 2


 xxxg  for  .,0 x  The p.d.f. of X  is equation  1.4  

if and only if the function    defined in Theorem 1 has the form 

    . 0   , 2
2

1 2/12 


xxx  

 

Proof:  Let X  have p.d.f., equation  1.4 , then 

        , 0     ,22 | E 1
2/12 


xxxXXhxF  
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and 

        , 0    ,2 | E 1
12 


xxxXXgxF  

and finally 

        . 02
2

1 2/12 


xxxgxhx  

 

Conversely, if   is given as above, then 

 
   

     
  , 0    ,2 

 

 12 






xxx

xgxhx

xhx
xs




 

and hence 

     , 0    , 2ln
2/12

1  xxcxs  

where   1c  is a constant. 

Now, in view of  Theorem 1 (with C ) ,  X   has c.d.f., equation  2.4  , and 

p.d.f., equation  1.4 . 

 

Corollary 4.1.2: Let   ,0:X  be a continuous random variable and let   

  xxh  for   ,0x . The p.d.f. of X is equation  1.4  if and only if there exist 

functions   g  and   defined in Theorem 1 satisfying the differential equation: 

 
   

  .0    ,2
12 



 
xxx

xgxx

xx




 

 

Remark 4.1.3: The general solution of the differential equation given in Corollary 

(4.1.2) is, 

        ,2 2 
2/322/12 Ddxxxgxx 



  

for   0x ,  where   D    is a constant.  One set of appropriate functions is given in 

Proposition (4.1.1) with   .0D   

 

4.2. Characterization based on Hazard function: 
 

Proposition 4.2.1:  Let   ,0:X  be a continuous random variable. The  

p.d.f. of X  is equation  1.4  if and only if its Hazard Function F  satisfies the 

differential equation: 

       
1/2 2

2 22 2 2 ,    0F Fx x x x x x 
 

                                               (4.2.1) 
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with the boundary condition     .2/10 F   

Proof:  If X  has c.d.f., equation  1.4 ,  then obviously equation  1.2.4  holds. If 

F  satisfies equation  1.2.4 , then 

       , 222
2/322/12 

 xxx
dx

d
F  

or 

      , 22
2/122/12 Cxxxx F 


  

where   1C    in view of the boundary condition on   F  . Hence 

           ]12[222
2/122/122/1212 


xxxxxxxF  

 

Integrating both sides of the above equation with respect to x  from 0  to x  we  

arrive at equation  2.4 . 

 

4.3. Characterization based on Truncated Moment of certain Functions of 

Order Statistics: In view of Proposition (2.2.1) for     2/12 2


 xxxk and   

    2/1 2

1
1 2,




 xxnxq

n
, we have the following characterization of equation  2.4  

which is similar to Corollary (2.2.3). 

 

Corollary 4.3.1:  Let   ,0:X  be a continuous random variable with c.d.f. 

(F) . Then 

   
1/2

2 2

: : 1 :

1
E 2 |    2 ,    0 i n i n i n

n i
X X X t t t t

n i





 
     
  

                  (4.3.1) 

for 1 in  if and only if X  has c.d.f., equation (4.2). 

 

5. Characterization of a Distribution due to Bondesson (1979)         
 

Bondesson (1979) considered a Distribution with p.d.f. (f) of the form 

         ,0    ,  ,,,,; 1 
 xxxCpxfxf p                                  (5.1) 

where the parameters     ,   ,  ,     are all positive,  10  p    ,     p    

and C is a normalizing constant. 
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This Distribution has also appeared in Shakil and Kibria (2010) who discussed 

some of its properties.  We have the following characterization of equation  1.5   

based on power of a random variable X with p.d.f., equation  .1.5   

Proposition 5.1:  Let   ,0:X  be a continuous random variable with a 

differentiable p.d.f. (f) Then ‘f’ is given by equation  1.5  if and only if, 

 
   

     , 
  

 |
1

ts
pp

tt

pp
tXXE

p
p


















                    (5.2) 

where    
 tF

tf
ts    and F is c.d.f. corresponding to p.d.f. (f). 

 

Proof: If X  has p.d.f., equation  1.5 , then 

 
 

   
      , 

  

 11 
1








p

p

xx

xp

xf

xf




                                                    (5.3) 

from which we obtain, 

 
 

 
 

    . 
1 1 xfxx

dx

d

pp
xf

pp
xfx pp 





 




 

Integrating both sides of the above equation with respect to x  from 0  to t, we 

arrive at, 

 
 

 
 

    . 
1 1

0
tftt

pp
tF

pp
dxxfx pp

t






 




 

Dividing both sides of this equation by  tF , we obtain 

 
     

    , 
1 10 tstt

pppptF

dxxfx p

pt














 

which is equation  .2.5   Conversely, if equation  2.5  holds, then 

 
 

 
 

 .  
1

0
tf

pp

tt
tF

pp
dxxfx

p
p

t











 






 

Upon differentiating both sides of this equation with respect to ‘t’, we have 

 
 

 
 

 
 

 
 ,

1
 

1

tf
pp

tp
tf

pp

tt
tf

pp
tft

pp
p












 














 

 

from which we obtain equation  3.5  and hence the result. 
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6. Concluding Remarks 
 

To check the suitability of the underlying Distribution of a model the investigator 

will be looking for conditions under which the desired Distribution is 

characterized. In this paper, various characterizations of certain Distributions are 

presented in different directions. It is hoped that the findings of the paper will be 

useful for the practitioners in various fields of statistics and applied sciences that 

are looking for right Distribution for their Model. 
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