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SIZE AND POWER PROPERTIES OF ASYMPTOTICALLY
ROBUST TESTS FOR EQUALITY OF TWO COVARIANCE

MATRICES
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1..: ~.

MUHAMMAD KIIAUD PERVAIZ

bivariate
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Robust, asymptotic covariance matrix,
distribution. convergence in distribution,
'estimator, kurtosis parameter, bias,

Keywords:

ABSTRAct"

Some asymptotically robust test statistics for equality of two covariance
matrices are discussed. The standaid error test based on combined and
separate estimator of asymptotic covariance matrices of vectors of
second-order Sample moments, is estimated .with and without
transformations. The untransformed test based on separate estimator is
equally good as Layard (1972, 1974) [3,4] proposed transformed test
based on combined estimator. Theeffeet of transformations on the tests
is examined. The size and power pelform~ofthe untransformed tesis

. J.. .. ~:I_"

is compared: The standard error test based on separate estimator is found
reasonable for moderate size or non-normal samples.,

1. INTRODUCTION

Layard (1972) [3] described some asymptotically robust test
, statistics for the equality of two covariance matrices, i.e. standard error,
grouping, and jackknife for bivariate distributions. Layard (1974) [4]
compared the size and power properties of. these tests. He, proposed
transformations, i.e. Lo!!:e transformation' of variances and Tanir I
transformation of sample correlation cO-effici~rit. Furtherrilore he
assumed that the transforined vectors of second-order sample moments
have slUileasymptotic covariance matrix .and preferred to use combined

I,
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Where

L =lril",. 1l,,11Jl
-I Il"II Ili,.,

Il,~= E Kx" - E(X,,»' (x" - E(X,,»'
X,=(x",x,J

The sample covariance matrices s'i are
, rS s, 1

S-i = l",. ',II J
Sill S, en' ,

S,,, = ~ ~ (Xi" - Xii) (Xi" - Xi' )
1

- 1 ~
XJ.:Z,== -Lx1"J:n e=]

I

s; == (SI.20 , SI,02 , $1,11) T

S; == (S2,20 , SloW" SUI)T

Where

Let

and ~; are determined similarly from (2, I) i,e. vectors of second-order
population moments, Following Cramer (1946, p.365) [I], Layard
(1972) [3] showed that

Muhammad KhaJid Pervaiz

(b)

(c)

estimator of ,it, for standard error test. Layard (1974) [4] and Pervaiz
(1986) [5J concluded that standard error test based on combined
estimator is better than grouping and jackknife tests as regards size and
power for non-normal distributions, Like Layard (1972, 1974) [3,4J 1iku
and Balakrishnan (1985) (7J treated the problem as a test for equality of
mean vectors and proposed a 12 test.

The aim of the paper is to look at;

(a) The effect of combined and separate estimates of
asymptotic covariance matrix of vectors of second-order
sample moments on size and power performance of
standard error test, with and without transformations.

The effect of transformations on size and power
proJ>jlrties of the tests.

The J>jlrformance of the untransformed asymptotically
robust tests.

The test statistics are defined in section 3. The sampling
eXJ>jlrimentsare discussed in section 4. Simulations were carried out on
ICL 2976 Computer at the University of the Southampton, United
Kingdom. The random number generator used was Q4l5DDF, Gljl5DBF
and Gcf>5CAF from the NAG library through NAG Limited. The
programs were written in FORTRAN_IV.

2

The test statistics computed, are compared with the 5% and 1%
points of the approximate null distributions. The results for the I% case,
essentially corroborate those of the 5% case, so these are not reported
here. The section 5 provides discussion of empirical results. The
conclusions are given in section 6.

2. PROPERTIES OF SAMPLE COVARIANCE MATRICES
FOR INDEPENDENTLY AND IDENTICALLY
DISTRIBUTED SAMPLES

SUppose two bivariate populations, with distribution functions
F and G, Covariance matrices k"i", 1,2 and finite fourth moments.

"

,
I Ii
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(2.11 )

(3.1), i

_ A ( 1
~ I-A') I

i," ,

_ A ( I~ I-A')
1''' I

~,.,. I-l",,); (1 - A')J

o

o
..-',...../.20

\.1

Untransfonned based on Separate Estimator

r
I ..-'I r-,.,.

-'A,-, 0

l0

Standard error

From (2.6) under flo the test statistics:

(a)

Size And Power Properties '""":

,
and [, as given in (2.7). p, = !I,.,,6.t,,» !I,.,,)'. Layard (!972) (3]

suggested that consistent estimators, of the asymptotic covariance

matrices of <I>{~;)can be obtained from (2.10) by substituting sample
quantities si rs for !Ii rs population mom"ents., ,

3. TEST STATISTICS

The problem is to test:

H,: F{x" x,) = G{x, +I;"x, +~,) vs HA:~, ~~,

Where ~I and ~2 are unspecified constants. The choice of Ho ensures
that the fourth moments of the distributions are equal.

The tests used in the sampling experiments are as follows:

(I)

Because we are interested in the comparison of the perfonnance
of standard error test based 'on combined and separate estimator, and
with and without transfonnations, therefore the test is described with
these respects.

{~;_~;)T~I;tl+n,lt,J' (~;_~;)
: / ~ ~,,11 ~ - \ .~~ ..

is approximately distributed as X,', provided t and [, are consistent
estimators of the asymptotic covariance matrix of ~~ and ~;

(2.8)

(2.9)

(2.1O)

Muhammad KhalidPervaiz

/-l'.31 - /-l'.20 /-li'''Jl
" - "'" ,(2.7)"""',13 r'.rn ,....1.11

" ",-'.22 - IlI,II

,

"2 -+ 00

as n,~oo

"I --.00

/-l,.;' - /-l'.20 /-ll.",
/-l,." - /-l/,lll

r 1rrv 11 In v,
4> /I v I II = In v,
" 'II 1, (1+p)[lv,JJ '2ln 1-P .

ni~:-bJ--.-+ N, (Q, [,) as

n!~;-b;)--.-+N,(Q,r,) as

I

£ = vj(VIv,p. Following Layard (1974) (4]

ni~~:)"':<fJQ;:)]--.-+N,{O,g) as, n,~oo

ni~ ~;)- <fJ (b;)]--.-+ N,{O,g)

n,= AT r A
-, -I~'_I

'..

4

(2.6)
(The symbol -, ...• denotes convergence in distribution). Where [I are:

r /-ll.«> - /-l1,20
r =l-I

Layard (!972, 1974) (3,4] Proposed transfonnations to hasten
convergence to nonnality. These are:

Where

Where

( .d. is matrix of first partial of <fJ evaluated at ~ )

;

, ', I

Ii'
I '
j I,I,',
I ', ,
I ,
, ,
I ,
I',
, ,
I ,
, '
i ,',

i."

, '

, .'

{II'

! I'
! I'
, I'
I III

I II"

I II'.

I 1'1

, 'II
, 'I

, ,II,

L........... -.L~ ,
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(3.5)

S"l1'] e=I,2 •...... ,n,
Si,02e

-v _v "'" -.. _v_v(s- S )T [nt-II: + n!-'r ]-1 (S - S )- , - 2 I I or, -2 _ , _2

and n; +n;-2

-' 1 ~
S - -L.sv. - n' -j,g
- t ; g=l

Jackknife

Let ~i- •• sample covariance matrices. defined as:

[
Si.20'S =

-i,e Sf,lle

Size And Power Properties .....

having the distribution of (3.1). The Q can be obtained from (3.4) by
using srs as defined by (3.2) for population quantities in (2.7) and (2.11).

(II) Grouping

Each sample is divided randomly into n; i = 1,2; groups of size

I, i.e. n, = In; for I ~ 2 (assumption is that ni are divisible by L)

Let

[
SI.20g SI,lIg]

~. g = g= 1,2•......• n,
I. SI,llg S;,02g

sample variance - covariance matrices within groups. The ~:.g,vectors
of second-order sample moments from groups of first and second
samples. are independent and have approximately the multivariate
normal distribution with equal mean vectors and covariance matrices,
under Ho, being so the test statistic:

has approximately Hotelling's T2 distribution with 3
degrees offreedom. Where

_ 1 ~ ~v _v

[, = . 1L.(~~g- S) (~~g- S Yni - g=1 • - J ' - ,

(Ill)

J

I
I

(3.2)

Q= AT[A (3.4)

has the distribution of (3.1) under flo. The [ can be obtained from (2.7)
by using Srs in place of lIi.rs. where

1 2 ~

8" = ---LL.(X,., -XU)'(X,.2-XI.2)nJ +n2 ;•••1 it"')

respectively. These can be obtained from (2.7) by using sample
quantities as defined by (2.3)

(b) Untransformed based on Com bined Estimator

From (2.6) the test statistic:

~[(S' -S')Tf-'(S' -S')]n +n -I -2 - -I -2, 2

n+,n
2
[((~~: )-~~;)JQ-I((~~:)-~~;)J' n2

- -
The Xu and Xl.2 are defined by (2.4)

(c) Transformed based on Separate Estimator

From (2.8) and (2.9), under Ho the test statistic:

[,p(~;)-,p(~;)]'[n,' 9, +n,'92 r' [,(~;)-,p(~;)] (3.3)

has the distribution of (3.1). provided Q, and Q2 are consistent

estimators of the asymptotic covariance matrices of '(~;) and ,(~;)
respectively. These can be obtained from (2.10) by using sample
quantities in place of population moments.

(d) Transformed based on Combined Estimator

Under Ho' ,p(~;)and ,p(~;) have same asymptotic covariance
matrix, i.e

Therefore Layard (1974) [4]. preferred the test statistic:

r

),
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Where

9

,
.1 I~' 1; [oJ,

.,.

r~

,

]-'[- ]o w,'

4Ji ;;2

~ 'J I~; -:,J

.'1 , .•.,':'j'• "~I

[

-2
2 n,n2 i::: ~ ] 4J,T =--LW) W2

.,' ~l+n2 0

I (u" - u ,)' +1:(V" - V,)'+"2 _ •.. ) •.",I
I - n, + n

2
_ 2

SAMPLING EXPERIMENTS

I(u,.- u,)' +t(v" - v,)'
."2 _ ,,_I •."I., -

n, + n2 - 2

Both 12x2

Both with unit variances and corr~lation co-efficient 0.9, and the

alternative hypotheses are:

12x2 and 2.25 12x2'

12x2 and variances 4 and correlation co-efficient 0.3,

12X2 and the matrix of (h)

Size And Power Properties .....

is distributed approximately as Hotelling's T2 with 2 and (nl +n2-2)
degrees of freedom under flo: Where

- -
WI =U,-V,

- -
W2 = U2 -V2

4.
Four hypothetical distributions, the normal, the gamma, the

double exponential and the contaminated normal are sampled. For
details see Layard (1974) [4] and Pervaiz (1986) [5]. Furthermore the set
of covariance matrices chosen is the same as Layard (1974) [4]. The
covariance matrices which represent the null hypotheses are:

(a)

(b)

(c)

(d)

(e)

,.
r

I
,

~

Muhammad Khalid Pervaiz8

r' = _\- ~(S' - S~')(S'_S")T-, n _\ L -I,e -t -I.e _;
; l!':1

X;e2_ = Xie2 - bX;el'

Vie = (x1et-~I.1j andU2e = (x1eo2 -;1.2-);

The elements of the matrix are estimated second-order moments from
the samples by using (ni-I) observations, with the e-th observation... ~, ' .': .'

om itted, Let

Vle = (X2td - Xl.l ) and V2e = (X2e2 -X2.2_ ) ;

Tiku and Balakrishan (1985) [7] suggested that the test statistic:

The jackknife estimators are the average of ~;.e; i,e,
.Y l' nj -1t 'S =nS --- S-t I-I n -I-e

i e=1

~;.e= n,~; - (n, -l)~;-e

The ~;.eare approximately independent and have, under flo,
approximately equal mean vectors and covariance matrices. Thus test
statistic:

(s" _S")T [n-Ir' + -'r']-. (S" -S")
_I -2 I -1 ~ -2 _I -2

has approximately Hotelli~g's T2 d'istribution with 3 and (n
l
+n2-2)

degrees of freedom under flo: Where

(IV) Tiku and BalakrishnanT2

Let

X i.I and x '.2- are usual means, while b is the pooled regression
coefficient.
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SAMPLING EXPERIMENTS

I(u,.- u,)' +t(v" - v,)'
."2 _ ,,_I •."I., -

n, + n2 - 2

Both 12x2

Both with unit variances and corr~lation co-efficient 0.9, and the

alternative hypotheses are:

12x2 and 2.25 12x2'

12x2 and variances 4 and correlation co-efficient 0.3,

12X2 and the matrix of (h)

Size And Power Properties .....

is distributed approximately as Hotelling's T2 with 2 and (nl +n2-2)
degrees of freedom under flo: Where

- -
WI =U,-V,

- -
W2 = U2 -V2

4.
Four hypothetical distributions, the normal, the gamma, the

double exponential and the contaminated normal are sampled. For
details see Layard (1974) [4] and Pervaiz (1986) [5]. Furthermore the set
of covariance matrices chosen is the same as Layard (1974) [4]. The
covariance matrices which represent the null hypotheses are:

(a)

(b)

(c)

(d)

(e)

,.
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I
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To look at the asymptotic convergence of the transformed
standard error test based on separate estimator, samples of size
n I=n2=20,40 ...., 100 and 250 are considered. The proportion of
rejections observed for elliptical distributions (nort1)al and contaminated
normal)-matrix combinations are recorded in Table 2. The asymptotic.
convergence is not very good and still does not appear to have occurred
for the contaminated normal distribution. While the untransformed test
based on separate estimator produced very reasonable sizes with
samples of size n I=n2=25. Consequently the separate estimator is used
in the untransformed case.

The proportion of rejections observed for distribution-
untransformed test- matrix combinations, with samples of size 25, are
recorded in Table 3. All tests produced reasonable sizes for the normal
distribution. The standard error test produced reasonable sizes for the
non-normal distributions as well. The test has decreasing trend in

/".---

5. DISCUSSION OF EMPIRICAL RESULTS

In considering the results it should be noted that the standard
deviation of the estimated binomial proportion for a true proportion of
0.05 with samples of size 1000 is 0.07 and with samples of size 500 is
0.010. Therefore for 1000 replication observed proportions lying in
(3.6,6.4)%, and for 500 replications lying in (3.0,7.0)% do not differ
significantly from a true proportion of 5% at 95% level.

Table I provides the proportion of rejection observed for
distribution-matrix-transformation combinations by using the combined
and separate estimators of the asymptotic covariance matrices. Under
transformations, the standard error test based on the combined estimator
produced much better sizes than the separate estimator. The effect is
becoming more significant with the in~rease of the kurtosis co-efficient
of the parent distribution. But in the untransformed case the standard
error test based on the combined estimator rejected the null hypothesis
too infrequently for (b) in the case of the contaminated normal
distribution. The observed size was 1.3% as opposed to the nominal 5%
level. While the test based on separate estimator produced reasonable
sizes.

observed sizes with the increasing kurtosis parameter of the parent
distribution. The observed sizes for the gamma, the double exponential
and the contaminated normal distributions were (7.9, 4.3 & 3.9 %) and
(8.0,4.8 and 3.4%)

11
Size And Power Properties ... ;.

The grouping test performed well for the gamma distribution as
regards observed sizes, but rejected the null hypothesis too infrequently
for (b) in the case of the double exponential and for (a &b) in the case of
the contaminated normal distribution. The observed sizes were [(2.8)%]
and [(3.3 & 2.5)%] for the respective distributions.

Gross (1976) [2] found the jackknife disappointing in
confidence interval terms. Rocke and Downs (1981) [6] empirical study
concludes, the jackknife method of variance estimation produces upward
bias for the contaminated normal distribution. The upward bias in
jackknife variance estimation may cause two infrequent rejections of the
null hypothesis in the problem. Therefore, the test rejected the null
hypothesis too infrequently for the double exponential and the
contaminated normal distributions. The observed sizes were
[(2.3 & 2.8) %] and [(2.2 & 1.3)%] for the respective distributions.
Under transformations the test was rejecting the null hypothesis too
infrequently for the double exponential and the contaminated normal
distributions---(cf. Layard, 1974) [4].

The Tiku and Balakrishnan T2 test produced sizes for the
normal and the non-normal distributions ranging from a minimum of
2.5% to a maximum of 5.4%. It rejected the null hypothesis too
infrequently for the double exponential and the contaminated normal
distributions. The observed sizes were [(3.5 & 3.3%)] and
[(2.5 & 2.6%)] for the respective distributions.

The standard error test is better in power than the grouping and
the jackknife tests for the normal and the non-normal distributions. The
Tiku and Balakrishanan T2 test has comparable power with the standard
error test for (c) and (d), but for (e) the test in inferior in' power even
than the grouping test.

j
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To analyse the effect of increase in sample size on the
performance of the tests the samples of size 50 are considered. The
proportions of rejections observed are recorded in Table 4 .. The standard
error test maintained very good nominal levels for the distributions
sampled, and worst being for (b) in the case of the contaminated normal
distribution. The observed size was 3.0% as opposed to the nominal 5%
level, not too bad.

There is no improvement as regards observed si;;;es from the
grouping test. For (b) for the contaminated normal distribution the
situation is very poor now. The observed size had fallen down to 1.6%
from 2.5% in Table 3. The jackknife test is improved, and the
improvement is very significant for (b) for the contaminated normal
distribution. The observed size raised upto 2.3% from 1.3% in Table 3.
But the test is still unable to achieve nominal levels for the double
exponential and the contaminated normal distributions. Under
transformations the jackknife test rejecied the null hypothesis too
frequently for the contaminated norma! distribution---_
(cf. Pervaiz, 1986) [5J. The Tiku and Balakrishnan T2 test produced
sizes from a minimum of 2.2% to a maximum of 4.6% for the
distributions sampled; no improvement with the increase in sample size.

Of course the power of the tests increased with the increase in
sample size.

To be more certain about the performance of the jackknife test,
with 'and without transformations, samples of size n I=n2=250 ~re
considered. The observed significance levels for distribution matrix
combinations are recorded in Table 5. The untransformed jackknife test
was rejecting the null hypothesis too infrequently for (a) for the double
exponential distribution. The observed size was 2.2%. For all other
situations the test maintained very good nominal levels. Under
transformations the test rejected the null hypothesis too frequently for
the contaminated normal distribution. The observed sizes were'
(9.4 & 8.0%).
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CONCLUSIONS

Size And Power Properties .....

For the standard error test it is not essential to apply
transformations and to use combined estimator of asymptotic covariance
matrix of vectors of second-order sample moments as suggested by
Layard (1972, 1974) [3,4]. The untransformed test based on separate
estimator is equally good as regards size and power. Therefore a strong
assumption of equal asymptotic covariance matrices can be relaxed. The
transformations does not play any significant role for the jackknife test
as well.

When transformations are not applied:

The standard error test based on separate estimator performs
better than the grouping, the jackknife, and the Tiku and
Balakrishnan T2 tests, as regards size and power, for the non-
normal distributions sampled.

The grouping test is the worst in power, but for (e) the Tiku and
Balakrishnan T2 test.

6.

(a)

(b)

,
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Table 1

APPENDIX

Size And Powe.r Properties ..... 15

(b)(a)(b)(a)

TransfQoued Untransfonned

0.064 0,066 0,044 0,039

0.082 0,099 0.045 0.054

0.072 0.082 0.023 0,027

0.070 0.068 0.025 0.013

0.131 0.138 0.060 0.064

0,172 0.207 0,079 0.080

0.215 0.232 0.043 0.048

0.277 0.293 0.039 0.034

Empirical size based Qn 1000 replicatiQns fQr the
standard errQr test by using cQmbined and separate
estimatQrs Qf the asymptQtic cQvariance matrices Qf
vectors Qf secQnd-Qrder sample mQments.

I all cases, n 1=n2=25

Nominal 5% leyel

Gamma

Normal

Matrix pairs-----(c,f.sectiQn 4)

CombiDed

Separate

DQuble exponential

CQntaminated nQrmal

NQrmal

Gamma

Double exponential

Contaminated normal
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Empirical size and power based on 1000 replications for
tests of equality of two covariance matrices.

Size And Power ProjJerties .....

Table 3

In all cases, n I=n2=25.

Nominal 5% leyel

Matrix pairs---(c.f.section 4)

(a) (b) (c) (d) (e)
.' Normal

Standard error 0.060 0.064 0.559 0.961 0.962
Grouping (L=5) 0.048 0.051 0.266 0.524 0.494
Jackknife 0.047 0.042 0.481 0.930 0.925
Tiku & Balakrishnan T2 0.041 0.042 0.580 0.967 0.485

Gamma

Standard error 0.079 0.080 0.526 0.886 0.952. ,
Grouping (L=5) 0.044 0.044 0.203 0.453 0.474
Jackknife ,...• . 0.048 0.055 0.431 0.850 0.921

;1.; . Tiku & Balakrishnan T2 0.054 0.047 0.510 0.908 0.456~"+ \

11 Double Exponential' .
Standard error 0.043 0.048 0.280 0.659 0.906
Grouping (L=5) 0.043 0.028 0.119 0.325 0.391
Jackknife 0.023 0.028 0.209 0.559 0.855
Tiku & Balakrishnan T2 0.035 0.033 0.256 0.646 0.298

Contaminated Normal
Standard error 0.039 0.034 0.227 0.541 0.747

-. Grouping (L=5) 0.033 0.025 0.114 0.242 0.291
Jackknife 0.022 0.013 0.169 0.450 0.680o.

Tiku & Balakrishnan T2 0.025 0.026 0.247 0.598 0.242

Muhammad Kha/id Pervaiz

Empirical size based on 1000 replications from the
standard error test using separate estimators of
asymptotic covariance matrices for equality to two
covariance matrices.

Nominal 5% leyel

Normal Contami°ated
llQID1lll

Matrix pairs---(c.f.section 4) (a) (b) (a) (b)

Sample size

nl=n2=20 .0.153 0.160 0.322 0.378

40 0.102 0.103 0.234 0.256

60 0.093 0.090 0.173 0.201

80 0.073 0.088 0.161 0.170

100 0.060 0.073 0.136 0.144

250 0.059 0.063 0.094 0.078

Table 2
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Empirical size and power based on 1000 replications for
tests of equality of two covariance matrices.

Size And Power ProjJerties .....
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Empirical size based on 500 replications for the
jaclkknife test of equality of two covariance matrices.

In all cases, n,=n2=250.

Nominal 5% leyel

Size And Power Properties .....

Table 5

Matrix pairs (cf.section4) Untransfonned Transfonned

(a) (b) (a) (b)

Normal 0.042 0.062 0.046 0.068

Double exponential 0.022 0.060 0.034 0.058

Contaminated normal 0.038 0.038 0.094 0.080

Muhammad Khalid Pervaiz

Empirical size and power based on 1000 replications for
tests of equality of two covariance matrices.

Table 4

18

'II

In all cases, n I=n2=50.
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Tiku & Balakrishnan T2 0.033 0.034 0.467 0.853 0.448
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ABSTRACT

INTRODUCTION
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21Some Application Of Factorial Moments Theorem

Consider a finite set a of events, divided in some fashion into m

subsets 0a containing respectively Na events. Let wa be a particular

subset of 0a containing n(wa) events. Let P(w) = P(wJ wm) be
the probability that l:n(wa) events in wa materialize, and let

V(v) = V(v) , vm) be .the class of all (~J ~:)set
vectors (w), , wm) that can be formed under the restriction

n(wa) = va ,ct. = 1, ,m. Finally, let I = (II,' , 1m)be the m
dimensional chance variable whose ath component counts the number

of events of 0a that materialize. If ~;'I= ~;" _ ,.I is the factorial

moment of order v of I, then

2. FACTORIAL MOMENTS THEOREM

The factorial moments theorem has its origin in the paper (6) by

Von R. Mises. Later, this theorem has been demonstrated by Maurice
Frechet (2), P.V.K. Iyer (4). Memon and David (5) use it to obtain the
asymptotic distribution of lattice join counts. Fuchs and David (3)

propose following multivariate analogue of this theorem.

STATEMENT OF THE THEOREM

discrete distributions and the continuous distributions grouped in

intervals. (ii) They provide very concise formulae for distributions of the
binomial type. (iii) They are related to ordinary moments; that is, the rth

moment of a distribution can be obtained from its first r factorial

moments. However, there arise situations where even for distributions of

the binomial type it becomes tedious to find factorial moments. To

tackle such problems we can try the possibility of exploiting the factorial

moments theorem in determining factorial moments of the random

variable involved. If the conditions of this theorem permit, calculation of

these moments may tum to be simple, convenient and quick. This paper

attempts to briefly introduce the factorial moments theorem and give its
applications in univariate and multivariate situations.

r

i
FOI'IfferProfu,Of' of St.>ti.rtlcl. Ultlwn/ty of Be..p,m. U/>JKJ

Factorial moments play an important role in determining
probability distributions of random variables. In some situations it may

be tedious to find these moments. A theorem that has its origin in Von

R. Mises work, facilitates a relationship between factorial moments and

certain probabilities. This paper discusses the relevance of this theorem

to such situations, giving its applications to 'Join counts" in rectangular
lattices.

1. Statistics
1994(1), 20-27

SOME APPLICATIONS OF FACTORIAL
MOMENTS THEOREM

•AHMED ZOGO MEMON

Let us write x[r] for the factorial expression X(X-I) (X-2) .
(X - r + I). If X is a random variable, the mathematical expectation of
x[r] is called the rth factorial moment of X (or of the distribution of X)

about the origin. This moment is usually denoted by ~;')' It is assumed

(when reference is made to the rth factorial moment of a particular
distribution) the appropriate integral (or sum, as the case may be)
converges absolutely for that distribution.

For a two dimensional random variable (X, Y), the mathematical
expectation of(x[r] yes]) is its factorial moment of order (r, s); r, s=I,2,

3, ..... This definition' can be extended on the same lines for the
fa~,orial moment of an n-dimensional random variable.

In statistical literature, factorial moments attract our attention for
following important reasons. (i) Their calculation is easy for certain

•
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3. APPLICATIONS

We apply the above theorem to find factorial moments in following
situati'ons.

Its proof is omitted in (3). The theorem can also be proved like as in
(5) for the univariate case.

23Some Application Of Factorial Moments Theorem

(b) Poisson distribution: If we take n~~ np = A in the factorial

moment for the binomial distribution, the rth factorial moment of the
Poisson distribution comes to At

(e) Two dimensional rectangular lattice: Suppose that at every point
of a lxm lattice, the events B or W materialize with probabilities p and q
respectively, where p + q = I.

(i) Let X be the total number of horizontal and vertical BB joins.
It is indeed difficult to find ordinary moments for the distribution of X.
Moran (7) gives first four moments of this distribution. However if we

use the factorial moments theorem, calculation of factorial moments is

simplified to a great extent; from which the ordinary moments can be

obtained. Memon and David (5) determine the factorial moments of X in
this manner. To illustrate it, we take a simple case of 2x2 lattice. Here,
the first moment is

Dr. Ahmed Zogo Memon

m

!l["i = S(V) ,!](v.)

where S(V) = LP(W).
V(v)

22

This theorem facilitates a relationship between the factorial

moments and certain probabilities. So if it is possible to know these

probabilities, the distribution of the random variable considered can be
determined.

'1
I

I

UNIY ARIA TE PROBLEMS fi;1J = Ii LI Pro (one particular BB join).

For such problems, take m = I.

(a) Binomial distributions: Let us define random variables as

LI comprises all configurations in which only one BB join is
possible. The probability of each of these outcomes remains p2 So,

<!li = I if the ith event occurs, i = 1,2, , n. fill) = 4p2.

. ,
= 0, otherwise.

When <!lisare assumed to be i.i.d., and p is the probability of the
occurrence of the event under consideration, the random variable

x = :t~,has a binomial distribution with parameters nand p. Using the
;:1

above theorem.

The second factorial moment is

ft;,[= 2! L2 Pr. (two particular BB joins).

L2 extends over one two horizontal BB joins', one 'two vertical BB
joins', four' one horizontal BB join and one vertical BB join' ; the
probabilities for which are p4, p4 and p3 respectively: So;

~" = r! ~ Pr {<Il" = lA" = I, , <Il,. = I) fi;,] = 4p4 + 8p3.

r!
,r '.

\ i

~
'(

_ n!_ r
(n - r)! p .

Following the same approach we can show that

fi(3) = 24p4.
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1l['.1J = 3

,
IT (v

o
)1=211! =2,0_'
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[I(v.) 1= I,

Some Application Of Factorial Moments Theorem

,
ll;"" = 8(1,1,1)D,(Vo)

8(2, 1)= Pro {E" Ez; E3} + Pr. {E" Ez; E4} + Pr. {EI, Ez; Es}

J I I 3
~2+2+2~2

One may verify that 1l;,.2J = 6, 11[2,]' = 6

,
1-'"" = S(2,l)!l (vo)

(ii) Let OJ ~ {E,}, 0z = {Ez, E3}, 03 = {E4, Es}'

The chance variable (11' Iz, 13) has the factorial moment of order

(1,1,1)"

Here,

so that

(i) Let °1 and 0z be the subsets consisting of the events PI, Ez ; and

E3, E4, Es respectively. By the above theorem for a two dimensional

chance variable (I" 'Z), the factorial moments of order (2,1) is

Dr. Ahmed Zogo Memon

(d) Binomial sequence: Consider the distribution of the number of BB

joins between successive observations of a binomial sequence where the
events Band W occur with probabilities p and q respectively. If n is the

number of observations, the above theorem can be applied to find

factorial moments for the distribution of the number of BW joins. Iyer
(4) jives the factorial moments for this distribution as well as for the

distribution of the number of BW and WB joins between the successive

observations.

(iii) When the events B materialize at more than two points of a

2x2 lattice, triangles are formed. Suppose we consider the distribution of

the number of such BBB triangles. For this distribution, one may verify
'-3'- 4'- 4'- 4that IlpJ - 4p , 11[2] - 12p , 1l[J' - 24p , 11[4, - 24p .

(ii) If Y is taken as the number of diagonal BB joins in the above

situation, the problem of calculation of moments by the above theorem

no longer presents any difficulty. Here, it follows rather immediately
. - 2 '- 4that IlpJ - 2p , and 1l['J - 2p .

24

,'If

I
I'

So that required factorial moment of (11,12,13) is 2~. We can also

show that its 1l;""'J = 2

, ,

l,
i,, ,
, .

(a) Consider a set ° comprising five events E" Ez, E3, E4, Es, with

probabilities

Pro { EI, EZ' E3, E4' ES} = 1/2,

Pro (E"Ez,E3,E4,Es} = 1/6,

Pr. {E"Ez,E3,E4,Es} = 1/6,

Pro {E],EZ,E3,E4,Es} = 1/6,

and S(I, I, I) = Pr. {E,; Ez; E4} + Pro {E]; E3; E4} +
Pro {EI;EZ; Es} + Pr. {E,; E3; ES}

~ 1 (I 1) I (I I)2+ 2+'6 +2+ 2+'6

I=23
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where L is over eight possible, "one horizontal or vertical BB join" and

'one diagonal BB join', Consequently, this moment comes to 8p3.

SimilarlY)1' -8p'+16p" " -24p'. ' [2,1} - , r-""(2,Zj-

(b) Let us take up again the problem of two dimensional rectangular

lattice considered above, and suppose that X denotes the number of

horizontal and vertical BB joins and Y, the number of diagonal BB

joins. For the random (X, Y),

(4) Iyer, P.V.K. (1958): A theorem on factorial moments, Ann.
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Slatislicallnformation

1. CLASSESOFSTATISTICIANS

Marriage of Statistics with any other science creates possibly a
new speciality. Although there exist numerous specialities in Statistics,
statisticians may be classified into three broad groups (teaching not
included) in view of different levels of ethical problems springing up in
their relationship with those with whom they have to come in contact for
professional purposes. We have:

Theorists who create concepts, theories, methods for
collection and analysis of statistical data.

Specialists in agriculture, economics, accounting,
education, health or other fields of knowledge. They are
mostly concerned with theoretical or applied research
for the advancement of their subject matter through
statistical applications.

(i)

(ii)

(iii)
Those who render useful services to a community by the
use of statistical tools in collection, tabulation, analysis
and interpretation of numerical data. They may have a
speciality in an area that bears relationship with the
inquiry to be organized and managed.

, The last two groups. consist of what we term applied
statisticians, but the distinction in them is motivated for ethical reasons.

. The ethics of a statistical theQrist do not worry a community in
general. H'e is a researcher like any other theoretical scientist engaged in
pursuit of profound discoveries. Nor the problem of statistical conduct
becomes often acute or alarming in the Case of the second group of
statisticians: The scope of their statistical activities is distinctly defined
and it is too narrow to bring them in sharp confrontation with the special
interests of others. But the professionals collecting and analysing data
carry the overall responsibility of organizing and executing statistical
inquiries. Since in extensive inquiries there are many problems of
management, the ethical challenge for them is in nature quite unlike that
of their fellows in other classes.

Statistical information where in the form of numerical data or a
statistical concept evaluated, is a product generally not produced by just
one hand. In whatever manner the information may be procured, it is
regarded now-a-days an indispensable equipment of an educated mind
for decision making. The important consideration is that statistical
information should be useable so as to provide a basis on which a
confident decision can be taken. It is primarily this reason that scientists
and administrators are attracted to make use of Statistics in their
respective fields.

Statistical information may not necessarily proceed from a
single statistician or an individual qualified also in Statistics. At times it
may be too erroneous, or contaminated by numerous errors and biases.
As long as there are no deliberate errors, or manipulation of data to suit
a particular interest, there is nothing unethical about it.

Statistics in its infancy was deemed nothing but a mockery of
figures. Gradually, it started establishing its roots firmly in various
public and private organizations, educational and research institutions.
The early statisticians who made contributions in the development of
statistical theory might not have visualized the extent of its future
involvement in a community's life. Even when Statistics was known to
many laymen through the phrase "there are lies, damn lies, and
statistics", this discipline of knowledge kept on experiencing a rapid,
honourable and effective growth due to its ever-increasing importance.
Although some people stilI raise their eyebrows with odd suspicion at
the name of this innocent science, their cynical attitude has much to do
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3. OUREXPECfATIONSFROMASTATISTICIANIN(GROUP(iii»

Statistical inquires are fairly complicated when the material to
be covered is large. The census of population is one example. An inquiry
is normally made through a sample survey due to economic and
technical reasons. Whether it is based' on sampling or complete'
enumeration, its management involves administrative, financial and
professional work (planning of sample surveys, personnel training, data
collection, analysis and report writing). This task is executed some how.
He may have to tackle a variety of complex situations; he has to be a
good manager and a capable professional. His conduct may invite quite
a criticism from people. Sometimes he is put to enormous inconvenience
too. Even when he has a weak public concern, he is to be mentally ready
to brave their anger, aggression, indifference'and even humiliation. And,
he must be honest in his dealings. Should he be not willing to make an
assidous effort honestly, the results of his inquiry remain confounded by
errors including those which can be eliminated otherwise.

3tStatisticallnjormation

finding mission. To unfold the truth concerning the parameters in a
statistical inquiry, he seeks to look for the best possible course of action~
both theoretically permissible and practically feasible, within the
specified limits of resources. Whether it is collection, analysis, or
interpretation of a statistical data, all these stages of statistical work need
thorough care, meticulous attention and intellectual honesty of the
statistician and his field and other staff involved. Since the basic
information has to be the ground on which the whole monument of
sophisticated analysis and conclusions is tei be erected, it is imperative
for him to make an impartial attempt to have this information measured
as accurately as possible. If his respondent does not want to be quoted,
referred to or identified, this anonymity should be firmly preserved at all
costs. If his employer or client wants the findings of a study to stay
confidential, this trust must not be betrayed. A great moral responsibility
lies on the statistician, and to fulfill it he must be sure that his staff
shares it to his satisfaction. It ought to be the bounding duty of a
statistician to train his staff not only in .how to execute a statistical
project' but also in 'why to be intellectually honest'. Such training should
be designed so as to hopefully expect to relieve his staff members from
the pitfalls of figurative boredom, make them 'realize of enormous
urgency and usefulness of their service, keep their interest alive in
pursuit of 'truth and nothing but truth', and indicate them with moral
obligations in relation to their respondents. They are very important
obligations in relation to their respondents. They are very important
participants in this whole business. The statistician concerned must not
be incapable of creating in them this kind of human feeling.

4. STATISTICIAN'S ETHICAL PROBLEMS

For a public, private or scientific survey the statistician has to
mainly carry out dealing with (i) the client who hires him, (ii)
subordinate statistical staff for assistance in organizing a survey, (iii) the
respondents as subjects in an inquiry. So we should consider his ethical
problems with respect to clients, subordinate staff, and respondents
separately.

;t
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MANAGEMENTOF STATISTICAL INQUIRES

Of course, the professional competence promotes the quality,
value and respect of his statistical work, and has a positive effect on its
reliability. But assuming that the statistician undertaking a certain
statistical mission possesses the required qualifications, tet us have
glance at one's expectations from a fact-finding statistician as well as at
the nature of his ethical problems. Perhaps, this is all the more important
when intriguing influences about the subject of Statistics still flicker in
the minds of people, or tend to invade or abuse their trust in its
practitioners.

To all human endeavour, it is true that honesty, loyalty and
dependability apply imperiously with more or less equal force. But a
statistician has to accomplish his truth discovery task patiently and
boldly through a chain of constantly treating barriers of limited time,
trained personnel, equipment and budget. And then, the respondents too
are being involved in this affair. Weather is yet another factor that may
add problems and effect his task adversely. Any of these factors could
offer him a temptation to follow an easy-go path and pollute his fact
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4.1 His Clients

Not all the clients of a statistician use his services for some
impartial motive. Sometimes, he is faced with clients who want to do
poorly by exploiting their statistician, getting his sanction or even
forcing him to project the prefabricated conclusions suiting their needs.
When a client comes to a physician for treatment, his attitude is to
cooperate, otherwise, he knows his chances of getting well remain
obscure. But with a statistician this equation could tum to be different.
The client of a statistician may wish to maintain certain convictions. or
theories by cooking up data with the aid of his statistician's connivance,
participation or sanction as his involvement is liable to give the minimal
chance to others of catching lies. He may make unreasonable requests or
exercise on him an improper pressure or influence to prevent certain
features of an inquiry to serve his special interests. This is in fact a very
difficult situation for the statistician, and it is here that he has to stay
clear or comply with and bring disgrace to his profession. The situation
as such directly tests his normal courage. He has to either submit, or use
diplomacy to survive or leave his job. Remember, the client could be a
government too. So , I will avoid any discussion on this point because of
its sensitive nature. But the misfortune is the statistician is made to wear
this ugly coat of statistical responsibility. Writing in a leading American
journal, a statistician says: " I became aware of this early in my medical
consulting career when in a cooperative venture to organize some data
for presentation in a legal case a physician suggested calculating the
average survival time of a group of cancer patients using the data
from ". Not only this, the statistician may also get threats from those
whose interests are exposed to risks because of his discoveries. In the
same journal, another statistician narrates: "When our quantitative bio-
statistical epidemiological studies on the hazards of diagnostic medical
X-rays hit the headlines, I got a call from an irate Rochester Radiologist.
He complained bitterly that our findings had reduced the business of
radiologists by 40%. He then told me he was calling me up before a
medical ethics committee that would take away my M.D. He was
disappointed when he came to learn that I didn't have one."

The misuse of a statistician is an irritable offense for which the
responsibility anyway lies on both, but the main culprit is the statistician
who submits and behaves immorally or even criminally. It is sad that all
professions even the noblest ones, suffer from this disease.

4.2 His Field Staff

33Statistical Information

In undertaking public or private surveys of moderate or big size,
a statistician has to depend a lot on the field staff for collection of data.
Under his control, advice or guidance this staff is to grapple with the
difficulties awaiting them in the information collection process. The
statistical conduct of these interviews or enumerators is important in
achieving and preserving the purity of the initial information. Their job
is hard indeed which consists in frequent traveling devoid of any
consideration for the type of season, hot or cold, dry or rainy, searching
for and knocking at the doors of the persons selected, explaining the
purpose of their visit and drawing gently the correct information. They
are the first to. be truth seekers. Generally, they are not qualified enough
to appreciate the comparative significance of numbers in relation to
statistical analysis. For them the inquiry may mean nothing but numbers,
a mess of numbers. Even when they do not want to be dishonest; they
could make certain mistakes in using their common sense in abnormal
situations. As long as they do not commit these errors deliberately or
carelessly, there is nothing unethical about it no matter how bad the
inquiry's objectives are hit; we cannot forget the maxim, in moral
philosophy, "Error destroys action", and so a mission. Sometimes the
dishonesty of an enumerator may be due to some kinds of fear and there
he may be prone to inventing figures or display carelessness. Once I was
asked a question by a statistical investigator in a West African country,
"What would you do", Sir," If, like me, you expect to pass a tortuous
night in a village where you know the cannibals also dwell, and who
may crave to perform some rituals on your blood." In another African
country, I happened to meet a field reporter who was discovered to have
reported the measurements of sample fields from the number of paces
that his horse was making through the fields to avoid snake biting.
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Some enumerators slink out is doing hard work, or exploit their
simple respondents for their selfish motives. Instead of creating a
friendly atmosphere and putting their respondents at ease they may
attempt to frighten them or even engage in temporary romance with
opposite sexes. In several areas, the people in developing countries are
generally ignorant, and an enumerator can force his respondents into
submission by posing as a special agent of ruling government. His
exploitation may range from securing food to anything including
adultery. In latter situation, an enumerator could lose not only a limb but
life too; incidents of this type have come to our notice. Anyway, the
effects of such an undesirable behaviour of enumerators become
manifest in the results of the survey. A strict vigilance of the statistician
incharge is essential during collection of basic data. When the concepts
or definitions used in a survey are complex, the enumerators' unethical
attitude is also attributable to their incompetence and ignorance. Not
only that the staff ought to know the relevant ,:"eanings behind the
figures, the statistician must acquaint them with the real value,
usefulness and importance of his statistical inquiry. This serves a great
motivating force in reminding them of their genuine responsibilities. A
feeling is developing in the Western countries that the statistician should
indoctrinate his field and other staff with some sort of ethical code in
order to minimize the possibility of their falling susceptible to
unwelcome temptations detrimental to the inquiry. By example as well
as by formal or informal training he should instill in them the principles

of such a code.

4.3 His Respondents
Other than his field staff, fact-finding statistician has to depend

a lot on the respondents selected in his statistical project. Their
cooperation is also a major factor in improving its accuracy. The
problems confronted in data collection and analysis could swell
enormously to a formidable extent when the survey includes respondents
who for one or other reason cannot give satisfactory information, or
happen to be obstinately erroneous, tricky and misleading, or do not
wish to cooperate simply. The number of such respondents may not be

In general, the respondents have a tendency to remain suspicious
with respect to possible unwarranted disclosure of information about
them. What guarantee, they ask, do they have against the misuse of their
information. It is only the verbal assurance, desperate but solemn, given
to them by a statistician and his staff. Certainly the purpose of a
statistical inquiry is not to misuse such information and make a blatant
invasion of their privacy.

, With the development of informational technology as being
made possible by the electronic computers, the threat to the privacy of
information about individuals or companies is expected to increase.
When it comes to ethics, "There are certain acts which when performed'
on similar occasions have consequences more than times as great as
those resulting from one performance."

5. Possible Remedial Measures

In order to enhance the efficacy of decisions there is an urgent
need to promote, or even arouse a mass awareness about the importance

35Statistical Information

reasonably large but they are not only an unpleasant source of wasting
already limited time of the field staff, their responses are liable to
provoke changes in the use of selected statistical techniques. Why
should such a respondent behave like that? Is it just his nature, or are
there some genuine reasons too for an abnormal attitude? Is he too,
much conscious of his right to be let alone for maintaining and
preserving his privacy? Experience shows that this kind of behaviour as
much to do with the way he is approached for information. He may have
an inflated image or prestige, and wishes it to go on. He may have a fear
that the release of true information could harm his interests. He may be
scared of being blackmailed too. 'Why me in a sample? is often a
puzzling question in his mind - a very common feeling among the
respondents. He may pose this question to the interviewer to calm his
fears, but if he remains unsatisfied, naturally he might not take any
chance in disclosing the truth. The unwillingness on the part of the
respondents may also be due to inconvenience that they are subjected
during interviews, or experimentation in medical surveys to some sort of
risk too.
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of statistical information in the community - a responsibility that
normally devolves on the national statistical associations, To achieve
this purpose partially" the frequency of popular
lectures / seminars / consultancy in applied statistics ought to be
increased. A larger emphasis on applications in the statistics courses
offered by the teaching institutions would also contribute to this cause.

Perhaps, it is time that the central and provincial statistical
offices and statistics department of educational institutions should
collaborate to evolve for practicing statisticians a framework of ethical
norms enunciating their responsibilities to the clients and respondents.

Let the students be formally acquainted with the statistical ethics
for their future obligations to the society before they leave their
educational institutions with degrees in Statistics.

The above measures can be useful in significantly improving the
quality of statistical information; respectfully upholding public
confidence in the wise use of ,statistical data; and finally in elevating a
statistician's integrity in the community.
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ABSTRACT

Asymptotic theory of estimation based on the criteria of

consistency and efficiency is considered and certain methods are showli

to yield estimators satisfying this criteria. some results with examples

are discussed in which the idea of super - efficiency is not statistically

important. We also discuss asymptotic properties of some methods by

considering two - piece normal distribution .

•
1. INTRODUCTION

, " I Much of the work on efficiency was given by an attempt to

understand how well the maximum likelihood estimate performs as n

goes to infinity. The principle of maximum likelihood proposed by

Fisher consists in adopting as an estimate of a parameter a, the particular
value of the parameter which maximizes the probability of the facts

actually observed.
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Let X I, X2, Xn be i. i. d. according to a density f(x ; a) and

suppose that Tn = TnCd be an estimator of a. Our object is to examine

the asymptotic properties of the estimator Tn as n-4OO.The existence of
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ABSTRACT

Asymptotic theory of estimation based on the criteria of

consistency and efficiency is considered and certain methods are showli

to yield estimators satisfying this criteria. some results with examples

are discussed in which the idea of super - efficiency is not statistically

important. We also discuss asymptotic properties of some methods by

considering two - piece normal distribution .

•
1. INTRODUCTION

, " I Much of the work on efficiency was given by an attempt to

understand how well the maximum likelihood estimate performs as n

goes to infinity. The principle of maximum likelihood proposed by

Fisher consists in adopting as an estimate of a parameter a, the particular
value of the parameter which maximizes the probability of the facts

actually observed.

I

•...,' '

~

Let X I, X2, Xn be i. i. d. according to a density f(x ; a) and

suppose that Tn = TnCd be an estimator of a. Our object is to examine

the asymptotic properties of the estimator Tn as n-4OO.The existence of



I(e ) = E {_ a' log f(x;e )}• a 'e ' :...... (l.l)

If (1.3) holds, Tn will be said to satisry the Fisher's idea of efficiency. A

sequence (Tn) satisrying (1.3) with

the first two derivatives of f(x ; e) with respect to e allows us to

introduce Fisher's amount of infonnation. Let us define

39Efficiency and super-efficiency estimates

Let XJ, ..... Xn be i. i. d. according to the nonnal distribution

N(e ,I). In this case I(e) = I, and equation (1.5) reduces to v(e) ;-, I. On

the other hand, consider the sequence of estimators,

Tn =( X IXI > n-Y.J
ex lx/ > n-Y.

in general as shown by the examples due to Hodges (Le Cam, 1953).

Therefore, there is no lower bound to the asymptotic variance of a CAN

estimator, so there does not exist any best CAN estimator, without any

further conditions on the estimator Le Can (1953) proved the remarkable

result that (1.3) does entail v(e) ~ I-I (e) almost everywhere (with

respect to Lebesgue measure).

Example 1.1

Where X is the average of the n observations and C is an arbitrary

constant, Then

n'l, (Tn - e) ----.N(O, v(e)},

with v(e) = I when e '" I and v(e) = C2 when e = O. If C < I, inequality

(1.3) is therefore violated at e = o.

(1.2)

(1.3)

(1.4)
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...................

...................

Vare (Tn):2: (g'(e)}2!n I(e)

n'l, (Tn - g(e)) ----.N{O, v(e)}, v(e) > 0

v(e) = (g'(e)}2! I(e)

38

as the Fisher infonnation function associated with den~ity f(x ; e). If the

density ~(x ; e) satisfies suitable regularity conditions, the celebrated

Cramer - Rao inequality states that _the variance of any unbiased

estimator Tn of g(e) satisfies

Suppose that Tnt!.) is asymptotically nonnal ;

with v(e) ;-,{g (e))2! I(e);

is said to be asymptotically efficient. For g(e) = e,

we have

v(e) :2: I-I(e) ................... (1.5)
2. SUPER- EFFICIENCY

For a long time it was believed that for consistent asymptotically

nonnal (CAN) estimator the asymptotic variance v(e) satisfied (1.3)

Unfortunately, this is not strictly true without any restrictions on the

subject only to regularity conditions on the density f(x , e).

For a long time, it was believed that for a consistent asymptotically

. ,
nonnal (CAN) estimator the asymptotic variance v(e) satisfied (1.5)

subject only to regularity conditions on the density f(x; e).

Unfortunately, as everyone knows today that the result (1.5) is not true
I r
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convergence.

Since there is no lower bound to the asymptotic variance of a CAN

estimator, it may be thought that an improvement is possible by

constructing a statis Tn with auniformly lower asymptotic variance and

estimating function. This belief was finally exploded by the examples of

Hodges to show that the results (1.3) is not true in general. We can call

an estimator super-efficient if for all parameter values the estimator is

asymptotically normal around the true value with a variance never

exceeding and sometimes less than the Cramer - Rao lower bound.

41

(2,1)

Efficiency and super-efficiency estimates

n--~-H<) SUP cr; (6) < I
crn(6 )

thereby increasing the concentration at every value of the parameter, as

at 0 = 0 in example (1.1). It is no doubt true that an estimator having a

higher concentration than another for every value of 0 is more useful in

drawing inferences on 0 from an observed estimate. From the point of

view of a statistician, the most appealing sufficient condition is the one

due to Rao (1963) who strengthens (1.3) by requiring that it be uniform

on compacts. Assuming nY, (Tn -- 0) is A. N. {O, v(O») uniformly on

compacts, Rao proves (1.5).

Rao's proof by using Neyman -- peasons lemma states that for

testing the simple hypothesis 0 = 00 against the simple alternative

O=eO+ny" the test based on the m. I. estimator is asymptotically most

powerful.

LeCam(l953) has shown that the set of super-efficiency must be of

Lebesgue measure zero. However, no every set of measure zero can be a

set of super efficiency. For certain classes of loss functions and

probability densities, he has proved that if an estimate is super-efficient

at a given parameter value 00 ' then there must exist an infinite

sequence{On) of values at which this estimate is worse than the M.L

estimate. Let {cr; (6)} be the asymptotic variance of the M.L. estimate

of the parameter 0 and {a: (8) that of an alternative estimate Tn'

Then Tn is super-efficient if

or equivalently with slightly stronger condition,

r
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Rao (1963) established the results that the asymptotic variance of

consistent uniformly asymptotically normal (CVAN) estimator has

Fisher's lower bound I-I (0) when the probability density satisfies some

regularity conditions. It appears then that in the examples of Hodges and

LeCarn, super -- efficiency in the sense of having asymptotic variance

less than I-I (0) has been achieved at the sacrifice of uniform

Since Hodge's examples became known many attempts have been

made to rescue the Fisher program. All the serious attempts fall under

the following two approaches: In the first approach the authors prove

that, for any competing estimators (Tn) which satis/)' (1.3), the set of

points of super -- efficiency have Lebesgue measure Zero. That the

points of super - efficiency constitute a set of measure zero was stated in

LeCam (1953). In the second approach one imposes conditions on the

competing estimators which (conditions) are sufficient to eliminate the

super - efficient estimators from competition. A number of attempts

have been made to rule out super -- efficient estimators by imposing

regularity conditions which the competing estimators must satis/)'.

IIII..sfb J.
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Example!2 1)

where 0 > O. If an estimate Tn satisfies condition (2.2), then we shall say

that Tn is uniformly super-efficient.

According to Cox and Hinkley (1974), super-efficiency is not a

statistically important because such estimators give no improvement

43

(3.1 )
')

and I
)

Efficiency and super-efficiency estimates

la' log f(x;a )1
aa' < G(x)

IG(x) f(x;a )dx < ao

3. EFFICIENCY OF M L ESTIMATORS

when regarded as test statistics. For any fixed n the reduction in mean

square error for parameter points near to the point of super-efficiency is

balanced by an increase in mean square error at points a moderate

distance away.

_1_ J(a IOg/(X;O)} =0, /(x;O,) < 0
91-92 -. c39

(i) There exists a positive function g(6)

and aI, 62 E e such that

Asymptotic properties of ML estimates have been discussed in

the literature under two separate lines. Some authors, including Cramer

(1946) and Gurland (1954), have considered the roots of the likelihood

equation, while others, including Wald (1949) and Wolfowitz (1949),

have discussed the parameter value which yields the absolute maximum

of the likelihood function. Cramer has proved that, under certain

regularity conditions, the MLE of 6 is consistent and asymptotically
<-

efficient. One of his conditions is that for every 6 E 6

Kulldorff (1957) replaced this condition with much weaker

one. He introduces the following two conditions in the replacement of

(3.1) and shows that MLE is asymptotically efficient under the set of

new conditions.

1

(2.3)

(2.2)

Dr. Mujahid Rasul

~. ~O ]
~n

an(a) ~ao
limn---->ao

limn---->ao(i)

(ii)

Um a;(a)
n---->ao--<l-o

a.(a) -

and let X be a normal random variable with an unknown mean 6 and

with variance 1. Then the M.L. estimate of 6 based on n independent

observations is the arithmatic mean, say X" of the observations. Its

variance is a~ ~ 1/n . To produce an estimate Tn uniformly super-

efficient, it is sufficient to produce a sequence {13n}. Because of the

particular form of the variance a~ ' it is obvious that we can take

(~n}~n-I/4 . Suppose that Tn is an estimate for which (2.3) are

satisfied. Then they are also satisfied for any estimate which is more

efficient than Tn in Fisher's sense. Hence the existence of at-least one

estimate Tn satisrying the conditions (2.3) implies the inexistance of an

estimate efficient in Fisher's sense.

. Let {Tn} be a consistent asymptotically normal (CAN) estimate of

6. Let {a~ (a)} be the asymptotic variance of Tn' If there exists a non-

negative sequence of numbers {13n}satisrying the conditions:

42
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Example (3 I)

There exists a positive differentiable function p(a), then for

every a & a

1--1(a 10g~(X;a»)a =a, f(x;a,)d:x=- 2a,'
a, -a, ~

45

a 3 log f(x;a) I 3x'
---------+-

as3 a3 a'

Efficiency and super-efficiency estimates

tends to infinity as a --> 0, and is not bounded in the open interval

0< a <00 showing that condition (3.1) is not fulfilled. Now checking

conditions (3.2) and (3.3), we find that

~

(3.2)

(3.3)

Dr, Mujahld Rasul

whereo<la,-a,l< g(a,)

~ {P(Q) 8 log~(x;a ) }

is continuous function of uniformly in x.

(ii)

44

Consider the following density function

f(x;a]>a,)= (21t6,)'/' exp{ (x-a,)'}
2a,

which is less than zero and so satisfies condition (3.2). Now introducing

positive and differentiable function p(a) = a2 .

We have

we have the unique roots for a I ,and a2 are a { a log f(x;a)} 1- p(a)---- =--as as 2

L~"L _
find that the expression

This estimate is consistent and asymptotically efficient. However, we

l ",)n 2 Xi
L=(21tar / exp -L-

;=, 2a ,

5

is discontinuous andbound. But 8 log f(x;a) / aslower

A

Most of the authors discuss large sample estimation which

requires regularity conditions on the second derivative of the likelihood

for the MLE to be asymptotically efficient. However, cases are known

which are not covered by these regularity conditions. For example, in the

density function f(x;a)=te-1x-6l, the sample median is MLE of a,

which is asymptotically normal with variance equal to Cramer-Rao

eland a, are consistent, unique, asymptotically normal and jointly

asymptotically efficient.

which is continuos of a uniformly in x, and condition (3.3) is also

satisfied. DOSS (1962) also presented a set of conditions whicl\ are

satisfied by the above example. He shows that under these conditions,

-

, I~ _,
and a, = - L.(xj -x)

n i=1

, I"
a, =- Lx;

n ;:1

These estimates are consistent, asymptotically normal and jointly

asymptotically efficient. Now let the. random variable X, is normally

distributed with mean zero and variance a. We have likelihood function.

A 1 n

and the likelihood equation for a has the unique root an = - LXi'
n ;-1

,i
"

,
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measure zero.

9 under the following conditions:

a' logf(x;9) for almost all x. Daniels (1961) applied some weakera 9'
conditions for asymptotic efficiency. He proved asymptotic efficiency of

47

(3.4)

x>9,

X ';;9,(2 )if(x;9 9" n~' +9,r' exp{-(X-9,)2}
l' 2,u3)=. ' 29

2
'

(2)- 'n 2~, +9,r' exp{-(X-9,)2}
29' ',

Efficiency and super-efficiency estimates

,&amole (3 2)

A random variable is said to have the two-piece normal (TPN)

distribution with parameters 810 82, 93 > 0 if it has probability density

function

1\ LX;
91= -

n

Let X1, X2' , Xn be a random sample from the TPN
1\ ..,./\ 1\

distribution with density (3.4). For the MLE's 9',,92 and 9 J of
I . •

9,,9, and 9, respectively, differentiating log-likelihood of (3.4) with

respect to 9, ,9, and 9, we have MLE's of9, ,9, and9,

This distribution was introduced as the joined half-Gaussian by Gibbons

and Mylroie (1973) who found it to be a very good fit to impurity

profiles data in ion-implantation research. John (1982) discusses

estimation of the parameters of the TPN distribution by the method of

maximum likelihood and the method of moments. In this paper we,
examine the asymptotic properties of some. methods for TPN

distribution.

Dr. Mujahid Rasul

Ilogf(x;8 )-logf(x;9 'll < S(x,9.) ~ -9;1 and
E(S' /9,)<00

log f(x;9) is continuous in 8 through out 8 . At every

80 there is a neighbourhood such that for all 8, 8' in it,

(i)

46

(ii) At every 9, a log f(x;9) /as exists and is continuou,S

for almost all x. It is not almost everywhere zero. It is

a no where increasing and some where decreasing

function of 8.

According to Daniels, it is enough to apply the condition that the

function log f(x;9) is convex in 8 for almost all x. A sequence of ML

estimates is then under 8 asymptotically distributed according to

N (9, r' (9»). This result is of interest because it states the asymptotic

normal distribution of a sequence of ML estimates without explicit

assumptions on the existence of the second derivative of the function

logf(x;9). On the other hand, it is well known that the second derivative

of a continuous and convex function exists upto a set of Lebesgue-

I:,

,;

.'

A {I(X, _:;y }i
9, = ,

n-I(x, -:<)
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(i)
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(ii) At every 9, a log f(x;9) /as exists and is continuou,S

for almost all x. It is not almost everywhere zero. It is

a no where increasing and some where decreasing

function of 8.

According to Daniels, it is enough to apply the condition that the

function log f(x;9) is convex in 8 for almost all x. A sequence of ML

estimates is then under 8 asymptotically distributed according to

N (9, r' (9»). This result is of interest because it states the asymptotic

normal distribution of a sequence of ML estimates without explicit

assumptions on the existence of the second derivative of the function

logf(x;9). On the other hand, it is well known that the second derivative

of a continuous and convex function exists upto a set of Lebesgue-

I:,

,;

.'

A {I(X, _:;y }i
9, = ,

n-I(x, -:<)



A

According to John (1982), to prove this normality result it IS

sufficient to check that

normality of G, are satisfied except that involving the third derivative of

the log-likelihood of (3.4).
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92,93 known

91,93 known

_Va_r_(;_1)__ [1 +_(n_+_2){_G, -2+- G, }]'I
Var (Gn n G, G,

Efficiency and super-efficiency estimales

I

Gt =-;-(2In)2 (G,-9,),

,
G,+=G, +(n 12)2 (;-G,),

EI

A

E, = Var (9:' 2 (9, + 1)'(lJ, + 2)" 16t'_ 2) (9, -I)' + 119, I'
Var (9 ,) 9, 9, l 9, 9, J

as n --> 00, where k is a constant and p" denotes the second derivative

with respect to 9 I of the log-likelihood. Thus d. --> 0 in probability and

hence

I ,

n"(9,-G,)~N[o,I-'(9)]as n-->oo, where 1(9) in this case is

equal to (9293}" I

The MM estimates of 9 I, 92 and 93 are

By using large sample properties of MLE's, the efficiencies of

these estimators relative to the MLE's are

Numerical values of these efficiencies are obtain by some given

parameter values. The plots of the efficiencies against some parameters

values are shown in figure-I.
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:Jl," L(x, -G,) "1

-n((J, +G,r')
ll,"" L(x, ~,)' -n((J, +G,r'

;, =n[{L(X! --;Y Y - {L(X! ~--;Yy]
{n-E(x, -;y y
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Large sample approximations for the variance-covariance matrix of the

MLE's are obtained by the inverse Fisher information matrix. The

sample information matrix is

d. = n'
l [e "(G, +kn'~ e .' (G, +-~-->o

[

n((J,-, +il,""') :Jl;' L(x, -G,)

11.,= :Jl;' L(x, ~,) ll,"" L(x, ~,)' -n(8, +G,)""'
:Jl,..2 L(x, ~,) -n((J, +il,)""'

Large sample variance approximations of the MLE's are most

useful when the estimators are asymptotically normal. This is inot

immediately obvious in the case of the TPN distribution. To show that

the MLE's are asymptotically normal it is sufficient to consider the case

of estimating 91 with 92 and 93 known. In this example, we see that all

the regularity conditions given in the earlier sections for the asymptotic

~
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