
of statistical information in the community - a responsibility that
normally devolves on the national statistical associations, To achieve
this purpose partially" the frequency of popular
lectures / seminars / consultancy in applied statistics ought to be
increased. A larger emphasis on applications in the statistics courses
offered by the teaching institutions would also contribute to this cause.

Perhaps, it is time that the central and provincial statistical
offices and statistics department of educational institutions should
collaborate to evolve for practicing statisticians a framework of ethical
norms enunciating their responsibilities to the clients and respondents.

Let the students be formally acquainted with the statistical ethics
for their future obligations to the society before they leave their
educational institutions with degrees in Statistics.

The above measures can be useful in significantly improving the
quality of statistical information; respectfully upholding public
confidence in the wise use of ,statistical data; and finally in elevating a
statistician's integrity in the community.
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ABSTRACT

Asymptotic theory of estimation based on the criteria of

consistency and efficiency is considered and certain methods are showli

to yield estimators satisfying this criteria. some results with examples

are discussed in which the idea of super - efficiency is not statistically

important. We also discuss asymptotic properties of some methods by

considering two - piece normal distribution .

•
1. INTRODUCTION

, " I Much of the work on efficiency was given by an attempt to

understand how well the maximum likelihood estimate performs as n

goes to infinity. The principle of maximum likelihood proposed by

Fisher consists in adopting as an estimate of a parameter a, the particular
value of the parameter which maximizes the probability of the facts

actually observed.

I

•...,' '
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Let X I, X2, Xn be i. i. d. according to a density f(x ; a) and

suppose that Tn = TnCd be an estimator of a. Our object is to examine

the asymptotic properties of the estimator Tn as n-4OO.The existence of



I(e ) = E {_ a' log f(x;e )}• a 'e ' :...... (l.l)

If (1.3) holds, Tn will be said to satisry the Fisher's idea of efficiency. A

sequence (Tn) satisrying (1.3) with

the first two derivatives of f(x ; e) with respect to e allows us to

introduce Fisher's amount of infonnation. Let us define

39Efficiency and super-efficiency estimates

Let XJ, ..... Xn be i. i. d. according to the nonnal distribution

N(e ,I). In this case I(e) = I, and equation (1.5) reduces to v(e) ;-, I. On

the other hand, consider the sequence of estimators,

Tn =( X IXI > n-Y.J
ex lx/ > n-Y.

in general as shown by the examples due to Hodges (Le Cam, 1953).

Therefore, there is no lower bound to the asymptotic variance of a CAN

estimator, so there does not exist any best CAN estimator, without any

further conditions on the estimator Le Can (1953) proved the remarkable

result that (1.3) does entail v(e) ~ I-I (e) almost everywhere (with

respect to Lebesgue measure).

Example 1.1

Where X is the average of the n observations and C is an arbitrary

constant, Then

n'l, (Tn - e) ----.N(O, v(e)},

with v(e) = I when e '" I and v(e) = C2 when e = O. If C < I, inequality

(1.3) is therefore violated at e = o.

(1.2)

(1.3)

(1.4)
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...................

...................

Vare (Tn):2: (g'(e)}2!n I(e)

n'l, (Tn - g(e)) ----.N{O, v(e)}, v(e) > 0

v(e) = (g'(e)}2! I(e)
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as the Fisher infonnation function associated with den~ity f(x ; e). If the

density ~(x ; e) satisfies suitable regularity conditions, the celebrated

Cramer - Rao inequality states that _the variance of any unbiased

estimator Tn of g(e) satisfies

Suppose that Tnt!.) is asymptotically nonnal ;

with v(e) ;-,{g (e))2! I(e);

is said to be asymptotically efficient. For g(e) = e,

we have

v(e) :2: I-I(e) ................... (1.5)
2. SUPER- EFFICIENCY

For a long time it was believed that for consistent asymptotically

nonnal (CAN) estimator the asymptotic variance v(e) satisfied (1.3)

Unfortunately, this is not strictly true without any restrictions on the

subject only to regularity conditions on the density f(x , e).

For a long time, it was believed that for a consistent asymptotically

. ,
nonnal (CAN) estimator the asymptotic variance v(e) satisfied (1.5)

subject only to regularity conditions on the density f(x; e).

Unfortunately, as everyone knows today that the result (1.5) is not true
I r
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convergence.

Since there is no lower bound to the asymptotic variance of a CAN

estimator, it may be thought that an improvement is possible by

constructing a statis Tn with auniformly lower asymptotic variance and

estimating function. This belief was finally exploded by the examples of

Hodges to show that the results (1.3) is not true in general. We can call

an estimator super-efficient if for all parameter values the estimator is

asymptotically normal around the true value with a variance never

exceeding and sometimes less than the Cramer - Rao lower bound.

41

(2,1)

Efficiency and super-efficiency estimates

n--~-H<) SUP cr; (6) < I
crn(6 )

thereby increasing the concentration at every value of the parameter, as

at 0 = 0 in example (1.1). It is no doubt true that an estimator having a

higher concentration than another for every value of 0 is more useful in

drawing inferences on 0 from an observed estimate. From the point of

view of a statistician, the most appealing sufficient condition is the one

due to Rao (1963) who strengthens (1.3) by requiring that it be uniform

on compacts. Assuming nY, (Tn -- 0) is A. N. {O, v(O») uniformly on

compacts, Rao proves (1.5).

Rao's proof by using Neyman -- peasons lemma states that for

testing the simple hypothesis 0 = 00 against the simple alternative

O=eO+ny" the test based on the m. I. estimator is asymptotically most

powerful.

LeCam(l953) has shown that the set of super-efficiency must be of

Lebesgue measure zero. However, no every set of measure zero can be a

set of super efficiency. For certain classes of loss functions and

probability densities, he has proved that if an estimate is super-efficient

at a given parameter value 00 ' then there must exist an infinite

sequence{On) of values at which this estimate is worse than the M.L

estimate. Let {cr; (6)} be the asymptotic variance of the M.L. estimate

of the parameter 0 and {a: (8) that of an alternative estimate Tn'

Then Tn is super-efficient if

or equivalently with slightly stronger condition,

r
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Rao (1963) established the results that the asymptotic variance of

consistent uniformly asymptotically normal (CVAN) estimator has

Fisher's lower bound I-I (0) when the probability density satisfies some

regularity conditions. It appears then that in the examples of Hodges and

LeCarn, super -- efficiency in the sense of having asymptotic variance

less than I-I (0) has been achieved at the sacrifice of uniform

Since Hodge's examples became known many attempts have been

made to rescue the Fisher program. All the serious attempts fall under

the following two approaches: In the first approach the authors prove

that, for any competing estimators (Tn) which satis/)' (1.3), the set of

points of super -- efficiency have Lebesgue measure Zero. That the

points of super - efficiency constitute a set of measure zero was stated in

LeCam (1953). In the second approach one imposes conditions on the

competing estimators which (conditions) are sufficient to eliminate the

super - efficient estimators from competition. A number of attempts

have been made to rule out super -- efficient estimators by imposing

regularity conditions which the competing estimators must satis/)'.

IIII..sfb J.
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Example!2 1)

where 0 > O. If an estimate Tn satisfies condition (2.2), then we shall say

that Tn is uniformly super-efficient.

According to Cox and Hinkley (1974), super-efficiency is not a

statistically important because such estimators give no improvement

43

(3.1 )
')

and I
)

Efficiency and super-efficiency estimates

la' log f(x;a )1
aa' < G(x)

IG(x) f(x;a )dx < ao

3. EFFICIENCY OF M L ESTIMATORS

when regarded as test statistics. For any fixed n the reduction in mean

square error for parameter points near to the point of super-efficiency is

balanced by an increase in mean square error at points a moderate

distance away.

_1_ J(a IOg/(X;O)} =0, /(x;O,) < 0
91-92 -. c39

(i) There exists a positive function g(6)

and aI, 62 E e such that

Asymptotic properties of ML estimates have been discussed in

the literature under two separate lines. Some authors, including Cramer

(1946) and Gurland (1954), have considered the roots of the likelihood

equation, while others, including Wald (1949) and Wolfowitz (1949),

have discussed the parameter value which yields the absolute maximum

of the likelihood function. Cramer has proved that, under certain

regularity conditions, the MLE of 6 is consistent and asymptotically
<-

efficient. One of his conditions is that for every 6 E 6

Kulldorff (1957) replaced this condition with much weaker

one. He introduces the following two conditions in the replacement of

(3.1) and shows that MLE is asymptotically efficient under the set of

new conditions.

1

(2.3)

(2.2)
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~. ~O ]
~n

an(a) ~ao
limn---->ao

limn---->ao(i)

(ii)

Um a;(a)
n---->ao--<l-o

a.(a) -

and let X be a normal random variable with an unknown mean 6 and

with variance 1. Then the M.L. estimate of 6 based on n independent

observations is the arithmatic mean, say X" of the observations. Its

variance is a~ ~ 1/n . To produce an estimate Tn uniformly super-

efficient, it is sufficient to produce a sequence {13n}. Because of the

particular form of the variance a~ ' it is obvious that we can take

(~n}~n-I/4 . Suppose that Tn is an estimate for which (2.3) are

satisfied. Then they are also satisfied for any estimate which is more

efficient than Tn in Fisher's sense. Hence the existence of at-least one

estimate Tn satisrying the conditions (2.3) implies the inexistance of an

estimate efficient in Fisher's sense.

. Let {Tn} be a consistent asymptotically normal (CAN) estimate of

6. Let {a~ (a)} be the asymptotic variance of Tn' If there exists a non-

negative sequence of numbers {13n}satisrying the conditions:

42
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Example (3 I)

There exists a positive differentiable function p(a), then for

every a & a

1--1(a 10g~(X;a»)a =a, f(x;a,)d:x=- 2a,'
a, -a, ~

45

a 3 log f(x;a) I 3x'
---------+-

as3 a3 a'

Efficiency and super-efficiency estimates

tends to infinity as a --> 0, and is not bounded in the open interval

0< a <00 showing that condition (3.1) is not fulfilled. Now checking

conditions (3.2) and (3.3), we find that

~

(3.2)

(3.3)

Dr, Mujahld Rasul

whereo<la,-a,l< g(a,)

~ {P(Q) 8 log~(x;a ) }

is continuous function of uniformly in x.

(ii)

44

Consider the following density function

f(x;a]>a,)= (21t6,)'/' exp{ (x-a,)'}
2a,

which is less than zero and so satisfies condition (3.2). Now introducing

positive and differentiable function p(a) = a2 .

We have

we have the unique roots for a I ,and a2 are a { a log f(x;a)} 1- p(a)---- =--as as 2

L~"L _
find that the expression

This estimate is consistent and asymptotically efficient. However, we

l ",)n 2 Xi
L=(21tar / exp -L-

;=, 2a ,

5

is discontinuous andbound. But 8 log f(x;a) / aslower

A

Most of the authors discuss large sample estimation which

requires regularity conditions on the second derivative of the likelihood

for the MLE to be asymptotically efficient. However, cases are known

which are not covered by these regularity conditions. For example, in the

density function f(x;a)=te-1x-6l, the sample median is MLE of a,

which is asymptotically normal with variance equal to Cramer-Rao

eland a, are consistent, unique, asymptotically normal and jointly

asymptotically efficient.

which is continuos of a uniformly in x, and condition (3.3) is also

satisfied. DOSS (1962) also presented a set of conditions whicl\ are

satisfied by the above example. He shows that under these conditions,

-

, I~ _,
and a, = - L.(xj -x)

n i=1

, I"
a, =- Lx;

n ;:1

These estimates are consistent, asymptotically normal and jointly

asymptotically efficient. Now let the. random variable X, is normally

distributed with mean zero and variance a. We have likelihood function.

A 1 n

and the likelihood equation for a has the unique root an = - LXi'
n ;-1

,i
"

,
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measure zero.

9 under the following conditions:

a' logf(x;9) for almost all x. Daniels (1961) applied some weakera 9'
conditions for asymptotic efficiency. He proved asymptotic efficiency of

47

(3.4)

x>9,

X ';;9,(2 )if(x;9 9" n~' +9,r' exp{-(X-9,)2}
l' 2,u3)=. ' 29

2
'

(2)- 'n 2~, +9,r' exp{-(X-9,)2}
29' ',

Efficiency and super-efficiency estimates

,&amole (3 2)

A random variable is said to have the two-piece normal (TPN)

distribution with parameters 810 82, 93 > 0 if it has probability density

function

1\ LX;
91= -

n

Let X1, X2' , Xn be a random sample from the TPN
1\ ..,./\ 1\

distribution with density (3.4). For the MLE's 9',,92 and 9 J of
I . •

9,,9, and 9, respectively, differentiating log-likelihood of (3.4) with

respect to 9, ,9, and 9, we have MLE's of9, ,9, and9,

This distribution was introduced as the joined half-Gaussian by Gibbons

and Mylroie (1973) who found it to be a very good fit to impurity

profiles data in ion-implantation research. John (1982) discusses

estimation of the parameters of the TPN distribution by the method of

maximum likelihood and the method of moments. In this paper we,
examine the asymptotic properties of some. methods for TPN

distribution.

Dr. Mujahid Rasul

Ilogf(x;8 )-logf(x;9 'll < S(x,9.) ~ -9;1 and
E(S' /9,)<00

log f(x;9) is continuous in 8 through out 8 . At every

80 there is a neighbourhood such that for all 8, 8' in it,

(i)

46

(ii) At every 9, a log f(x;9) /as exists and is continuou,S

for almost all x. It is not almost everywhere zero. It is

a no where increasing and some where decreasing

function of 8.

According to Daniels, it is enough to apply the condition that the

function log f(x;9) is convex in 8 for almost all x. A sequence of ML

estimates is then under 8 asymptotically distributed according to

N (9, r' (9»). This result is of interest because it states the asymptotic

normal distribution of a sequence of ML estimates without explicit

assumptions on the existence of the second derivative of the function

logf(x;9). On the other hand, it is well known that the second derivative

of a continuous and convex function exists upto a set of Lebesgue-

I:,

,;

.'

A {I(X, _:;y }i
9, = ,

n-I(x, -:<)
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profiles data in ion-implantation research. John (1982) discusses

estimation of the parameters of the TPN distribution by the method of

maximum likelihood and the method of moments. In this paper we,
examine the asymptotic properties of some. methods for TPN

distribution.
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Ilogf(x;8 )-logf(x;9 'll < S(x,9.) ~ -9;1 and
E(S' /9,)<00

log f(x;9) is continuous in 8 through out 8 . At every

80 there is a neighbourhood such that for all 8, 8' in it,

(i)

46

(ii) At every 9, a log f(x;9) /as exists and is continuou,S

for almost all x. It is not almost everywhere zero. It is

a no where increasing and some where decreasing

function of 8.

According to Daniels, it is enough to apply the condition that the

function log f(x;9) is convex in 8 for almost all x. A sequence of ML

estimates is then under 8 asymptotically distributed according to

N (9, r' (9»). This result is of interest because it states the asymptotic

normal distribution of a sequence of ML estimates without explicit

assumptions on the existence of the second derivative of the function

logf(x;9). On the other hand, it is well known that the second derivative

of a continuous and convex function exists upto a set of Lebesgue-

I:,

,;

.'

A {I(X, _:;y }i
9, = ,

n-I(x, -:<)



A

According to John (1982), to prove this normality result it IS

sufficient to check that

normality of G, are satisfied except that involving the third derivative of

the log-likelihood of (3.4).
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92,93 known

91,93 known

_Va_r_(;_1)__ [1 +_(n_+_2){_G, -2+- G, }]'I
Var (Gn n G, G,

Efficiency and super-efficiency estimales

I

Gt =-;-(2In)2 (G,-9,),

,
G,+=G, +(n 12)2 (;-G,),

EI

A

E, = Var (9:' 2 (9, + 1)'(lJ, + 2)" 16t'_ 2) (9, -I)' + 119, I'
Var (9 ,) 9, 9, l 9, 9, J

as n --> 00, where k is a constant and p" denotes the second derivative

with respect to 9 I of the log-likelihood. Thus d. --> 0 in probability and

hence

I ,

n"(9,-G,)~N[o,I-'(9)]as n-->oo, where 1(9) in this case is

equal to (9293}" I

The MM estimates of 9 I, 92 and 93 are

By using large sample properties of MLE's, the efficiencies of

these estimators relative to the MLE's are

Numerical values of these efficiencies are obtain by some given

parameter values. The plots of the efficiencies against some parameters

values are shown in figure-I.

i'
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:Jl," L(x, -G,) "1

-n((J, +G,r')
ll,"" L(x, ~,)' -n((J, +G,r'

;, =n[{L(X! --;Y Y - {L(X! ~--;Yy]
{n-E(x, -;y y

48

Large sample approximations for the variance-covariance matrix of the

MLE's are obtained by the inverse Fisher information matrix. The

sample information matrix is

d. = n'
l [e "(G, +kn'~ e .' (G, +-~-->o

[

n((J,-, +il,""') :Jl;' L(x, -G,)

11.,= :Jl;' L(x, ~,) ll,"" L(x, ~,)' -n(8, +G,)""'
:Jl,..2 L(x, ~,) -n((J, +il,)""'

Large sample variance approximations of the MLE's are most

useful when the estimators are asymptotically normal. This is inot

immediately obvious in the case of the TPN distribution. To show that

the MLE's are asymptotically normal it is sufficient to consider the case

of estimating 91 with 92 and 93 known. In this example, we see that all

the regularity conditions given in the earlier sections for the asymptotic

~
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