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Abstract 

 

Bayesian Inference is a technique of statistical inference that, in addition to using 

the sample information, utilizes prior information about Parameter(s) to draw 

results about the Parameters. But the beauty is subdued by huge and cumbersome 

algebraic calculations necessary to find Posterior estimates. This article suggests 

numerical methods to derive Posterior distributions under all types of priors – 

uninformative and informative – and to find Bayes Estimates. We use both 

numerical differentiation and numerical integration to serve the purpose. The 

entire estimation procedure is illustrated using real as well as simulated datasets. 
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1. Introduction 
 

The main difference between the Bayesian and the Frequentistic schools 

of thoughts is that the former associate randomness with population Parameters 

and formally incorporate in their analysis any prior information pertaining to 

Parameters. Prior information about Parameters is updated with current 

information (data) to yield Posterior Distribution, which is a work-bench for the 

Bayesians. Adams (2005) throws light on the advantages of using Bayesian 

approach. But the major problem, which Bayesians face, is the calculation of 

Posterior Estimates via the Posterior Distribution.  
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The problem is even aggravated when we use the Jeffreys Prior. It renders the 

Posterior Distribution and hence the Posterior Inference even more complicated. 

Different numerical techniques, like Gibbs sampler, numerical integration etc. are 

used to address these problems. WinBUGS is recently-developed software that is 

being extensively used to get the Posterior summaries of Parameters.  

 

In this study, an effort is made to suggest numerical technique that efficiently 

deals with all the problems of Posterior Estimation. It not only gives us the 

Posterior Estimates of Parameters but also accommodates the Jeffreys Prior if it is 

suggested to be used. The use of other type of priors – uninformative uniform 

prior, conjugate prior and other informative priors – is comparatively easy than 

that of the Jeffreys Prior.  

 

The breakup of the study is as follows: In Section 2, the Fisher's information and 

the Jeffreys Prior are explained along with formulae for numerical differentiation. 

Section 3 is concerned with the Quadrature method of numerical integration. In 

Section 4, the estimation methodology is explained. Section 5 presents illustrative 

examples of the entire estimation procedure. We have considered the cases of one 

as well as two Parameters by taking into account the Exponential and the Normal 

Distributions. Multivariate Distributions may similarly be accounted for. Section 

6 concludes the entire study and discusses the results. 

 

2. The Jeffreys Prior 

 

The situations where we do not have much information about the Parameters of a 

model, we use an uninformative prior proposed by Jeffreys (1946, 1961) and is 

defined as the density of Parameters proportional to the square root of the 

determinant of the Fisher’s information matrix. Let the dataset X be drawn from a 

certain Distribution  (   ) that depends upon the vector of Parameters   
(            )  The Likelihood Function is denoted by  (   ) and its Fisher's 

Information is given by  ( )       {
   (   )

   }.  The Fisher's Information 

measures the sensitivity of an estimator in the neighborhood of the Maximum 

Likelihood Estimate (MLE), as it is proportional to the expected curvature of the 

Likelihood at the MLE. Jeffreys, more generally, suggests invariance prior 

(Berger, 1985) which takes the form 

 ( )  √   * ( )+,    where                                      (2.1) 
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If the nature of expressions involved in the determinant is complicated, we may 

use the numerical methods for finding the second partial derivatives to calculate 

the Jeffreys Prior using the relations 

   
   

   (   )

   |
(     )

 
 (       )   (     )  (       )

  ,                    (2.2) 

and 

   
   

   (   )

    
|
(     )

 
 (         )  (         )   (   

      
  )   (     )

  
 ,     (2.3) 

where  (   ) is a bi-variate function and    
   denotes the partial double derivative 

with regard to the random variable u. For more details, one can see Bernardo 

(1979), Berger and Bernardo (1989, 1992a, 1992b), Datta and Ghosh (1995), 

Jeffreys (1961). 

 

3. The Quadrature Method  

 

We usually need to evaluate multiple integrals to find Bayes Estimates, for 

example, Posterior means, predictive probabilities, Posterior probabilities for 

Hypotheses testing etc. based on complicated nature of the Posterior Distribution, 

particularly when there is a Vector of Parameters and the expressions involve 

complicated algebraic functions. Considering a one-dimensional case, the 

Quadrature refers to any method for numerically approximating the value of the 

definite integral ∫  ( )  
 

 
, where  ( ) may be any proper density. The 

procedure is to calculate it at a number of points in the range ‘a’ through ‘b’ and 

find the result as a weighted average as 

∫  ( )  
 

 
 ∑   

 
    (  )            (3.1)      

      

where                                 for all             and 

   stands for the size of increment used to approach ‘b’ from ‘a’. Here it is 

important to note that the accuracy and size of the increment are inversely related 

to each other. Two-dimensional integrals may be evaluated using the relation 

∫ ∫  (     )      
 

 

 

 
 ∑ ∑   

  
     

  
    (     )            (3.2)  

 

where     (  )                  
     (  ), for all   ,     (  )     

             
     (  ), for all         and    respectively denote the size of 

increments in the Parametric values    and   , and  (     ) symbolizes any 

Bivariate Density. 
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4. Estimation Methodology 

 

To find the Bayes Estimates of Posterior Distributions, we proceed as follows: 

 

 Use one of the formulae (3.1) or (3.2) for Quadrature, and repeat the 

calculation process (   )   times if there is only one Parameter to be 

estimated. For more Parameters, we use Nested Loops to evaluate 

Quadrature. The Loop control variable(s) must be initialized, incremented 

and checked for the desired number of iterations to reach the terminal 

value(s). If the ranges involve infinities, the reasonable numbers may be 

used to represent infinite ranges. For this, we may continuously and 

gradually expand the limits till the convergence of the Posterior Estimates. 

The increment of Loops should be accordingly set to attain the precision 

required. The smaller be the value of increment, the greater the precision 

would be. The Loop control variables are actually the Parameters to be 

estimated. 

 For an observed sample of size n with values            taken from a 

certain Distribution  (   )  define the Likelihood Function  (   ) of the 

Distribution of data set (current information) of random variable(s) as 

 (   )  ∏  (    )
 
    or logarithm of the Likelihood Function as 

 (   )  ∑    (    )
 
   .  

 Using (2.1), derive the Jeffreys prior as  ( )  √   * ( )+ based on the 

Fisher's information matrix  ( )       {
   (   )

   }. The numerical 

differentiation may be carried out using relations (2.2) and/or (2.3). For 

simplicity, we may use Kernel Density – a density without normalizing 

constant – to derive the Jeffreys Prior, because the Jeffreys Prior is only 

the function of Parameters and the normalizing constant too is always 

independent of the Parameters of the Distribution. Remember that the 

Posterior Distributions are always the Distributions of the population 

Parameters considered as random variables. 

 Obtain the Posterior Distribution of the Parameters of interest by 

multiplying the Likelihood Function with the Jeffreys Prior obtained as 

 (   )      ( )  (   ), where k is the normalizing constant defined 

by   ∫  ( )  (   )  
 

  
. In case of using the Kernel Density, the 

normalizing constant is obtained by integrating out the Parameter(s) on the 

entire range(s). The Kernel Density is then divided by the normalizing 
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constant to get a proper density. In this scenario, the Posterior Distribution 

is automatically used to yield the desired Posterior Bayes Estimates. 

 The entire estimation algorithm may be understood by Figure 1. 

 

5. Illustrations 

 

For the purpose of illustration of the entire estimation procedure, we take two 

examples: one for single-Parameter Density and the other for two-Parameter 

Density and consider the Exponential and the Normal Distributions respectively.  

 

5.1 One-Parameter Distribution: For a one-Parameter case, for instance, we 

consider the Exponential Distribution with density  (   )      (   )    
    for    ; and zero elsewhere. Let an observed sample of size ‘n’ with values 

           be taken from the Exponential Distribution. The Likelihood 

Function is  (   )        (  ∑   
 
   ) and the logarithm of the Likelihood 

Function is  (   )           ∑   
 
   , which implies 

   (   )

     
 

  . Since it 

does not depend upon x, so we get the Fisher's information as  ( )  

  {
   (   )

   }  
 

   and hence the Jeffreys Prior takes the form  ( )     . The 

Posterior Distribution follows the Gamma Distribution as 

 (   )          (  ∑   
 
   ), i.e.,      (  ∑   

 
   ) with Posterior mean 

    ( )  
 

∑   
 
   

 ( ̅)  .  

 

For illustration, let the time in minutes required to serve a customer at certain 

facility have an Exponential Distribution with unknown Parameter θ. If the 

average time required to serving a random sample of 20 customers is observed to 

be 3.8 minutes. Obviously, the Posterior Distribution for the Parameter θ under 

the Jeffreys Prior, as derived in Section 5.1, is the Gamma with Parameters 20 and 

20 × 3.8 = 76, i.e.,      (     ) and the Posterior Bayes estimator under the 

Squared-Error Loss Function is ( ̅)  , i.e., 0.263158. 

Using the numerical estimation criteria explained in Section 4, we run a set of C 

codes to get     ( )  ( ̅)  = 0.263158. Even for complex Posterior 

Distributions, the numerical estimation criteria give good results. 

 

5.2 Two-Parameter Distribution: Similarly, if we consider the Normal 

Distribution with Parameters mean   and variance   , both unknown, with 

density  (      )   √    ⁄     * (   ) (   )⁄ +,           , 
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for       ; and zero elsewhere. For a sample of size n, the Likelihood 

Function is  (      )  (    ) 
 

     * ∑
(    ) 

   
 
   + and the logarithm of the 

Likelihood Function is  (      )   
 

 
  (    )  ∑

(    ) 

   
 
   , which implies  

   (   )

     
 

  
, 
   (   )

     
  (   ∑   

 
   ) (  ) , and 

 
   (   )

 (  )
   

 

 (  )
  (  )  ∑ (    )  

   .  

 

The partial double-derivative vanishes under expectation and Fisher's information, 

therefore, takes the form  (    )    (  )  . The Jeffreys Prior is derived to be 

 (    )  (  )     for           . The Joint Posterior Distribution, 

 (      ), takes the form  

 (      )  (  ) (   )  * ∑
(    ) 

   
 
   + ,     for            .     (5.1) 

 

After some algebra, it can be shown that the Posterior Marginal Distribution of 

precision    follows the Gamma Distribution and the Posterior Conditional 

Distribution of       follows the Normal Distribution.  

 

For illustration, let an observed sample with 7 values, 20.87, 18.83, 21.36, 17.77, 

18.97, 26.66 and 24.24, be taken from the Normal Distribution  (    ) with 

both the Parameters unknown. The observed mean   and variance    are found to 

be 21.24286 and 10.25492 respectively. We now utilize the estimation criteria of 

Section 4 and find the Posterior Estimates of mean   and variance    by running 

C codes. The desired Estimates of mean   and variance    are found to be 

21.2429 and 8.65912 respectively. The difference in variance may be due to the 

short size of dataset. This difference becomes negligible for datasets of large 

sizes.  

 

For the simulated dataset of size 100 from the Normal Distribution with mean 0 

and variance 1, we get ∑    10.266 and ∑  
   124.7118 with mean   

         and variance           . The estimated mean and variance 

through the suggested criteria are found to be  0.10266 and 1.23617 respectively 

which are fairly close to the theoretical results. 
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6. Concluding Remarks 

 

In this article, an effort is made to elaborate on the numerical methods to find the 

Jeffreys Prior and the Posterior Bayes Estimates. Numerical differentiation and 

Quadrature are considered to find the Jeffreys Prior and the Posterior Bayes 

Estimates. For instance of a one-Parameter case, we used the Exponential 

Distribution to derive the Jeffreys Prior and the Posterior Estimates, whereas for 

the two-Parameter case, we used the Normal Distribution. The observed and 

simulated datasets are studied. It is seen that the theoretical and numerical results 

fairly agree.  

 

The same procedure can easily be employed for the case of uninformative 

uniform, informative and conjugate priors too. The method works equally well 

when priors and datasets are assumed to follow non regular density functions. The 

complicated Posterior Distributions can also be handled with equal ease and 

accuracy. 

 
 

 

 
 

Figure 1: The numerical-estimation procedure 
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