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Abstract 

 

In this paper, we have established powerful Goodness of Fit Tests for the basic 

situation in which the Hypothesized Distribution is known. A new approach of 

Parameterization is proposed which is a useful approach to construct a Goodness 

of Fit Test based on Parametric approaches. Various Goodness of Fit Test 

procedures have been used in literature. We consider the Union-Intersection 

approach to make some powerful tests to Goodness of Fit Test problem. We 

simulate the percentage points of introduced statistics. Also, we study the 

Bahadur Efficiency of the proposed test.  
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1. Introduction 
 

An essential problem in statistics is whether or not a set of measurements is 

compatible with the assumption that the measurements are an independently 

identically distributed sample from a known distribution. A difficulty in testing 

such a statistical Hypothesis is that the Alternatives (Rival Models) are 

enormously large and could not be described clearly. As the purpose of a 

Goodness of Fit Test, these tests are intended as tests for distributional form, not 

as tests of Parametric values. These kind of problems may be called testing 

Goodness of Fit. They have some strengths and weaknesses. Goodness of Fit 

Tests are Hypothesis testing problems. But there are some differences.  
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Hypothesis testing is formulated in terms of Null and Alternative Hypotheses, 

type one and type two Errors and Power of Tests. In search of the best decision, 

we turn to the search of a test with acceptable Power. On the other hand, there is 

no specific Alternative Hypothesis for Goodness of Fit Test, so it is impossible to 

define the Power of Test simply. Traditionally, Goodness of Fit Tests formulated 

based on the Cumulative Distribution Functions (c.d.f) of a random variable Y, 

denoted by )(yF , is defined by 

 yyYPyF  allfor ),(=)(  

 

We consider two directions as Simple and Composite Goodness of Fit Tests.  

The Simple Hypotheses are given as  

H0:  ( )    ( )       against H1 :  ( )    ( ) for some               (1.1) 

where (.)0F  is a known Distribution Function. We may consider (.)0F  as )(., 0F  

where 0  is a specified value of the Vector Parameter .  

In the Composite situation, we wish to test 

H0c:  ( )   (   )       against H1c :  ( )   (   ) for some        (1.2) 

where   is an unknown vector of Parameters.  

 

This kind of Hypothesis testing is the problem of whether the underling 

Distribution Function belongs to a given family of Distribution Functions as 

}.),(.;{= F  To test this Composite Hypothesis, we have to estimate   

by n̂  which is a regular estimate of  . We denote the true value of   by 0 . A 

natural approach to this testing problem is to use the Empirical Distribution 

Function as an approximation to the true underling Distribution, where the 

Empirical Distribution Function (.)nF  is defined by 

  ( )  
 

 
∑ (  

 

   
  ) 

 

Most notable Goodness of Fit Test based on Empirical Distribution Function and 

(.))(.),( 0FFd n  are the Anderson-Darling 2

nA  Test (1952), Cramer (1928), 

Kolmogorov (1933), Kuiper V Test (1960), Smirnov (1939, 1941),  Von-

Mises(1931) and Watson's 2U Test (1958). The first approach to the problem of 

testing fit to a fixed distribution is Pearson's (1930)  Chi-Squared Test. A way to 

improve Pearson's statistics consists of employing a functional distance as 

(.))(.),( 0FFd n . Possibly the best known test statistics based on the Empirical 
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Distribution Function are the Cramer (1928) and in a more general form Von-

Mises(1931) statistics. They proposed 

dyyyFyFn nn )())()((= 2

0

2  



 

for some Weight Function   as an adequate measure of discrepancy. The 

Kolmogorov Test (1933) is the easiest and also most natural Non-Parametric Test. 

It is based on the Lnorm and computes the distance between an Empirical and the 

Hypothesized (theoretical) Distribution Function under the Null Hypothesis. 

Under Alternative Hypothesis, the difference between the Empirical and 

Theoretical Distribution Functions will be noticeable. This statistic is given by 

.|)()(|sup= 0 yFyFnD n
y

n 


 

 

A problem mathematically similar to Kolmogorov's statistic was studied by 

Smirnov )(1939,1941 . He has considered 

nD  and 

nD  where  

))()((sup= 0 yFyFnD n
y

n 






 

 

)).()((sup= 0 yFyFnD n
y

n 






 

The statistics 

nn DD ,  and 

nD  are known as Kolmogorov-Smirnov statistics. They 

have the advantage of being distribution free. Thus the same p-values can be used 

to obtain the significance level when testing it to any Continuous Distribution. In 

search of this property for 2

n Cramer-Von-Mises have introduced a simple 

modification. A modification for Cramer-Von-Mises distance is 

)(}))()()){(((=)( 0

2

00

2 ydFyFyFyFnW nn 



  

which was proposed by Smirnov (1936, 1937). 

 

The Parametric version of this statistics when related Parameter is estimated by 

n̂  is given by  

).ˆ;(}))ˆ;()()){(ˆ;((=)(ˆ 22

nnnnn ydFyFyFyFnW  



 

The property exhibited by nD  and )(2 nW  of being distribution free does not 

carry over to the Parametric cases. However, in some cases the Distribution of 

)ˆ;( niYF  ; ni 1,2,...,=  does not depend on , but only on  , the family of 

underline densities. In those cases, the Distributions of Parametric Goodness of 
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FitTests are Parameter free. This happens if   is a location scale family and n̂  

is an equivariant estimator(see, David and Johnson, 1948). All the statistics which 

can be obtained by varying   are usually refereed to as statistics of Cramer-Von-

Mises type, two of them are as follows. The Cramer-Von-Mises's statistic 

obtained by 2

nW  for 1=(.) , )())()((= 0

2

0

2 ydFyFyFnW nn 



 

and the Anderson-Darling's statistic (1952) for 
1))(1(=)(  ttt  

)(
))()(1(

))()((
= 0

00

2

02 ydF
yFyF

yFyF
nA n

n







 

with Parametric version as  

).ˆ;(
))ˆ;()(1ˆ;(

))ˆ;()((
=ˆ

2

2

n

nn

nn

n ydF
yFyF

yFyF
nA 












 

 

Consideration of different Weight Functions   allows the statistician to put 

special emphasis on the detection of particular sets of Alternatives. Some people 

prefer employing Cramer-Von-Mises statistics instead of Kolmogorov-Smirnov 

statistics. It is because Kolmogorov-Smirnov statistics accounts only for the 

largest deviation between )(tFn  and )(tF , while the other one is a weighted 

average of all the deviations between )(tFn  and )(tF . Anyway we reject 0  if in 

each case the value of the statistic is large. The supremum version of the 

Anderson-Darling statistics is given by 

.
))()(1(

|))()((|
sup=

00

02

yFyF

yFyF
B n

y
n







 

 

Eicker (1979) considered 11 ))}()(1({=))(1(=)(   yFyFttt nn , rather than 

the Hypothesized variance. Berk and Jones (1979) used the Divergence Function 

which prepares an approach which give us a test statistic using known Likelihood  

Ratio Test. More precisely the Berk-Jones statistics as the supremum of the 

Kullback-Leibler (KL) discrepancy between Hypothesized and Empirical 

Distribution Functions could be defined as a supreme of ))(),(( 0 yFyFK n  as 
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where )))(),(( 0 yFyFK n  is the Kullback-Leibler (KL) discrepancy between two 

Distributions. 

It is known that ))(),(( 0 yFyFK n  behaves as .
))()(1(

))()((

2

1

00

2

0

yFyF

yFyFn




 

 

This last term is half of the Pearson statistics for )(yFn . When we consider the 

Goodness of Fit Test for Multinomial Distribution, the Pearson 
2  statistic is 

asymptotically equivalent to the Likelihood Ratio statistic. Berk-Jones proposed 

that we can fix ‘y’ and construct a test statistic by Likelihood Ratio Test for 

Goodness of Fit Test problem. Then, we turn to )(yFn . For each fixed sample 

),...,(= 1 nYYY , )(yFn  is a Distribution Function as a function of y . On the 

other hand, for each fixed value of ‘y’, )(yFn  is a random variable as a function of 

the sample and also it is known that )(yFn  is a Unbiased Maximum Likelihood 

Estimator for )(yF . The variance of the Empirical Distribution converges to zero 

as ‘n’ goes to infinity. These indicate that (.)nF  is weakly and strongly consistent 

for estimation of )(yF . As we know, ))(,()( yFnBinynFn   for a fixed ‘y’, then 

under 0 ; )).(,()( 0 yFnBinynFn   We concluded that the Likelihood Ratio 

statistic for testing 0  against 1  in fixed y  is given by 

.
))((

))((sup

=)(
0

)(

yF

yF

y
n

n
yF

n




  

where ))(( yFn  and ))(( 0 yFn  are Likelihood Functions evaluated at )(yF  and 

)(0 yF  respectively. A suitable relation between Berk-Jones statistics and 

Likelihood Ratio statistic is as follows  

).(logsup=))(),((sup
1

[0,1]
0

[0,1]

ynyFyFK n
y

n
y
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Einmahl and McKeague (2003) introduced an integral form of Berk-Jones 

statistic. They also considered testing for symmetry, a change point, independence 

and for exponentiality. Wellner and Koltchinskii (2002) have given proofs of the 

Limiting Null Distribution of the Berk and Jones (1979) statistic. 

 

In section 2, we bring our objective to using Berk and Jones idea and using this 

idea with Union-Intersection Test (UIT). This section is a sketch of UIT. Section 

3 shows how we make our test. The Power comparisons are given in section 4. 

After constructing test using UIT, we will search some good Weight Functions as 

means of a powerful test in two directions as Simple and Composite Hypothesis. 

In fact, we develop an approach for Simple Hypothesis and then we will use the 

results for simulation study in both situations. In section 5, we study the Bahadur 

Efficiency of the proposed test.  

 

2. Motivation 

 

A large family of statistic which embeds 
2  and Likelihood Ratio Test statistics 

are obtained by Cressie and Read (1984) family of divergence statistics defined as 

following 
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nI n

n

n

ny  

for testing the Goodness of Fit of a Multinomial Distribution for the binary 

sample nyy XX ,,1   with ‘y’ fixed. Our goal is using Berk-Jones idea in fixing ‘y’ 

and Likelihood Ratio statistic in fixed ‘y’ in search of a Goodness of Fit Test for 

two situations, the simple case where (.)0F  is a known Distribution Function and 

Composite case where as the common approach for Goodness of Fit Test. We 

have to estimate the unknown Parameter(s) at first and then apply the test. 

Parametric case will change our situation for model selection from testing for a 

specified distribution which belongs to the model in more general situation is 

actually testing for a Family of Distributions (Models). Einmahl and McKeague 

(2003)  have considered the localized Empirical Likelihood Ratio with Likelihood 

Function as  

)].(()(([=)(
1=

 ii

n

i
YFYFF   
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We would propose the other approach different than Einmahl and McKeague 

(2003) , using some Weight Functions based on classical approach to Hypothesis 

testing as Union-Intersection approach. This approach has the same advantage as 

the well known Likelihood Ratio Test approach. The resulting statistics is the 

same as the Einmahl and McKeague (2003)  statistics but our approach makes 

theUnion-Intersection Test (UIT) suitable for dealing with the Goodness of Fit 

problem. UIT introduced by Roy (1953) motivated through the multiple 

comparisons and simultaneous statistical inference. On the other hand, it is easier 

to illustrate UIT with a Composite Hypothesis testing problem that leads to 

simultaneous statistical inference. Generally, we use two types of test statistics for 

testing 0  against 1  that can be defined by 

)(= zdwTT z



 

or  

)}.({sup=
),(

zwTT z
z

max


 

To construct the global test statistic T  (or maxT ) we need some local test statistics 

as zT . In this work, we focus on the test statistic as T  only, and  illustrate our 

approach to construct the local test statistic.  

 

Consider a random sample as ),...,,(= 21 nYYYY  and a Goodness of Fit Test 

procedure which introduces a Likelihood Ratio Test for each fixed ‘z’ which 

could be between any of two iY 's. Here we must emphases that )(yF  is an 

unknown Distribution Function, whereas )(zF  with fixed ‘z’ is an unknown 

Parameter. As we saw ))(,()( yFnBinynFn  , the Likelihood Ratio statistics for 

testing 0  against 1  is given by 

.
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=
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If we separate the Null Hypothesis  yyFyF )(=)(: 00  (related to a local 

test) to several Null Hypotheses as  zzFzFz )(=)(: 00 , we can 

construct a Likelihood Ratio for each one of the sz '0  for each fixed ‘z’, and 

then construct a test for our essential Hypothesis testing problem. Fortunately, this 

concept is known in statistics. The Union-Intersection test (UIT), see Casella and 
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Berger (2002) andSayyareh (2011), is our proposal to solve this problem. The 

UIT method is a natural solution to this kind of problem. It is because the overall 

Hypothesis could be rejected if each local Null Hypotheses could be rejected. As 

a test statistic, we generalized the logic of the Likelihood Ratio Test. On the other 

hand, we defined a Weight Function as )(zw . This Weight Function permits us to 

construct different tests. As a choice we consider ))(),((=)( 0 zFzFzw n . In the 

following, after a brief review of UIT, we will construct the Likelihood Ratio Test 

statistic by UIT, and then we will propose our statistics to model selection. The 

Likelihood Ratio Test method is a commonly used method of Hypothesis test 

construction. Another method, which is appropriate when the Null Hypothesis is 

expressed as an intersection, is the Union-Intersection Test (UIT). In classical 

statistics we may write 





 


:0  

where   is an arbitrary index set that may be finite or infinite, depending on the 

problem. By this notation we have 

.:1

c





 


  

 

Suppose that for each of the testing   :0  against the 

AlternativeHypothesis ,:1

c

    we know that the rejection region for the test 

of 0  is })(:{  RyTy   where (.)T  is the test statistic. Thus, if any of the 

0  is rejected, then 0  must also be rejected, it offers a rejection region for 

UIT as 

}.)(:{ 



RyTy 


  

As a simple example for UIT, we consider a known Hypothesis test in elementary 

statistics. 

 

Example: Let nYYY ,...,, 21  be a independently identically distributed (i.i.d.) 

random sample from ),( 2 , where µ and 2  are unknown Parameters. We 

want to test that 00 =:   against 01 :   , where 0  is a specified 

number. As a UIT, we can write 

}:{}:{: 000    
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This Null Hypothesis could be written as intersection of two new Null Hypotheses 

as }:{: 00  Lower  and }:{: 00  Upper . Now as the classical approach 

we will test 

0100 >:against:  LowerLower    

with rejection region Lower

i

n

i t
nS

Yn



/

1/ 01=


 and  

0100 <:against:  UpperUpper    

with rejection region Upper

i

n

i t
nS

Yn



/

1/ 01=


.  

Then the rejection region of the UIT of  

}:{}:{: 000    

against  

}:{}:{: 001   for UpperLower tt =  will be express as 

Lower

i

n

i t
nS

Yn



|

/

1/
|

01=


 which is the two sided test. 

 

3. Proposed Approach to Construct New Tests 

 

Consider ),...,,(= 21 nYYYY  as anindependently identically distributed (i.i.d.) 

random sample with unknown Distribution Function (.)F . We set (.)0F  as a 

known Distribution Function. The official Goodness of Fit Test contains testing  

 yyFyF )(=)(: 00  

against  

H1:  ( )    ( )  for some     

A key for proposing a Goodness of Fit Test is that the Distribution Function )(zF  

for a fixed ‘z’ is  an unknown Parameter. It reduces the Goodness of Fit Test to a 

Likelihood Ratio Test as 

 zzFzFz )(=)(: 00  

against  

H1z:  ( )    ( )  for some     
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As it is a case with Composite Hypotheses testing problems, there may not be, in 

general, an optimal test for testing 0  against 1 . However, for a general class 

of testing problems our idea is to rewrite this Hypothesis testing as the UIT, thus 

we have  

z

z

00 : 





 

against  

.: 11 z

z







 

 

In this way, there is flexibility in the decomposition of the Hypotheses and choice 

of appropriate test statistics. To do this, for each ‘z’ we can define a new random 

variable (see, Berk and Jones 1979), thus we have  



 


z>Y if0

zY if1
=}1{=

i

i
zYY iiz  

for .1,2,...,= ni  

 

Now, we have a Parametric test with a binary variable with value in 
n{0,1} , i.e.  

))((1, zFBinYiz   

and  

)).(,()(=
1=

zFnBinznFY niz

n

i

  

The Likelihood Function is  
))((1)(

))((1))((=));((=))((
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n
Fnz

n
nF

iznn zFzFYzFzF


  

and the Likelihood Ratio Test is given by  

))((

))((sup
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for the large value of )(zn  we reject the Null Hypothesis. The log-Likelihood 

Function is given by  
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)(1
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(log))((1)
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The proposed test statistics for testing 0  against 1  is  

)))(),(((log=))((log= 0

)(
0

)/()(
0

)/(
zFzFdzwdU n

zFz
n

FzFz
n

F

n 
   

 

Note that the decision rule is built from the logical equivalence that 0  is wrong, 

if and only if, any of its components z0  is wrong or equivalently 0  is true if 

all the z0 's are individually true. Also assume that we can test z0  using a 

statistic )(yTz  such that for any Hypothesis included in z0 , 

}))(;({ cyTyp z   is known, for all c  and z . Using this idea in the 

search of the more powerful test we will consider the different ))(),(( 0
zFzFn s 

for nU  in the next section.  

 

4. Investigation of the Power of Some New Tests by Simulation 

 

To generate new tests we have to choose appropriate Weight Function. Then we 

need to modify )(zFn  at its discontinuity points )(iY  for ni 1,2,...,= . It is trivial 

that for a point yY i =)(  there are 
2

0.5i
 observations among nYY ,...,1  which are 

less than y . This lead us to consider )( )(in YF  as 
2

0.5i
.  

Selected Weight Function generates a test like a member of the class of the 

Cramer-Von-Mises. In this section, we propose some Weight Function and 

simulate their Power against several Alternatives. For each Alternative, the Power 

result was derived from 410  samples of size 0,250120,150,2050,70,100,=n  

depending on choosing   (related to the Weight Function) and ))(),(( 0 zFzFn  

for Simple and Composite situations.  

 

4.1 Simple Hypothesis: The reasonable choosing of the Weight Function will give 

us a reasonable test statistic. At the first we consider  

0,for)())}()(1(2{=))(),(( 0     zdFzFzFzFzFd nnnn  

which is an empiric version of the Weight Function )).(),(( 0 zFzFn  

By this choice we have  
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Then nT  is given by  
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We generate 410  observations from a Beta Distribution, say, ( , )   . Consider 

the (1,1)  as the true (data generate) density. As (.)0F , we consider the Beta 

Distributions with Parameters as (1.1,0.8)(.6,.6),(.8,.8),(1.5,1.5),=),(   and  

≡ =0.1, 0.3, 0.5, 0.7, 1, 1.2, 1.4.   For all of tests we set 0.05=  as the level of 

test. At this given level the critical values of the tests are simulated independently. 

 

Table 1 shows the result of simulations for nT . For any candidate   we see that 

the Power of Test grows when the sample size increases and the Powers converge 

to 1 very fast. On the other hand, the Power of the new test is always greater than 

the Power of Anderson-Darling Test. When we set (1.5,1.5)=),(   and 0.3  

the Power of Anderson-Darling Test is greater than our test. 

 

Table 2 shows the power of the empirical version of the Anderson-Darling test in 

the same situation as above. In Table 2, the Power of the empirical version of the 

Anderson-Darling Test in the same situation is stimulated.  

 

Now we consider a simple Weight as ,2=))(),(( 0 nn dFzFzF  which gives nT  as 

empiric version of the Likelihood Ratio statistic, thus  
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This test is more powerful than the Anderson-Darling Test when we set 

(1.1,0.8).or(0.6,0.6),=),(   When we choose (0.8,0.8)=),(   our test is the 

same as the Anderson-Darling Test. But for (1.5,1.5)=),(   our test has a 

Power which is a little (about 0.1 ) lower then the Anderson-Darling Test. see 

Table 3. 

 

The other test of this type may be construct by the Weight Function as  
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which introduce a new test, say nK , where  
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After simplification nK  is given by  
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By this Weight Function, our test has a good Power, but for some   the Power of 

this test is lower than Anderson-Darling (Table 4). On the other hand, always our 

test is more powerful than 
2  test. The Power of 

2  test for some value of ),(   

is given in Table 5. 

 

4.2 Composite Hyopthesis: In Composite case, we are testing the Goodness of Fit 

for a Family of Distributions. To Goodness of Test in (1.2) our test Function will 

be 
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And 
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similar to 4.1 and 4.3. 

We assume that Y  has a Normal Distribution, say ),( 2  with ),(= 2  

unknown. We can estimate   by ),(=ˆ 2

nnn SY , the mean and sample variance. 

Then ncT  and ncK  will be applied to test the Goodness of Fit Test for normality. 

For Power study, we verify the Power for  

),(: 2

0  Yc  

against  

)ˆ,ˆ(: 2

1  baYc    

where a  and .b  The Power of this test for 1.40.1,0.5,1,= , 0.3=a  

and 1=b  using ncT  and ncK  are given in Tables 6 and 7 respectively. As we see 

these tests have a good Power to choose a Model to describe the data at hand.  
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then  

))).((1,)),((1,(inf2=)
1

(log
2

01

0
0

YFBinYFBinKLtS
n

P
n

n 


   



Abdolreza Sayyareh 

_______________________________________________________________________________ 

 

26 

 

The inequality which namely (*)  is correct because 
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So the Bahadur Efficiency is achieved. 

 

6. Conclusion 

 

The Goodness of Fit Tests are used for verifying whether or not the experimental 

data come from the postulated model. In this direction,one must decide if 

theoretical and experimental Distributions are the same. Then,Goodness of Fit is a 

Hypothesis testing problem and the problem is concerned with the choice of one 

of the Alternative Hypothesis. This problem contained the Parameters or not. In 

this work, we consider a simple situation where the Distribution Function is 

completely known, and also the Composite case. We have introduced an approach 

which is known to all statisticians, the Likelihood Ratio approach to Hypothesis 

testing problem. For simple situation, the family which we consider to simulation 

study is a simple family, but sensitive to choice of Parameter. This family is U-

shaped if both of its Parameters ),(   are less than one, is J-shaped if 

0<1)1)((   , and is otherwise Unimodal. In the case (η=1, θ=1), this 

distribution is Uniform Distribution on (0,1) . This sensibility to Parameters lets 

us verify our test to various situations. For Composite situation, we consider 

Location-Scale Family as Normal Family. Development of this approach to a 

Weight Function which could be morepowerful than Anderson-Darling Test for 

any   is our idea. On the other hand, we showed that a member of this kind of 

tests is efficient in Bahadur sense. 
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Table 1: Power computations of H0: F(.) = β(1,1) against H1: F(.) = β(η,θ) at level 

α= 0.05 for (η,θ) = (1.5,1.5) using test function Tn 

 

Table 2: Power computation of H0: F(.) = β(1,1) against H1: F(.) = β(η,θ) at level 

α= 0.05 for (η,θ) = (1.5,1.5), (0.8,0.8), (0.6,0.6), (1.1,0.8) based onAnderson-

Darling Test 

  

Table 3: Power computation of  H0: F(.) = β(1,1) against H1: F(.) = β(η,θ) at level 

α= 0.05 for (η,θ) = (1.5,1.5), (0.8,0.8), (0.6,0.6), (1.1,0.8) using test function En 

  

Table 4: Power computation of  H0: F(.) = β(1,1) against H1: F(.) = β(η,θ) at level 

α= 0.05 for (η,θ) = (1.5,1.5) using test function Kn 

κ n=50 n=70 n=100 n=120 n=150 n=200 n=250 

0.1 0.137  0.251  0.485  0.557  0.702  0.890  0.957  

0.3 0.257  0.446  0.597  0.706  0.825  0.947  0.984  

0.5 0.322  0.475  0.664  0.776  0.888  0.972  0.993  

0.7 0.333  0.568  0.684  0.780  0.911  0.973  0.994  

1.0 0.398  0.610  0.729  0.827  0.915  0.970  0.995  

1.2 0.413  0.570  0.742  0.824  0.912  0.975  0.991  

1.4 0.438  0.606  0.785  0.829  0.910  0.955  0.987  

(η,θ) n=50 n=70 n=100 n=120 n=150 n=200 n=250 

(1.5,1.5) 0.302  0.395  0.622  0.640  0.829  0.933  0.975  

(0.8,0.8)  0.041  0.082  0.104  0.109  0.129  0.212  0.297  

(0.6,0.6)  0.261  0.393  0.570  0.690  0.889  0.955  0.992  

(1.1,0.8) 0.495  0.638  0.782  0.849  0.906  0.964  0.980  

(η,θ) n=50 n=70 n=100 n=120 n=150 n=200 n=250 

(1.5,1.5) 0.083  0.166  0.254  0.420  0.566  0.747  0.894  

(0.8,0.8)  0.146  0.176  0.210  0.241  0.256  0.339  0.447  

(0.6,0.6)  0.580  0.725  0.876  0.922  0.973  0.995  0.999  

(1.1,0.8) 0.506  0.646  0.704  0.844  0.923  0.978  0.993  

κ n=50 n=70 n=100 n=120 n=150 n=200 n=250 

0.1 0.196  0.300  0.423  0.496  0.712  0.887  0.945  

0.3 0.247  0.355  0.526  0.640  0.727  0.896  0.976  

0.5 0.275  0.428  0.590  0.686  0.806  0.910  0.962  

0.7 0.342  0.441  0.633  0.696  0.827  0.938  0.982  

1.0 0.352  0.502  0.674  0.755  0.870  0.945  0.983  
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Table 5: Power computation of  H0: F(.) = β(1,1) against H1: F(.) = β(η,θ) at level 

α= 0.05 for (η,θ) = (1.5,1.5), (0.8,0.8), (0.6,0.6), (1.1,0.8) based on 
2  test 

  

Table 6: Power computation of  H0c:  Y: N(    ) against H1c: Y: N(      ̂  ̂ ) 

at level α= 0.05 using test function Tnc 

  

Table 7: Power computation of  H0c:  Y: N(    ) against H1c: Y: N(      ̂  ̂ ) 

at level α= 0.05 using test function Knc 

 

 

 

 

 

 

 

 

 

κ n=50 n=70 n=100 n=120 n=150 n=200 n=250 

1.2 0.373  0.529  0.676  0.765  0.871  0.947  0.985  

1.4 0.407  0.552  0.704  0.793  0.900  0.959  0.986  

(η,θ) n=50 n=70 n=100 n=120 n=150 n=200 n=250 

(1.5,1.5) 0.210 0.400 0.500 0.591 0.630 0.785 0.810 

(0.8,0.8)  0.102 0.170 0.175  0.185  0.200  0.280  0.320  

(0.6,0.6)  0.382 0.575 0.711  0.823  0.900  0.984  0.999  

(1.1,0.8) 0.085 0.145 0.155  0.165  0.183  0.212  0.264  

κ n=50 n=70 n=100 n=120 n=150 n=200 n=250 

0.1 0.654  0.739  0.880  0.918  0.989  1.0  1.0  

0.5 0.718  0.765  0.871  0.880  0.900  0.999  1.0  

1.0 0.509  0.674  0.792  0.912  0.907  0.951  0.994  

1.4 0.460  0.637  0.659  0.718  0.850  0.908  0.991  

κ n=50 n=70 n=100 n=120 n=150 n=200 n=250 

0.1 0.660  0.829  0.939  0.949  0.963  0.980  0.999  

0.5 0.453  0.657  0.790  0.949  0.941  0.920  0.990  

1.0 0.436  0.676  0.957  0.960  0.972  0.987  0.992  

1.4 0.320  0.505  0.638  0.870  0.880  0.947  0.980  
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