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Abstract 

 

In this paper, we investigate the properties of some common tests for Asymmetry. 

The tests are based on Moments, Order Statistics and Empirical Characteristic 

Functions, respectively. These tests have completely different origins, rely on 

different characterizations of symmetry and have very different size and power 

properties. It is demonstrated that tests based on Empirical Characteristic 

Functions are strongly dependent on the choice of working region and that some 

previously proposed tests may be improved considerably by using Bootstrapped 

critical values. It is also concluded that no test is uniformly better than the others 

but that the Empirical Characteristic Function tests have best over-all properties. 
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1. Introduction 

 

It is often of great importance to know if a variable x is symmetric about its 

median (M) or not. In some cases, the sole analysis involves the question of 

whether the probability of events at M x  equals those of M x , while in other 

analyses, the question of symmetry is mainly used to decide between parametric 

and non-parametric methods. The issue of symmetry may also concern the choice 

of model. For example, if Macroeconomic Models are linear then it is not 

desirable to use them with Asymmetric dependent variables. There are also cases 

when asymmetry may deteriorate the properties of a point estimator.  
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It is well known that point estimators of Regression parameters may be inefficient 

if the error term is asymmetrically distributed, in which, other measures of central 

tendency like the median should be considered as a more suitable alternative (for 

example, Hammarstedt and Shukur, 2006). Asymmetry of data may also lead to 

erroneous interval estimates (Bakliz and Kibria, 2009). In other words, there is a 

wide range of statistical analyses that requires an appropriate method for 

assessing symmetry. However, it is not obvious that which test to employ. The 

history of assessing symmetry dates back to the early nineteen hundreds, when a 

number of different skewness coefficients were considered by Fisher (1929), 

Pearson (1905), Yule (1917) and others. These were formed by different functions 

of measures of location (mean, mode or median) and scale (standard deviation or 

inter-percentile distances). Later, on the Standardized third order central moment 

came to dominates the literature and is sometimes considered to be identical to the 

term “skewness statistic”, even though it is formally only one of several possible 

measures. The third central moment is well known to have high power against 

many Skewed Distributions and also uniquely determines the symmetry of 

distributions within the Pearson family (Ord, 1972), and is a standard option in 

many computer packages. But, as recognized in the 1940s and later on, this 

statistic cannot be expected to have power against Asymmetric Distributions with 

zero third order central moment (Churchill, 1946). Eventually, the words 

“skewness” and “asymmetry” came to refer to two separate things. While, 

skewness is usually understood to mean a non-zero third order central moment, 

Asymmetry refers to the more general property that 

   P X M x P X M x      for some x. Therefore, several approaches have 

been developed for testing this hypothesis. Some of these assume a known centre, 

for example, the median of the distribution (Balalakrishnan, 2004; Fuerverger and 

Mureika, 1977). Such tests are of particular relevance when there is a composite 

null hypothesis of symmetry about a specified mean versus Asymmetry and/or 

location shift, but are of less relevance if the sole question involves only the issue 

of symmetry irrespectively the location parameter. In this paper, we will restrict 

ourselves to the latter, that is, tests for Asymmetry, when no prior hypothesis of 

the centre of the distribution is available. Roughly, one may divide the tests into 

three classes: (i) Moment-based tests, including the Classical Skewness Measure 

proposed by Pearson and Fisher. The relation between skewness coefficients and 

Asymmetry for many distributions is zero, skewness implies symmetry. (ii) there 

are tests based on Order Statistics, which have a strong graphical interpretation in 

the sense that observations below the centre of the distribution are compared to 

what they “should be” above the centre if data is symmetric. Such tests are 

usually constructed by functions of Order Statistics. Some important references 
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include Antille et al. (1982) and David and Johnson (1956). (iii) It involves 

Empirical Characteristic Function, which have strong potential for detecting 

Asymmetry since the Characteristic Function is real about its mean, if and only if, 

the underlying distribution is symmetric (Csorgo and Heathcote, 1987). On the 

other hand, these tests depend upon a “working region” that needs to be estimated 

from the sample and this complicates its usage. There are obviously tests not 

belonging to any of the classes (i) - (iii) though most standard tests met in the 

literature will fall into some of these categories.  

 

In this paper, we will investigate the properties of some tests that we believe are 

of particular importance. We will pay attention to the choice of working region 

and its effect on Empirical Characteristic Functions, the choice of smoothing 

parameter for Quantile tests and also demonstrate that size distortions may be 

reduced by using Bootstrapped critical values. This is done through a Monte 

Carlo Simulation that uses variables with finite and infinite range, Unimodal and 

Multimodal as well as Asymmetric Distributions with zero skewness coefficients. 

The paper develops as follows; in section 2 the tests are briefly presented and 

discussed, the Monte Carlo simulation is presented in Section 3 while a summary 

is given in Section 4. 

 

2. Asymmetry Tests 

 

A random variable X is said to be symmetric, if and only if,

    1X XF a x F a x     for all x in  . In this section, we will discuss some 

different tests for Asymmetry that is common in the literature, restricting 

ourselves to properties of purely continuous variables  
1

n

i ì
x


 which are 

independently and identically distributed realizations of X . 

 

2.1  The Pearson/Fisher Skewness Test 

The skewness coefficient as defined by Pearson and Fisher in the early nineteen 

hundreds is defined by; 

3 2

3 2    where   
r

r E X E X   .       (2.1) 

Its sample counterpart is given by 3 2

3 2g m m where  1

11

rn

r ii
m n x m


  . 

When X  is symmetrically distributed with kurtosis 2

4 2 3   , we have the well-

known property;  
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   
2 2

1
6n g                                        

(Bowman and Shenton, 1975; Fisher, 1929; Stuart and Ord, 1993). Hence,  

  2

1 : 6n g   can be used to test Asymmetry by rejecting the null hypothesis at 

the level   when 1 q  , where q  is a critical value determined by 

  2

1
P q   .  We will refer to this test as “Test 1” T1. The Asymptotic 

Distribution of 1  requires a kurtosis equal to the value 3 (Horsewell and Looney, 

1993) and homoscedasticity of X . As a remedy to these shortcomings, 

Holgersson (2006) proposed the use of Bootstrapped critical values: if 

 
1

n

b ib i
x


  denotes a Bootstrap Resample taken from the original sample  

1

n

i i
x



,   2: 6j jn g   is calculated from 
j  and 

  1 B
q 




  is the (   )    Ordered 

Statistic from the B Bootstrap Resamples  
1

B

j j



, then the null hypothesis of 

symmetry is rejected when 1 q  . We will refer to this test as T2.  

 

2.2  The Empirical Characteristic Function 

The Characteristic Function of a random variable defined by; 

         : itXt E e E Cos tX iE Sin tX U t iV t                                  (2.2)                

uniquely determines the complete distribution of X . It is well known that  t  is 

real, if and only if, X  is symmetric about the origin. Hence, symmetry of 

 X   is equivalent to    0E Sin t X     . An estimate of  t  is available 

by; 

         1 1

1 1

n n

n i i n ni i
t n Cos tx in Sin tx U t iV t  

 
      

which is a Consistent Estimate of  t  under some mild conditions (Feuerverger 

and Mureika, 1977). A specific test was suggested by Csorgo and Heathcote 

(1987) based on the statistic defined by; 

      1

n n nt t arc tan V t U t  ,           t .                             (2.3) 

This statistic depends on the choice of t because   0nU t   may occur infinitely 

often in t. The solution to this problem is to determine a “working region”

 00, A , where   0 inf 0 : 0nA t U t   and then evaluating an appropriate 
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test statistic at its maximum in . Therefore, an estimate of 0A  is required. Welsh 

(1986) proposed the Iterative Estimate of 0A  by; 

 

   
1

1

, 1 , , 2 ,  0,  1,  ...n k n k n n kK K U K m k








    ,     (2.4) 

where 1

1

n

ii
m n x








  , 0 1  ,  

1 2

,0 22nK m  and 
1 2

2 1

n

ii
m n x


  .  

Then, for each fixed n and , 0n kK A , the empirical working region may be 

determined by this estimate. An upper bound is available by  
1 2

22nA m which 

is argued to be very conservative (Welsh, 1986) but may never the less be of 

interest due to its simplicity. Further details concerning the first positive zero are 

available in Braker and Husler (1991), Heathcote and Husler (1990) and Ushakov 

(1999). Using an appropriate estimate of 0A  and the corresponding working 

region, Czorgo and Heathcote (1987) considered the statistic defined by

   n n n nn s t  . The points ns  and nt  are defined as follows; 

Let,  

 
 

         
`

2 2 2 2

,
,

2

n

n

n n n n

h t s
t s

ts U t V t U s V s
 

 
  

where, 

                       n n n n n n n n n n nh t U t s U t U s V t V s U t s V t V s U t U s     

+                      n n n n n n n n n nV t s V t U s U t V s V t s U t V s V t U s     .  

Then,     2 2min : supn n n
t

s s s t 


  ,     2 2max : infn n n
s

t t t s 


   and the 

test statistic for testing Asymmetry is defined as; 

 
   

      2 2 2 ,

n n n n

n n n n n n n

s t

s t s t

 


  




 
.      (2.5) 

This statistic will depend upon the choice of working region and hence on the 

choice of  . For the purpose of comparison, we will use two values, 1   and 

0.4  , and define the corresponding test statistics by  3 1   and  4 0.4   

respectively. When the approximated bound is determined by  
1 2

22nA m  the 

corresponding test statistic will be denoted by; 
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   1 2

5 22 m   

The null hypothesis of symmetry is then rejected at the level  when 
3 2z  , 

4 2z   or 
5 2z   and the corresponding tests will be labeled by T3, T4 and T5 , 

respectively. 

 

2.3  The Trimmed Wilcoxon Test 

Instead of characterizing symmetry by moments, symmetry about the origin may 

be defined by    1F x F x    or equivalently by    f x f x   for all x. The 

latter definition may be more appealing, since the shape of a distribution can 

always be presented by the graph of  nf x  against x. Hence, observations below 

the centre of the distribution may be compared to what they “should be” above the 

centre. There are several ways of doing this empirically. Antille et al. (1982) 

considered the following general statistic for testing Asymmetry; 

 
 

 
 1 2

1 2 1

n i

ii

R M
U n sign X M

n
 



 
    

 ,    (2.6) 

where, M  is the median of X,  iR M  is the rank of iX M , 

   min ,  1 2z z   , 0 1 2z   and 0 1 2  . For 0   this statistic is a 

Wilcoxon Signed Rank Test with ranks centered about the sample median, 

originally proposed by Gupta (1967). In order to achieve a statistic which is more 

robust to irregularities in the tails of the distributions, one may use a Trimmed 

version  0  . Unfortunately, the sampling variance of  U   depends upon the 

distribution of X , even for Symmetric Distributions. Antille et al. (1982) argued 

that, as the sample size n increases 

   2

0,0 0,  nU N    

where,  

 2

0, 0.03156exp 5.66n n   . 

A Trimmed version will have the Limiting Distribution; 

   2

1 6,1 6 0,  nU N   

where, 

 2

1 6, 0.01736exp 5.77n n   . 

These approximations assume an odd sample size (even sample sizes require a 

trivial modification).  
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Hence, if   2

6 0,0 nU   and   2

7 1 6,1 6 nU  , then the null hypothesis of 

symmetry is rejected when 6 2z   or  7 2z  . We will refer to the 

corresponding tests as T6 and T7, respectively. 

 

2.4  Gaps Test 

Another family of tests which is also based on Ordered Statistics may be defined 

as follows; 

Let, 
 ix  be the i

th
 order statistic of an observable variable x  and define

   1i n k i n k i
R x x

    
  ,    2 1i k i k i

L x x
   

    for 1,2,...,i k  where  2k n . 

Then, iR  and iL  may be thought of as gaps on the left and right hand side of the 

median and may hence be compared to each other. Finch (1977) proposed the 

statistic; 

 
1

k

i ii
V wV


 ,                          (2.7) 

where, 

iw  are fixed (non-random) weights and    i i i i iV R L R L   .  

The values of the optimal weights depend on the underlying Asymmetric 

Distribution. Since, an Asymmetry Test is often conducted against no specific 

alternative; one single choice of weights cannot be optimal against all 

Asymmetric Distributions. Moreover, the Asymptotic Standard Error of V
depends on the distribution of X even under symmetry. Finch (1977) derived the 

optimal weights for Tukey Distribution (Karian and Dudewicz, 2000) and the 

Logistic Distribution, respectively, and argued that the choice of optimal weights 

is particularly intricate for heavy Tailed Distributions. Antille et al. (1982) 

considered weights for the Gap Test defined by; 

  1iw J i n    

where, J  is a Smoothing Indicator Function defined by; 

 0.05,0.5J I  

And  

I  is the Indicator Function assigning the value 1 for values in the interval and 

zero otherwise. These authors, hence, proposed the Normalized Gap Statistic 

defined by; 

  1 2

8 1
1

k

ii
n J i n V 


         (2.8) 
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and argued that  8 0,  0.1293N   as n increases.  The null hypothesis of 

Asymmetry is hence rejected at the level  when 8 2z  . This test will be 

labeled as T8. 

 

2.5  Order Statistics 

Yule (1917) proposed a skewness measure defined by; 

0.75 0.25 0.5

0.75 0.25

ˆ ˆ ˆ2

ˆ ˆ

  


 

 



  

where, ˆ
p  is an estimate of the p

th
 population percentile.  

Later on more general skewness measures of Order Statistics were considered, 

defined by; 

1 0.5
ˆ ˆ ˆ2

ˆ

p p  




 
   

where, ̂  is some measure of spread. David and Jonson (1956) proposed the 

specific choice; 

  1 0.5

1

ˆ ˆ ˆ2

ˆ ˆ

p p

p p

p
  


 





 



 ,                                               (2.9) 

where, 0.9875p  .  

As with most Order Statistics, the sampling variance of test statistics depends on 

the density of X . Resek (1974) derived the variance of  0.9875  of a normally 

distributed X  for a single sample size ( 100n  ) but that variance estimate is not 

expected to be useful in small samples or for symmetric non normal data. But due 

to this statistics very simple functional form (critical values) may be consistently 

Bootstrapped. The test is then defined as follows; 

 

Let, 

 
1

n

b ib i
x


   

denote a Bootstrap Resample taken from the original sample  
1

n

i i
x


, 

  , ,1 ,0.5

, ,1

ˆ ˆ ˆ2

ˆ ˆ

b p b p b

b

b p b p

p
  


 





 



 be calculated from b  and  

  1i B
p





 be the 

(   )    Ordered Statistic from the B Bootstrap Resamples  
1

B

b b



. Two 

values of the trimming constant p will be used, 0.9875p   and 0.95p 

respectively. The null hypothesis of symmetry is then rejected when 
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   
  1

0.9875 0.9875
B

 


  and    
  1

0.95 0.95
B

 


 . The two tests based 

on  p  with Bootstrapped critical values and different trimming constants will 

be denoted by T9 and T10. 

 

The above tests, T1- T10, all rely on Asymptotical properties and are based on 

different characterizations of symmetry. Therefore, it will be undue to derive 

rejection probabilities of T1- T10 analytically. The next section, therefore, involves 

a Monte Carlo Simulation. 

 

3. Monte Carlo Simulations 

 

Since, all tests presented in the previous section only have asymptotically known 

null distributions, it is crucial that the rejection frequencies for Symmetric 

Distributions are investigated carefully. Only tests that have a rejection frequency 

close to the nominal size should be considered as useful in real applications. Good 

size properties, however, are not sufficient when the tests lack power to reject 

false null hypotheses. The power of statistical tests is usually investigated by 

letting the parameter of interest which increases away from its null value in the 

parameter space while keeping the sample size fixed. This, however, is not 

feasible to do when investigating Asymmetry Tests: firstly, there is no unique 

way to quantify Asymmetry, and secondly, different tests are optimal for different 

types of Asymmetry. Therefore, we will design the power Simulation by using a 

Fixed Asymmetric Distribution and then letting the sample size increase. We will 

consider a somewhat wide variety of distributions reaching outside the Pearson 

family of distributions. These include Asymmetric Distributions with zero third-

order central moment, distributions with heavy tails or extreme values, variables 

with Finite/Infinite Range, Unimodal, Multimodal Distributions and distributions 

with only a few existing moments. A summary of the distributions is presented in 

Tables 1 and 2. The Kintchine Distribution ( ,  ) is described in Johnson (1987, 

page 35) and the Burr XII distribution ( ,c k ) is described in Kotz et al. (2005, 

page 679). Our “Double Centred Gamma Distribution” is defined by; 

      
1 1 1 1

Y E Y X E XZ      

where, 

 and X Y  are individually and mutually independent gamma variates such that 

 1
~ 1, 0.125Y Gamma rate shape   and  

1
~ 3.41995, 5X Gamma rate shape  .  



A Comparative Study of Ten Asymmetry Tests 

_______________________________________________________________________________ 
19 

This Asymmetric Distribution has its third central moment equal to zero. We will 

also use the Stieltje Distribution (Churchhill, 1947; Stuart and Ord, 1993) that has 

all odd central moments equal to zero, a discontinuity point at 0x   and multiple 

modes. The Trimodal Distribution  Z  is defined such that; 

     1 2 3 1 3p Z X p Z X p Z X        

where, 

     1 2 3~ 10,4 ,  X ~ 0,16 ,  ~ 10,4X N N X N  are individually and mutually 

independent.  

Details about Standard Distributions (Beta, Students t etc.) are available in 

Johnson, et al. (1994 and 1995) and Stuart and Ord (1993).  

 

The Monte Carlo Simulations of the tests have been conducted by counting 

rejection frequencies of r = 10,000 replicates for each sample size 10 500n   . 

The Bootstrapped critical values were obtained by 99B   nonparametric 

resamples. The size properties (rejection frequencies for symmetric data) are 

displayed in Tables 3-10. The Classical Fisher/Pearson Skewness Test T1 does not 

have a rejection frequency limiting its nominal size (0.05) for any distribution but 

the normal. This is due to the fact that its null distribution depends on a kurtosis 

value of 3. The Bootstrapped version, on the other hand (T2) rapidly limits its 

nominal size for all distributions except for the t(2) and Cauchy Distributions 

where it seems to diverge. This is not surprising since none of these distributions 

have a finite value of the kurtosis and the Cauchy Distribution even lacks finite 

variance. The tests based on the Characteristic Function (T3-T5) using three 

different estimates of the working region, also reveal some interesting properties. 

For the Normal, Uniform and Beta Distribution they limit the nominal size 

asymptotically and behave similarly to each other (Tables 3-5). The rejection 

frequencies when applied to the Trimodal Distribution (Table 7), on the other 

hand, reveal that the choice of working region  does have an impact on the tests. 

When  is determined by the Iterative Estimator and using Smoothing parameter 

0   (=T3) the rejection frequency of the test actually diverges as n increases, 

whereas, for the other two options (T4-T5) it seems to limit the nominal though 

very slowly. For the Cauchy Distribution, the three tests (T3-T5) stay at a rejection 

frequency of about 0.02 (Table 8). The properties of the tests based on the 

Characteristic Function when applied to the Khintchine and Laplace Distributions 

are presented in Tables 9-10. These show that the T3 test fails to limit the nominal 

size, whereas, the two others (T4-T5) do limit 0.05. The two versions of the 

Wilcoxon Test (T6- T7) perform well in terms of size for the Normal Distribution 

(Table 3) but diverge for the Uniform and Beta Distributions (Tables 4-5). For the 
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t(2) and Chauchy Distribution, the rejection frequencies of the T6-T7 tests stay 

between 0.02-0.03 for all sample sizes, while they diverges for the Trimodal 

Distribution (Table 7). The Gaps Test T8 strongly over rejects for all Symmetric 

Distributions except the Normal and Uniform Distribution. Therefore, its power 

properties are of limited interest. The Order Statistics tests (T9-T10) differ by their 

smoothing constants. It is interesting to note that they behave rather differently for 

Heavy-tailed Distributions (Students 
 2

t , Cauchy, Laplace and Kinthine) in that 

the T10 over rejects for these distributions, whereas, the size properties of the T10 

remain well behaved when applied to these distributions. 

 

4. Summary 

 

In this paper, we have investigated the finite sample properties of 10 tests for 

Asymmetry through Monte Carlo Simulations. The tests are a selection of the 

most common ones within the families of tests based on Moments, Characteristic 

Functions, Gaps and Ordered Statistics, respectively. From these tests, many have 

only been sparsely investigated in the literature previously. The power properties 

of the tests are examined through a diversity of distributions such as Finite Range, 

Multimodal and Asymmetric Distributions with zero skewness coefficient and 

distributions without finite kurtosis. Moreover, modifications of the tests that have 

not been considered before are proposed in the paper. These include Trimmed 

Estimates of the first positive zero within the Empirical Characteristic Function 

and also Bootstrapped versions of Order Statistics. The main findings are that no 

single test stands out as uniformly superior to the others. Several tests diverge 

from the nominal size as the sample size increases if the Symmetric Distribution 

has finite range or multiple modes. Moreover, other tests are inconsistent against 

Asymmetric Distributions with skewness coefficient equal to zero. It is also 

concluded that the size properties of several tests may be improved considerably 

by using Bootstrapped critical values. All tests should be used with caution when 

the target variable has finite range or multiple modes. Finally, the only tests that 

possess acceptable over-all size and power properties are those based on the 

Empirical Characteristic Function. 
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Table 1: Symmetric Distributions 

Distribution Skewness Kurtosis Shape Range 

Normal  0,1  0 3 Unimodal   

Uniform  0,1  0 1.8 Flat  0,1  

Kintchine (3.33, 2) 0 21.7 Unimodal   

Beta  0.5, 0.5  0 1.5 Bimodal  0,1  

Laplace  1  0 6 Unimodal   

Cauchy (0) Undefined Undefined Unimodal   

Students t(2) 0 Undefined Unimodal   

Trimodal  Normal 0 1.53 Trimodal   

 
Table 2: Asymmetric Distributions 

Distribution Skewness Kurtosis Shape Range 

Gamma  1 8,1  5.65 48 Unimodal    

Beta(0.7, 0.2) 1.27 0.28 Bimodal  0,1  

Burr - Undefined Unimodal    

Type-I-extreme 1.14 5.40 Unimodal  0,1  

Double centered 

gamma 

0 6.20 Unimodal   

Stieltje 0 458 Multimodal   

 
Table 3: Rejection Frequencies for the Standard Normal Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.016 0.014 0.034 0.042 0.037 0.035 0.034 0.050 0.014 0.013 

20 0.031 0.045 0.030 0.035 0.032 0.046 0.043 0.045 0.013 0.044 

30 0.035 0.048 0.031 0.036 0.033 0.046 0.047 0.052 0.023 0.056 

50 0.042 0.052 0.034 0.037 0.035 0.051 0.049 0.052 0.025 0.072 

75 0.045 0.051 0.037 0.039 0.038 0.060 0.059 0.051 0.025 0.084 

100 0.047 0.053 0.041 0.043 0.042 0.049 0.049 0.049 0.030 0.043 

200 0.051 0.049 0.044 0.045 0.045 0.050 0.050 0.054 0.036 0.031 

500 0.048 0.048 0.046 0.046 0.046 0.046 0.047 0.047 0.040 0.031 
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Table 4. Rejection Frequencies for the Standard Uniform Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.003 0.015 0.033 0.052 0.037 0.098 0.098 0.069 0.015 0.015 

20 0.003 0.050 0.042 0.059 0.049 0.137 0.094 0.063 0.021 0.035 

30 0.002 0.056 0.050 0.062 0.062 0.155 0.104 0.068 0.038 0.047 

50 0.002 0.056 0.055 0.060 0.060 0.166 0.100 0.065 0.036 0.047 

75 0.001 0.056 0.056 0.058 0.058 0.189 0.112 0.070 0.044 0.051 

100 0.001 0.056 0.056 0.058 0.057 0.183 0.102 0.067 0.044 0.049 

200 0.001 0.055 0.056 0.055 0.056 0.197 0.010 0.067 0.045 0.050 

500 0.001 0.050 0.050 0.050 0.050 0.209 0.107 0.067 0.043 0.047 

 

Table 5. Rejection Frequencies for the Beta Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.007 0.044 0.064 0.088 0.061 0.201 0.201 0.178 0.041 0.041 

20 0.006 0.082 0.071 0.100 0.073 0.300 0.218 0.162 0.055 0.067 

30 0.004 0.074 0.066 0.087 0.070 0.344 0.233 0.200 0.067 0.070 

50 0.004 0.077 0.058 0.080 0.069 0.405 0.241 0.196 0.063 0.067 

75 0.004 0.067 0.048 0.071 0.069 0.451 0.254 0.210 0.066 0.067 

100 0.003 0.065 0.046 0.067 0.069 0.481 0.254 0.203 0.057 0.058 

200 0.003 0.057 0.041 0.059 0.061 0.536 0.251 0.200 0.055 0.057 

500 0.002 0.053 0.052 0.059 0.054 0.591 0.248 0.206 0.053 0.053 

 

Table 6. Rejection Frequencies for the Students  2
t  Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.250 0.060 0.005 0.004 0.006 0.020 0.020 0.093 0.057 0.057 

20 0.469 0.080 0.010 0.003 0.016 0.021 0.026 0.072 0.036 0.131 

30 0.579 0.075 0.014 0.010 0.023 0.023 0.031 0.096 0.048 0.148 

50 0.697 0.057 0.013 0.021 0.026 0.024 0.031 0.099 0.037 0.169 

75 0.766 0.046 0.015 0.033 0.024 0.025 0.030 0.091 0.039 0.178 

100 0.808 0.034 0.014 0.031 0.0250 0.023 0.031 0.087 0.035 0.065 

200 0.883 0.024 0.018 0.040 0.030 0.023 0.029 0.096 0.039 0.042 

500 0.940 0.018 0.026 0.043 0.040 0.022 0.029 0.094 0.042 0.041 
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Table 7. Rejection Frequencies for the Trimodal Normal Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.008 0.038 0.010 0.041 0.022 0.210 0.210 0.149 0.041 0.041 

20 0.004 0.073 0.071 0.113 0.091 0.278 0.215 0.149 0.049 0.055 

30 0.004 0.072 0.137 0.121 0.134 0.283 0.209 0.156 0.052 0.054 

50 0.004 0.073 0.194 0.114 0.151 0.311 0.200 0.157 0.047 0.046 

75 0.004 0.068 0.218 0.101 0.141 0.327 0.190 0.138 0.038 0.039 

100 0.004 0.066 0.228 0.092 0.133 0.342 0.177 0.136 0.033 0.031 

200 0.004 0.058 0.245 0.075 0.108 0.375 0.192 0.133 0.034 0.028 

500 0.003 0.057 0.236 0.066 0.088 0.398 0.213 0.133 0.039 0.037 

 

Table 8. Rejection Frequencies for the Cauchy Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.513 0.129 0.007 0.003 0.009 0.016 0.0166 0.167 0.115 0.115 

20 0.756 0.086 0.012 0.002 0.021 0.018 0.0215 0.150 0.067 0.183 

30 0.840 0.066 0.016 0.004 0.025 0.016 0.0216 0.183 0.076 0.190 

50 0.905 0.040 0.016 0.014 0.029 0.016 0.0201 0.189 0.053 0.190 

75 0.937 0.028 0.018 0.019 0.025 0.020 0.0258 0.190 0.059 0.190 

100 0.957 0.024 0.020 0.021 0.028 0.018 0.0219 0.189 0.056 0.091 

200 0.975 0.014 0.020 0.022 0.024 0.016 0.0188 0.194 0.053 0.059 

500 0.990 0.011 0.017 0.019 0.020 0.015 0.0202 0.187 0.051 0.054 

 

Table 9. Rejection Frequencies for the Khintchine Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.277 0.085 0.008 0.006 0.011 0.019 0.019 0.116 0.073 0.073 

20 0.490 0.104 0.014 0.005 0.029 0.019 0.022 0.119 0.057 0.145 

30 0.573 0.091 0.021 0.011 0.041 0.019 0.023 0.139 0.062 0.160 

50 0.654 0.071 0.019 0.034 0.044 0.023 0.027 0.148 0.043 0.158 

75 0.714 0.055 0.020 0.045 0.051 0.026 0.031 0.153 0.046 0.158 

100 0.742 0.050 0.018 0.044 0.051 0.024 0.028 0.155 0.047 0.065 

200 0.802 0.038 0.021 0.048 0.057 0.029 0.034 0.166 0.044 0.040 

500 0.830 0.034 0.020 0.046 0.054 0.029 0.037 0.174 0.043 0.042 
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Table 10. Rejection Frequencies for the Laplace Distribution (Symmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.101 0.040 0.004 0.008 0.005 0.020 0.020 0.067 0.033 0.033 

20 0.210 0.076 0.009 0.005 0.014 0.022 0.026 0.061 0.027 0.089 

30 0.275 0.079 0.009 0.013 0.016 0.019 0.025 0.067 0.040 0.111 

50 0.333 0.068 0.012 0.025 0.020 0.019 0.022 0.068 0.032 0.125 

75 0.378 0.064 0.011 0.036 0.025 0.018 0.024 0.067 0.036 0.135 

100 0.406 0.058 0.013 0.038 0.029 0.019 0.022 0.068 0.038 0.053 

200 0.454 0.049 0.016 0.046 0.035 0.015 0.021 0.065 0.041 0.035 

500 0.491 0.047 0.016 0.051 0.044 0.018 0.022 0.072 0.041 0.041 

 

Table 11. Rejection Frequencies for the skewed Beta Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.306 0.532 0.354 0.141 0.291 0.431 0.431 0.821 0.493 0.493 

20 0.649 0.870 0.842 0.559 0.854 0.712 0.578 0.956 0.825 0.867 

30 0.861 0.967 0.951 0.896 0.957 0.853 0.755 0.998 0.955 0.965 

50 0.986 0.998 0.994 0.999 0.997 0.976 0.913 1 0.997 0.998 

75 1 1 1 1 1 0.999 0.985 1 1 1 

100 1 1 1 1 1 1 0.992 1 1 1 

200 1 1 1 1 1 1 1 1 1 1 

500 1 1 1 1 1 1 1 1 1 1 

 

Table 12. Rejection Frequencies for the Burr Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.542 0.522 0.155 0.082 0.108 0.164 0.164 0.502 0.477 0.476 

20 0.918 0.666 0.614 0.113 0.559 0.343 0.232 0.673 0.793 0.941 

30 0.990 0.576 0.810 0.161 0.784 0.477 0.317 0.899 0.969 0.996 

50 1 0.483 0.928 0.421 0.923 0.713 0.443 0.984 0.997 1 

75 1 0.435 0.968 0.653 0.961 0.917 0.682 0.999 1 1 

100 1 0.426 0.982 0.731 0.978 0.948 0.703 1 1 1 

200 1 0.418 0.994 0.871 0.991 0.999 0.929 1 1 1 

500 1 0.434 0.997 0.944 0.996 1 1 1 1 1 
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Table 13. Rejection Frequencies for the Chi-square (9 d.f.) Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.065 0.055 0.062 0.084 0.072 0.049 0.049 0.094 0.042 0.042 

20 0.216 0.196 0.092 0.121 0.104 0.087 0.065 0.113 0.089 0.226 

30 0.358 0.314 0.175 0.204 0.187 0.104 0.076 0.168 0.226 0.418 

50 0.609 0.515 0.377 0.394 0.384 0.139 0.082 0.256 0.376 0.706 

75 0.803 0.697 0.614 0.608 0.612 0.269 0.147 0.360 0.588 0.902 

100 0.911 0.807 0.790 0.774 0.785 0.246 0.111 0.418 0.631 0.853 

200 0.998 0.954 0.981 0.978 0.980 0.432 0.176 0.711 0.915 0.971 

500 1 0.996 1 1 1 0.799 0.351 0.977 1 1 

 

Table 14. Rejection Frequencies for the Gamma Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.824 0.915 0.222 0.034 0.180 0.593 0.593 0.962 0.882 0.882 

20 0.997 0.708 0.598 0.048 0.587 0.859 0.759 0.998 1 1 

30 1 0.562 0.804 0.134 0.799 0.962 0.924 1 1 1 

50 1 0.505 0.963 0.542 0.962 0.999 0.989 1 1 1 

75 1 0.515 0.996 0.804 0.996 1 1 1 1 1 

100 1 0.539 1 0.913 1 1 1 1 1 1 

200 1 0.625 1 0.996 1 1 1 1 1 1 

500 1 0.808 1 1 1 1 1 1 1 1 

 

Table 15. Rejection Frequencies for the Stieltje Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.660 0.110 0.040 0.000 0.030 0.100 0.100 0.300 0.147 0.147 

20 0.870 0.300 0.020 0.050 0.060 0.120 0.160 0.350 0.113 0.270 

30 0.920 0.240 0.050 0.090 0.050 0.110 0.230 0.430 0.159 0.330 

50 0.950 0.250 0.080 0.220 0.100 0.310 0.530 0.530 0.163 0.350 

75 0.910 0.130 0.050 0.220 0.060 0.520 0.760 0.720 0.272 0.304 

100 0.900 0.180 0.020 0.290 0.060 0.520 0.820 0.730 0.354 0.180 

200 0.950 0.050 0.030 0.220 0.030 0.910 0.970 0.950 0.703 0.870 

500 1 0.080 0.010 0.380 0.030 1 1 1 0.984 0.950 
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Table 16.  Rejection Frequencies for the Double Centred Gamma Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.199 0.108 0.013 0.010 0.013 0.051 0.051 0.162 0.104 0.096 

20 0.420 0.201 0.087 0.021 0.095 0.106 0.098 0.250 0.146 0.227 

30 0.522 0.209 0.147 0.084 0.169 0.145 0.138 0.363 0.193 0.244 

50 0.603 0.191 0.266 0.174 0.295 0.252 0.214 0.529 0.198 0.223 

75 0.658 0.175 0.408 0.222 0.443 0.289 0.215 0.691 0.247 0.202 

100 0.682 0.168 0.520 0.255 0.552 0.493 0.394 0.810 0.371 0.140 

200 0.731 0.143 0.782 0.388 0.770 0.810 0.654 0.972 0.559 0.097 

500 0.756 0.121 0.938 0.714 0.922 0.997 0.961 1 0.883 0.163 

 

Table 17. Rejection Frequencies for the Type-I Extreme Value Distribution (Asymmetric) 

N T1 T2 
T3 

T4  
T5 

T6 
T7 

T8 
T9 

T10 
10 0.083 0.063 0.008 0.014 0.012 0.051 0.051 0.103 0.055 0.055 

20 0.272 0.214 0.025 0.028 0.050 0.080 0.063 0.118 0.105 0.252 

30 0.434 0.328 0.033 0.111 0.078 0.099 0.070 0.188 0.243 0.445 

50 0.680 0.506 0.061 0.346 0.182 0.137 0.081 0.266 0.398 0.704 

75 0.863 0.673 0.113 0.650 0.327 0.267 0.150 0.387 0.616 0.887 

100 0.946 0.771 0.144 0.823 0.456 0.252 0.119 0.456 0.680 0.853 

200 0.999 0.917 0.256 0.992 0.808 0.452 0.182 0.754 0.937 0.966 

500 1.000 0.986 0.407 1.000 0.998 0.832 0.394 0.987 1 1.000 

 

 

 


