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Abstract 

 

A Weighted Resampling Method is used to approximate the true distribution of the 

Linear Estimator (LE) of ARCH Models in finite sample.  The Weighted 

Bootstrapped Linear Estimator is obtained by solving linear equations and hence 

the approach is easy to implement.  Using  a  class  of  Weighted  Resampling 

Schemes,  it  is found  that there are schemes that  can  match  and  even  perform 

better  than  the  commonly used  Paired  Bootstrap  Scheme.  Using the Linear 

Estimator, instead of the Quasi-Maximum Likelihood Estimator for fitting ARCH 

Model enables us to obtain these results in very little time. 
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1. Introduction 
 

The Autoregressive Conditional Heteroscedastic (ARCH) Model was introduced 

by Engle (1982) to describe the volatility of the current return of an asset as a 

linear function of the squares of its past returns.  The  estimation  of  ARCH Model  

is  often  carried  out  using  the  Quasi-Maximum  Likelihood  Estimator (QMLE). 

The Asymptotic properties of the QMLE for ARCH Model under the existence of 

fourth-order moment on the ARCH process were established by Weiss (1986).  

The QMLE does not admit a closed form expression. Numerical optimization 

methods must be used to obtain the estimates. 

 

The Linear Estimator (LE) for the parameters of ARCH model was proposed by 

Bose and Mukherjee (2003).  
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The Linear Estimator has a closed form and is obtained by solving linear 

equations. The quick computation of the LE enables one to perform computer 

intensive tasks such as Bootstrapping ARCH Models in little time. 

 

Efron (1979) introduced the idea of bootstrapping which is a general approach to 

statistical inference based on building a sampling distribution for a statistic by 

Resampling from the data at hand.  For a comprehensive introduction of Bootstrap 

Methods, see Efron and Tibshirani (1993). Chatterjee and Bose (2005) introduced 

a Bootstrap Technique for estimators obtained by solving estimating equations. 

They call it Generalized Bootstrap (GBS) because Classical Bootstrap, the Delete-

d Jackknife and variations of the Bayesian Bootstrap are shown to be some special 

cases of GBS. Examples of GBS weights and their implementation in 

Heteroscedastic Time Series, Generalized Linear Models and Nonlinear 

Regression Models are also discussed. 

 

In  this  paper,  we  use  the  idea  of  Weighted  Resampling  and  develop  suitable 

Bootstrap  versions  for  the  Linear  Estimator of  ARCH  models.  We Bootstrap 

the Linear Estimators and our goal is to approximate the sampling distribution of 

the parameters with this new approach to Resampling. 

 

The rest of the paper is organized as follows. In Section 2, we define the Linear 

Estimator for ARCH Model.  In Section 4, Monte Carlo Simulations are performed 

to check the accuracy of LE in estimating the parameters of ARCH Models. The 

forecasts of volatility are also obtained and application to real data sets is 

presented. Finally, Section 5 concludes the results. 

 

2. The Linear Estimator for ARCH Model 

 

Consider the following ARCH Model where one observes; 

*          +  
Satisfying, 

     
   

 ( )                        (1.1) 

where  
   ,          -   is the unknown parameters to be estimated with  

               . 
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   with *        + are independently and 

identically distributed with mean zero and unit variance. It is assumed that 

*        + are independent of *          }. It is also assumed that 

(1.1) holds  *         + is a stationary and ergodic and  (  )   .  

 

Let, 

     
           

     [             ]
 
 [      

        
 ]

 
 

And 

     
         .  

Then squaring both sides of (1.1) and using the form     ( )      
     we get; 

        
        ( )                                 (1.2) 

where  
  *    ( )  +   *    ( )+ *  +    
 

Bose and Mukherjee (2003) define a preliminary Least Squares Estimator  ̂   of 

  as the solution of 

∑ ,    
  *       

    +- 
            (1.3) 

which yields the estimator 

 ̂   (   )      

where, 

 Z is the T×(1+p) matrix whose t
th

 row equals     
  and Y is the vector with  entry 

t
th 

              
 

An improved estimator  ̂ of   can be obtained as follows.  Dividing (1.2) by 

    ( ), we get; 

  
    
   

 (
    

    
  

 )

 

      

Now replacing     
   by     

  ̂   yields 

  

    
   ̂   

 (
    

    
  ̂   

 )

 

      

Therefore, a Linear Estimator of   is defined as the solution of 

∑ [{
    

     ̂  
} {

  

    
   ̂   

 (
    

    
  ̂   

)
 

 }]    
       (1.4) 

yielding the Linear Estimator 

 ̂  [∑ {
        

 

(    
  ̂  )

 }
 
   ]

  

[∑ {
      

(    
  ̂  )

 }
 
   ]    (1.5) 
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It is shown in Bose and Mukherjee (2003) that under the model assumptions  

    ( ̂   )   ,     (  
 )* (    

 (    )
  )+  - 

 

3. A Weighted Resampling for Linear Estimator 

 

Chatterjee and Bose (2005) developed the idea of Weighted Bootstrap of 

estimators that have been obtained as solution of minimizing problems or as 

solution of equations in general dependent models. 

 

Let, 

*             +  
be a triangular array of random variables such that for each 

    *         +   
are exchangeable, independent of  *        + and  *      +  and 

  (   )   .  

These are called Bootstrap Weights.  

 

The Bootstrap Preliminary Least Squares Estimator  ̂  
   of    is defined by 

mimicking (2.3), as the solution of 

∑    ,    
  *       

    +- 
             (1.6) 

Similarly, as in (1.4), the Bootstrap Linear Estimator   ̂ 
  may be defined as a 

solution of 

∑    [{
    

       ̂  
 } {

  

    
    ̂  

  
 (

    

    
   ̂  

  
)
 

 }]    
       (1.7) 

which gives 

 ̂ 
  *∑    ,

        
 

(    
   ̂  

 )
 -

 
   +

  

*∑    ,
      

(    
   ̂  

 )
 -

 
   +    

 

We assume the following basic conditions (Conditions Bootstraps Weight (BW) 

of Chatterjee and Bose (2005)) where   
    (   ) and       is a constant. 

  (   ) is a variance of (   ) based on Bootstraps samples. The conditions on 

Weights are as under: 

  (   )                 
   ( )   and        (      )   (   ). 

 

Similar to Chatterjee and Bose (2005, Theorem 3.2), it can be shown that under 

some technical assumptions on the correlation structure of Bootstrap Weights, the 
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distribution of  √  ( ̂   )  can be approximated by the distribution of 

   
  √  ( ̂ 

   ̂ ) outside a set of probability zero.  

where,  

  
   denotes the variance of    .  

We approximate such distribution via Weighted Bootstrap.  

 

Three different schemes for weights are considered. These are; 

 Scheme M, when weights have a Multinomial (T,1/T,...,1/T) Distribution. 

 Scheme U, when          ̅  where       are independently and 

identically distributed Uniform (0.5, 1.5) and  ̅   ∑     
 
   . 

 Scheme E, when          ̅  where       are independently and 

identically distributed Exponential (1) and  ̅   ∑     
 
   . 

 

Note that, Scheme M corresponds to the commonly used Paired Bootstrap in 

Heteroscedastic Models. We empirically study Schemes U and E as possible 

alternatives to the Paired Bootstrap. We also consider residual Bootstrap when 

Standardized residuals are Bootstrapped to form a new Bootstrapped return series. 

Using this Bootstrapped series, the Bootstrapped parameters are estimated and the 

Bootstrapped Distributions of the parameters are obtained. It is also possible to 

obtain quantiles of the Bootstrap Distribution of    
   √  ( ̂ 

   ̂ )  using 

Simulation and then using the Bootstrap approximation, we can construct the 

Bootstrap Confidence Intervals of    
 

4. Simulation Results 

 

This section reports the results of a Monte Carlo Simulation. We investigate the 

quality of Bootstrap approximation to the finite sample distribution of 

 √  ( ̂   ). We use a sample of size T, and assume that the underlying Error 

Distributions of  *  +  be standard normal. An ARCH (p) model is fitted to the 

data set using the Linear Estimator. 

 

In our first study, we generate K=10,000 samples each of size T=50, 250, and 500 

from the ARCH (3) model with   ,                -    
 

Let, 

  ̂ ( )  , ̂    ̂    ̂    ̂  -    
denote the vector of estimated parameters computed from the k

th
 sample; 
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For each replication we compute; 

 √ ( ̂     )         

 

The mean and average of the squares of the three sets over K replications 

represent the mean and the Mean Squared Error (MSE) of  √ ( ̂     )   

         
 

The estimates of means under Normal approximation are zero. The estimate of 

MSE using the Normal approximation is obtained by averaging over K estimated 

MSEs where the k
th

 (     ) estimate is obtained from the diagonals of the 

matrix  ̂ [   ∑ {        
 ( ̂ 

     )
  

} 
   ]

  

 

where, 

  ̂ is the variance of *  
      

 +       ̂     ( ̂ 
     )

   
        ̂  being 

the estimate based on the k
th

  replication. 

 

Table 1 shows results of means, MSEs and MSE under Normal approximations. It 

can be seen that the true means of the distributions of all parameters except   , 

are significantly different from the Normal approximation values. The MSEs for 

small sample sizes are also found different than the Normal approximations. For 

T=500, the values of the MSE match that of the MSE under Normal 

approximations. 

 

Next, we turn our attention to Bootstrap approximations. To approximate the 

distribution of √  ( ̂   ), we proceed as follows. We choose and fix   

 ̂ ( ) (     )    .  

 

In this study, we generate B=999 Bootstrap samples. Bootstrap results are based 

on R=100 replications. For Weighted Resampling, these Bootstrap samples are 

generated based on weights under three schemes, Scheme M, Scheme U and 

Scheme E, after fixing  ̂ ( ) (     )  For the b
th 

sample,         we 

compute   
  √ ( ̂ ( )

   ̂ ( ) ). For residual Bootstrap, we generate B=999 

Bootstrap samples and for the b
th 

sample compute   
  √ ( ̂ ( )

   ̂ ( ) ), after 

fixing   ̂ ( ) (     )  
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Table 2 reports the results of means and the MSEs of the distribution of the 

Standardized Bootstrap Estimators under residual Bootstrap and three different 

schemes. Entries in bold represent MSEs those provide the closest approximations 

to those in Table 1. The Bootstrapped approximations of means do not match the 

corresponding estimated means in most of the cases except under the residual 

Bootstrap at T=500. The residual Bootstrap method seems to capture the sign of 

the means of all parameters correctly for almost all sample sizes.  

 

The summary of results based on the MSE of the distributions of all parameters 

under all cases is as follows; 

 

For T=50, all schemes provide close estimate for  ̂ , scheme E for  ̂  and   ̂ , and 

residual Bootstrap for  ̂ . For T=250, again the MSEs of the distribution of  ̂  are 

very well approximated by all schemes, scheme E for  ̂ , and scheme U for both 

 ̂  and   ̂  can be considered better than other schemes. And finally, for T=500, 

the Bootstrap approximation for the MSE of  ̂   under all schemes, provide 

accurate results. For the same sample size, scheme E, residual Bootstrap and 

scheme U provide close approximations for  ̂ ,  ̂  and   ̂ , respectively. These 

results conclude that although there is no clear cut selection for schemes, the 

widely used scheme M is out performed by other schemes we used in our 

analysis. 

 

We have performed experiments with different sample sizes and ARCH orders 

and the results of those Simulations have been found similar to our first study. 

These results can be obtained from the author upon request. 

 

Using our own MATLAB and FORTRAN code, we checked the CPU time (in 

sec) taken by both LE and the QMLE for estimating an ARCH (3) Model. 

Experiment was performed on a Pentium CPU with Intel Core 2 Duo process 

running at 2 Ghz and having 2 GB of random access memory (RAM). The sample 

size used was T = 1,000 and the experiment was repeated K = 10,000 times. 

Linear Estimator took 215.55 second, whereas, the QMLE took 902.43 second for 

estimating the same data sets. We also computed the MSE for the parameters and 

the difference between the two estimators for this large sample size was 

negligible. This clearly reveals the advantage of using the LE for estimating the 

parameters of ARCH Models. The LE takes around one-fourth of the time than 

the QMLE and also is not only efficient but also estimates the parameters as 

accurately as the QMLE. This difference becomes very significant when a 

Computer Intensive Method such as Resampling is used for ARCH Models. 
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5. Conclusion 

 

A Weighted Resampling Method for the Linear Estimator for the parameters of 

ARCH Models is presented. It is found in this study that Weighted Bootstrap 

Schemes work well for ARCH Models when LE is used for estimation. We also 

found that schemes such as scheme U and scheme E are good alternative to 

scheme M. Finally, using LE instead of the QMLE for fitting ARCH Models 

enables us to obtain these results in very quick time. 
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Table 1:  Means and the MSEs of the Distributions of  √  ( ̂   ) for ARCH (3) Model and the 

MSE due to Normal approximation of the Distribution. 

 
T=50 T=250 T=500 

Mean MSE MSEN Mean MSE MSEN Mean MSE MSEN 

        0.0043 0.0010 0.0009 0.0096 0.0011 0.0010 0.0096 0.0011 0.0010 

        0.3106 0.7253 2.3588 0.1155 1.1062 1.6271 0.0126 1.3101 1.5818 

        -0.1028 0.8923 2.6574 -0.4087 2.0168 2.0555 -0.3579 2.2632 2.0880 

        -0.1119 0.9461 2.6099 -0.3669 2.0833 2.0862 -0.3583 2.2986 2.1263 

 

 

Table 2:  Means and the MSEs of the Distribution of the Standardized Bootstrap Estimators for 

ARCH (3) Model under different Schemes. 

B=999 Scheme M Scheme U Scheme E Residual Boot 

T=50 Mean MSE Mean MSE Mean MSE Mean MSE 

        -0.0079 0.0009 -0.0044 0.0013 -0.0086 0.0008 0.0076 0.0035 

        0.2084 0.8097 0.1008 1.4651 0.1756 0.7690 0.0759 0.8191 

        0.1654 0.9205 0.0769 1.7891 0.1307 0.8601 0.0736 0.8906 

        0.0227 1.0108 0.0317 2.1055 0.0044 1.0082 -0.0898 1.1000 

T=250 Mean MSE Mean MSE Mean MSE Mean MSE 

        -0.0052 0.0010 -0.0008 0.0011 -0.0045 0.0009 0.0047 0.0010 

        0.2303 1.2915 0.0588 1.4598 0.1945 1.2032 0.1082 1.2416 

        0.0982 1.6402 0.0106 1.8967 0.0613 1.5235 -0.1197 1.5939 

        -0.0288 1.8742 -0.0430 2.1741 -0.0551 1.7376 -0.2123 1.8346 

T=500 Mean MSE Mean MSE Mean MSE Mean MSE 

        -0.0003 0.0010 0.0007 0.0010 0.0001 0.0010 0.0079 0.0010 

        0.1959 1.3506 0.0411 1.5165 0.1721 1.3066 0.0711 1.2910 

        -0.0966 2.0314 -0.0494 2.1212 -0.1060 1.9078 -0.3006 2.1318 

        -0.1216 1.9385 -0.0555 2.0342 -0.1213 1.8245 -0.2604 1.9985 

 


