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Abstract 

 

In this paper, we deal with the recurrence relation for the product, ratio and single 

moments of the k
th 

lower record values from Inverse Weibull Distribution. 
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1. Introduction 

 

For a fixed k  1, we define the sequence X
(k)

l(1) , X
(k)

l(2), ---, of the k
th

 lower record 

times of the sequence X1,X2,--- , as follows: X
(k)

l(1) =1 and for n=2, 3, ---
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n
k XXXjX   :1)1(:)1(1
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The sequence {X
(k)

n, n>=1} is called the sequence of the k
th

 record values of the 

above sequence (see Bieniek and Szynal, 2002).Note that for k=1 we have 

X
(1)

n=X1:L1(n)=R
1

n are lower record values of the sequence  1, iX i   and 

X
(k)

n=Xk:n=max(X1,---Xn). 

 

The aim of this paper is to give a general procedure of obtaining recurrence 

relations for single and product moments of k
th

 lower record values Z
k
n . We 

obtain general relation for the moments of the k
th

 lower record values from 

Inverse Weibull Distribution and  use these to give recurrence relations for the 

moments. 

 

The probability density function of an Inverse Weibull Distribution is given by: 
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f(x) = )
1

exp(
1 mm xx

m





                                                                           (1.1) 

 

where x>0 and ( , m)>0. 

 

And the corresponding distribution function is: 

 

F (x) = exp (-
mx

1
)                                                                                         (1.2) 

 

where  x> 0 and ( ,m)>0 

 

If we put m=1, it reduces to the Inverse Exponential Distribution. If we put m=2, 

it reduces to the Inverse Rayleigh Distribution. Some work has been done on 

Inverse Rayleigh Distribution by Gharraph (1993), Mukarjee and Mait (1996), 

Mukarjee and Saren (1984) and Voda (1972) and for the product and single 

moments of lower records values of Inverse Weibull Distribution, see Aleem 

(2005) and for Recurrence Relations for Quotient Moments of the Weibull 

Distribution by record values, see Chang (2007).  

Let,   p(x) =
1mx

m


, using this relation in (1.1) and (1.2), we obtain: 

F(x) = )(.
)(

1
xf

xp
                                                                                              (1.3) 

2. Product Moments 

 

The k
th 

lower record values are represented by X
(k)

l(1), X
(k)

l(2), ---, X
(k)

l(n), then the 

joint pdf of X
(k)

)(rL  and X
(k)

)(sL   (s>r) is given as: 

f )).(( sr  (x
(k)

,y
(k)

) = k S C sr ,  [H (x)] 1r  [H (y) – H (x)] 1rs   h(x) [F(x)]
k-1

f(y)       (2.1) 

 

where C sr ,  = - 
)!1()!1(

1

 rsr
  and  < y < x <  

and H (x) = - In F (x)   , 0 < F(x) < 1 

h (x) = - 
dx

d
 H(x) 
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If g is a Borel measurable function from R 2  to R, then: 

E )},({ )(
)(

)(
)(

sL
k

rL
k XXg  = 



 
xy

rsr

sr

s xHyHxHyxgCk
0

11

, )]()([)]([),(  

       h(x) [F(x)]
k-1

f(y) dxdy     (2.2) 

Theorem 2.1 

For the Distribution function F(x) in (1.2), we have: 

 

E )},({ )(
)(

)(
)(

sL
k

rL
k XXg = )},({ )1(

)(
)1(

)(
 sL

k
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                 )},({ )1(
)(

)(
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where 

u  (x, y) )(.),( xpyxg and u  (x, y) = ),( yxu
x


 

 

Proof: Using (1.3) in (2.2), we have: 

 

E )},({ )(
)(

)(
)(

sL
k

rL
k XXg  = k

s




 
xy

rsr

sr xHyHxHyxuC
0

11

, )]()([)]([),(    

                                                                                 [F(x)]
 k-1

f(y) dx .dy          (2.4) 

Upon integrating the R.H.S. of (2.4) we get: 
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and 

E )},({ )(
)(

)(
)(

sL
k

rL
k XXg = )},({ )1(

)(
)1(

)(
 sL

k
rL

k XXuE - )},({ )1(
)(

)(
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sL
k

rL
k XXuE    

                                        )},({()1( )(
)(

)(
)(

sL
k

rL
k XXuEk                            (2.5)             

   

Hence, the theorem. 
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Theorem 2.2 

For the Distribution function F(x) in (1.2), the Recurrence Relation for the 

product moments of Inverse Weibull Distribution is given by: 

])1([
)(
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)(),(
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                       (2.6)                                             

where 

u  (x,y) )(.),( xpyxg  and u  (x, y)= ),( yxu
x


 

   

Proof:  Now 
1

)(



mx

m
xp


 and g(x,y) = 

LJ yx . This gives: 

LmJ yx
mJ

m
yxu 




)(
),(


, Now putting in Theorem (2.1), we get the required 

Recurrence Relation (2.6). 

 

Corollary 2.2 

By respected application of the Recurrence Relation (2.5), we obtain for r, s≥1. 

j=0,1,2….  and  v=1,2,…, (r-1) 
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                      (2.7) 

 

Remarks:  

For k=1, the Recurrence Relations (2.5) & (2.6) become identical to Aleem 

(2005) 

Note, for the ratio, let k= -j, then 

J

s

rJJ

sr X

X
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)(),( J  

3. Single Moments 

 

The lower record values are represented by X
(k)

)1(L , X
(k)

)2(L , ---, X
(k)

)(NL  . The 

pdf of X
(k) )2()( nnL  is: 
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                                                       (3.1) 

 

where H(x) = -LnF(x)   0<F(x)<1 

 h (x) = - )(xH
dx

d
 

 

If g is a Borel measurable function from R 2  to R, then: 

 

 

)}({ )(
(k)

nLXgE  = k
n

nC 




x

kn dxxfxFxHxg
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where  
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Theorem 3.1 

For the Distribution function F(x) in (1.2), we have: 

 

)}({ )(
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nL
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Proof: Using (1.3) in (3.2), we have: 
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nL
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n
nC 





x
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1 )}({)]()[(                                    (3.4) 

Upon integrating the R.H.S. of (3.4) we get: 

 

= 






x

n

n dxxfxHxuC
0
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1 )()]()[( -k nC 
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n dxxfxHxu
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)}({ )(
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k
nL

k xukExuE                   (3.5) 

 Hence, the theorem. 

Theorem 3.2 

For the Distribution function F(x) in (1.2) the Recurrence Relation for the single 

moments of Inverse Weibull Distribution is given by: 
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Proof: Now 
1

)(



mx

m
xp


 and )( )(nLXg  = Jx  this gives: 

)( )(nLXu = 
)( mJ

m



mJx   , putting in (3.1) we get the Recurrence Relation. 

 

Corollary 3.2 

By repeated application of the Recurrence Relation (3.2), we obtain for n 1, 

J=0,1,2,… and v=0,1,2,…,n-2 
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                     (3.7) 

 

Remarks: 

(i) This Recurrence Relation in Theorem (2.2) between the moments of 

ratio of two k
th 

lower record values, Quasi-ranges, joint moment 

generating function, (and) characteristic functions can be obtained by 

setting respectively g(x,y) equal to: 

 

    )()( ,,, YXiTYXTKJ eexyyx   . 

(ii) For k=1 the Recurrence Relations (3.6) and (3.7) become identical to              

Aleem (2005). 
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