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Abstract 

 

The purpose of this paper is to find the estimate of the parameters of kandg   

distribution for ranked set sample by numerically maximizing the likelihood 

function. The estimates named as numerical maximum likelihood estimate, and 

corresponding mean square error and relative efficiency compared to simple 

random sampling are computed using a computer simulation. Ranked set 

sampling is seen to perform better than the usual simple random sampling method 

in terms of the efficiency and it is at least as precise as simple random sample. It 

is found that numerical maximum likelihood estimate using ranked set sample is 

more efficient than that of simple random sample. 
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1. Introduction 

 

Ranked set sampling (RSS) (see, for example, McIntyre, 1952; Takahasi and 

Wakimoto, 1968) can be used in many ecological and agricultural studies where 

the measurement of each unit is laborious and expensive, but several units can 

easily be arranged in order of magnitude without requiring the actual 

measurement. The field of research related to the RSS has recently become 

increasingly important. In the last few years numerous developments have been 
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made in this field. For example, we refer to Dell and Clutter (1972), Abu-Dayyeh 

and Muttlak (1996), Ni Chuiv and Sinha (1998) and Hossain (1999). RSS data is 

seen to perform better than SRS data in estimation of population mean as well as 

in testing simple hypothesis (see, for example, Hossain, 1999).  

 

By transforming the skewness and kurtosis parameter of standard normal 

distribution, Tukey (1977) invented the handg   distributional family specified 

by its quantile function. Martinez and Iglewicz (1984)  developed the notation of 

this family. MacGillivray (1992) proposed, based on Johnson family (formed by 

transforming the normal) and considering results from Tukey (1977) and Martinez 

and Iglewicz (1984) work, a suggestion for general transformation families with 

more interpretable shape parameters. Based on this suggestion, Haynes et al. 

(1997a, b) developed and used kandg   distribution. Rayner and MacGillivray 

(2002) have obtained the numerical maximum likelihood estimation for the 

parameters of  kandg    and generalized handg   distribution. RSS data give 

more power of a test than that of SRS data in hypothesis testing about parameters 

of kandg  distribution (see, for example, Hossain, 2007).Using these families 

of distributions it is possible to consider a wide variety of distribution shapes. It is 

convenient to use maximum likelihood estimation procedure with analytically 

expressed likelihoods, even if it requires computational work to maximize. Since 

the likelihood can be expressed only in terms of quantile function, likelihood 

procedure for kandg   distribution must be performed completely numerically.  

In this paper, an attempt has been made to utilize RSS data instead of Simple 

Random Sample (SRS) data for estimating parameters of kandg   distribution. 

The likelihood function of kandg   distribution using RSS data is presented 

and maximizing this likelihood function numerically within the parameter space 

and the mean squared error (MLE) of the parameters are demonstrated using a 

simulation. The MSE is computed and the relative efficiency (RE) compared with 

SRS are presented. 

 

2. Selection of Ranked Set Sample 

 

The basic idea of the ranked set sampling is to partition the identified sample units 

randomly into small sets and then to rank the elements within each set according 

to the characteristic of interest. Then, based on the ranking, exactly one element 

of each ranked set is chosen as the selected sample element for quantification. To 
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obtain a usual RSS of size pq by the usual RSS method, the following steps are 

required to be carried out: 

1. p sets of p elements are drawn randomly; 

2. the elements of each set are ordered by visual inspection or by some other   

means not requiring actual measurement; 

3. the thi smallest of the thi  set ( pi ,,3,2,1  ) is drawn and measured; and 

4. steps (1), (2) and (3) are repeated q times. 

 

3. Quantile Distribution 

 

Taking the inverse of the cumulative distribution function ( cdf ), )|(


 xFu X ,   

for a continuous random variable X , the quantile function is defined as 

)|()|( 1





  uFuQx XX  

where 


  is a vector of parameters. We define )|(


 xFu X as the depth 

corresponding to x , the data value. 

Distributions differ in the distributional shape, independent of location and scale. 

Using a linear transformation of the quantile function location and scale 

parameters are introduced. Location, scale and dependence on some arbitrary base 

distribution give 

)|(.)|(


  uXX zRBAuQx , 

where thu  quantile of the base-distribution denoted by uz , which is parameter 

less. 

The vector  contains all parameters in vector   excluding the location and scale 

parameters A  and B , respectively. To introduce the effects of the shape (not 

location and scale) parameters  , the “base-distribution” can be thought of as the 

distribution that is “bent” by the function )|(


zRX  . The standard normal 

distribution is taken as base distribution here to be the standardized normal 

distribution.  
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4. The kandg   Distribution 

 

In terms of its quantile function, the kandg   distribution is defined as  

 kuzg

zg

uX z
e

e
czBAkgBAuQ

u

u

21
1

1
1),,,|( 




















                                          (4.1) 

where  A  is the location parameter and B  scale parameters, g  is the skewness 

parameter and 
2

1
k  kurtosis parameter of the distribution, )(1 uzu

 is the 

thu  standard normal quantile, and c  is a constant chosen to help produce proper 

distribution. 

 

In kandg   distribution the sign of skewness parameter g  indicates the 

direction of skewness: 0g  indicates the distribution is skewed to the left, and 

0g  indicates skewness to the right, and 0g  indicates the symmetry of the 

distribution. Increasing/decreasing the absolute value of g  increases/decreases 

the skewness in the indicated direction. 

 

The kurtosis parameter k  behaves similarly. Increasing k  increases the level of 

kurtosis and vice versa and 0k  corresponds to no kurtosis added to the standard 

normal base distribution. However, this distribution can represents less kurtosis 

than the standard normal distribution when 0
2

1
 k . And c  is the value of the 

„overall asymmetry‟ and we use 83.0c  through this paper. Fig. 1 can 

demonstrate the change of skewness and kurtosis for change in the parameters g  

and k . The distribution therefore gives the opportunity to investigate any process 

dependent on shape of the distribution under varying degrees of asymmetry and 

flatness. 

 

The density function of the kandg   distribution is given 

by / 1

1
,

( | ) (( ( | ))| )

0 ,

X X X

x S
f x Q Q x

otherwise

  
  









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where S  is the entire real axis, XQ  is defined in (1), 
/

XQ  and 
1

XQ  are, 

respectively, the first derivative and inverse function of XQ , and 


  is the vector 

of parameters. 

 

 
 

Fig. 1: Density curves of kandg   distribution for different combinations of g and k  
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5. Maximum Likelihood Estimation 

 

The most popular method of parameter estimation, maximum likelihood 

estimation (MLE), must be performed completely numerically for kandg   

distribution and indeed all quantile distributions which do not have a closed form 

inverse. 

Let nXXX ,,, 21   be a ranked set sample of size n  from a kandg   

distribution with parameter vector ),,,( kgBA . The observations in the ranked 

set sample are independent, but not identically distributed. That is, each 

observation in a ranked set sample has distinct distribution. 

 

6. Computing the Likelihood 

 

Define   as the space of parameter vectors corresponding to quantile 

distributions that are theoretically completely proper. For improper vectors 


  

the likelihood is taken as zero. We will work with the log-likelihood rather than 

the likelihood, that is 

  )(log),,,|( 21



  Lxxxl n  





n

i

i

n

i

i

n

i

i xfxFinxFi
111

)|(log])|(1[log)()|(log)1( 


,   


  

To calculate this log likelihood   ),,,|( 21 nxxxl 


  for a given ranked set sample 

nxxx ,,., 21   at a point 


  requires the following steps:  

 

1. For each data point ix  , obtain the sample quantile u . Also find uz , the 
thu  quantile of the standard normal distribution. Then equating the first 

four sample quantile and corresponding population quantile , we get a 

system of nonlinear equations of four unknowns gBA ,,  and k : 
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       where 
iuz is the 

th

iu  quantile of the standard normal distribution     

      corresponding to the 
thi  observation ix . The solution of this system of     

      nonlinear equations for gBA ,,  and k  are used as the initial estimates. 

2. For each data point ix , numerically solve the equation )|(


 iXi uQx to 

find the depths of each data point, )|(1


 iii xQu . 

3. For each obtained depth iu , calculate  )|(/


uQX , where  

u

uQ
uQ X

X






 )|(

)|(/ 
 . 

4. Finally, since )|()|(1


   iiii xFxQu  and  

)|(

1
)(

/




iX

i

uQ

xf , calculate 

the log-likelihood function. 

 

Since the second step requires 
iuz rather than iu  , the kandg   distribution 

expressed in uz rather than u . Computation of step two and three is very 

straightforward. This is a robust numerical procedure because of the properties of 

a proper quantile distribution function. 

 

7. Maximizing the Likelihood 

 

In this paper numerical likelihood maximization was carried out on the log-

likelihood using the MATLAB implementation of the Nelder-Mead simplex 

algorithm (see Press et al., 1993). It has the great advantage of not requiring 

derivative information about the log-likelihood.  
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8. Simulation Study for NMLE 

 

Using Nelder-Mead simplex method, we obtain the NMLE of the parameters 

gBA ,,  and k  of the kandg   distribution. Then we simulate these results for 

5000n  times, i.e., we draw ranked set sample for different size in 5000 times 

and get the estimates of the parameters of our desired parameters using the 

method described earlier. Average of these 5000 estimates for each parameter is 

then calculated and named it by numerical maximum likelihood estimate (NMLE) 

of the parameters. In this paper, for fixed  0A  and 1B , we consider the 

combinations of ( g , k ) as (0, 0), (0, 0.5), (0.5, 0.5), (1, 0) and (-0.5, 0). The 

results of the simulations are presented in Table 1 through Table 5. 

 

Table 1: NMLE of the parameters of kandg   distribution for 

0,1,0  gBA and 0k  

Sample 

size ( n ) 

 

Method 

 A  B  g  k  

0 1 0 0 

 

 

4 

RSS NMLE 

√(MSE) 

0.20 

0.0532 

1.32 

0.289 

0.24 

0.0178 

-0.11 

0.0216 

SRS NMLE 

√(MSE) 

0.27 

0.0851 

1.21 

0.423 

0.28 

0.0261 

-0.12 

0.034 

RE 2.55 2.23 2.15 2.47 

 

 

     5 

RSS NMLE 

√(MSE) 

0.24 

0.0491 

1.30 

0.2075 

0.21 

0.0161 

-0.15 

0.0209 

SRS NMLE 

√(MSE) 

0.22 

0.0812 

1.24 

0.330 

0.25 

0.0250 

-0.19 

0.033 

RE 2.73 2.52 2.41 2.49 

 

 

6 

     RSS NMLE 

√(MSE) 

0.21 

0.0480 

1.29 

0.1898 

0.25 

0.0150 

-0.17 

0.0195 

SRS NMLE 

√(MSE) 

0.22 

0.0798 

1.21 

0.310 

0.19 

0.0234 

-0.22 

0.031 

RE 2.76 2.96 2.43 2.52 

 

 

7    

RSS NMLE 

√(MSE) 

0.27 

0.0455 

1.28 

0.1801 

0.18 

0.0140 

-0.10 

0.0179 

SRS NMLE 

√(MSE) 

0.29 

0.0759 

1.34 

0.301 

0.18 

0.0224 

-0.18 

0.0299 

RE 2.78 2.79 2.56 2.79 
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Table 2: NMLE of the parameters of kandg   distribution for 

0,1,0  gBA and 5.0k  

Sample 

size ( n ) 

 

Method 

 A  B  g  k  

0 1 0 0.5 

 

 

   4 

RSS NMLE 

 √(MSE) 

0.25 

0.0512 

1.38 

0.279 

0.19 

0.0176 

0.35 

0.0211 

SRS NMLE 

 √(MSE) 

0.24 

0.0794 

1.25 

0.398 

0.31 

0.0257 

0.41 

0.0310 

RE 2.40 2.03 2.13 2.21 

 

     5 

RSS NMLE 

 √(MSE) 

0.24 

0.0482 

1.34 

0.201 

0.27 

0.0154 

0.39 

0.020 

SRS NMLE 

 √(MSE) 

0.22 

0.0776 

1.31 

0.312 

0.29 

0.0232 

0.42 

0.030 

RE 2.59 2.20 2.26 2.25 

 

6 

RSS NMLE 

 √(MSE) 

0.26 

0.0476 

1.27 

0.180 

0.42 

0.0130 

0.44 

0.018 

SRS NMLE 

 √(MSE) 

0.21 

0.0781 

1.25 

0.279 

0.31 

0.0201 

0.37 

0.028 

RE 2.69 2.40 2.39 2.41 

 

7    

RSS NMLE 

 √(MSE) 

0.35 

0.0464 

1.38 

0.155 

0.28 

0.0131 

0.43 

0.0164 

SRS NMLE 

 √(MSE) 

0.35 

0.0770 

1.34 

0.252 

0.21 

0.02031 

0.42 

0.0261 

RE 2.75 2.64 2.40 2.53 
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Table 3: NMLE of the parameters of kandg   distribution for 

5.0,1,0  gBA and 5.0k  

Sample 

size ( n ) 

 

  Method 

 A  B  g  k  

0 1 0.5 0.5 

 

4 

RSS NMLE 

 √(MSE) 

0.20 

0.0612 

1.20 

0.312 

0.50 

0.0175 

0.68 

0.0215 

SRS NMLE 

 √(MSE) 

0.24 

0.0824 

1.26 

0.457 

0.65 

0.0264 

0.45 

0.0313 

RE 1.81 2.41 2.20 2.11 

 

 

     5 

RSS NMLE 

 √(MSE) 

0.27 

0.0542 

1.21 

0.279 

0.54 

0.0168 

0.69 

0.020 

SRS NMLE 

 √(MSE) 

0.25 

0.0789 

1.54 

0.421 

0.39 

0.0255 

0.57 

0.03 

RE 2.11 2.27 2.30 2.25 

 

 

6 

RSS NMLE 

 √(MSE) 

0.29 

0.0510 

1.09 

0.245 

0.70 

0.0145 

0.48 

0.017 

SRS NMLE 

 √(MSE) 

0.29 

0.0770 

1.25 

0.386 

0.57 

0.0221 

0.55 

0.027 

RE 2.27 2.48 2.32 2.52 

 

 

7    

RSS NMLE 

 √(MSE) 

0.41 

0.0469 

1.21 

0.190 

0.35 

0.0135 

0.39 

0.016 

SRS NMLE 

 √(MSE) 

0.31 

0.0758 

1.24 

0.310 

0.65 

0.0201 

0.68 

0.0256 

RE 2.61 2.66 2.41 2.56 
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Table 4: NMLE of the parameters of kandg   distribution for 

1,1,0  gBA and .0k  

Sample 

size ( n ) 

 

Method 

 A  B  g  k  

0 1 1 0 

 

4 

RSS NMLE 

 √(MSE) 

0.24 

0.0612 

1.24 

0.312 

1.22 

0.0175 

-0.25 

0.0215 

SRS NMLE 

 √(MSE) 

0.28 

0.0824 

1.19 

0.457 

1.38 

0.0264 

-0.30 

0.0313 

RE 1.81 2.14 2.27 2.11 

 

 

     5 

RSS NMLE 

 √(MSE) 

0.29 

0.0542 

1.26 

0.28 

1.24 

0.0155 

-0.11 

0.000253 

SRS NMLE 

 √(MSE) 

0.20 

0.0789 

1.26 

0.421 

1.27 

0.0245 

-0.14 

0.029 

RE 2.12 2.26 2.49 2.32 

 

6 

RSS NMLE 

 √(MSE) 

0.21 

0.0510 

1.29 

0.235 

1.15 

0.0135 

1.21 

0.017 

SRS NMLE 

 √(MSE) 

0.21 

0.0750 

1.13 

0.354 

1.09 

0.0221 

-0.12 

0.026 

RE 2.16 2.26 2.67 2.33 

 

7    

RSS NMLE 

 √(MSE) 

0.35 

0.0452 

1.31 

0.197 

1.25 

0.0111 

-0.16 

0.014 

SRS NMLE 

 √(MSE) 

0.38 

0.069 

1.19 

0.298 

1.26 

0.0182 

-0.15 

0.0218 

RE 2.33 2.28 2.68 2.42 
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Table 5: NMLE of the parameters of kandg   distribution for 

5.0,1,0  gBA and .0k  

Sample 

size ( n ) 

 

Method 

 A  B  g  k  

0 1 -0.5 0 

 

 

 

4 

RSS NMLE 

 √(MSE) 

0.28 

0.0514 

1.29 

0.326 

-0.21 

0.0213 

-0.19 

0.0222 

SRS NMLE 

 √(MSE) 

0.29 

0.0750 

1.25 

0.482 

-0.25 

0.0314 

-0.21 

0.0340 

RE 2.12 2.18 2.17 2.34 

 

 

     5 

RSS NMLE 

 √(MSE) 

0.24 

0.0514 

1.31 

0.277 

1.27 

0.0177 

1.40 

0.019 

SRS NMLE 

 √(MSE) 

0.31 

0.0741 

1.19 

0.424 

-0.18 

0.0276 

-0.12 

0.0297 

RE 2.18 2.34 2.43 2.44 

 

 

6 

RSS NMLE 

 √(MSE) 

0.29 

0.0480 

1.25 

0.246 

-0.17 

0.0145 

-0.11 

0.016 

SRS NMLE 

 √(MSE) 

0.28 

0.0724 

1.35 

0.379 

-0.19 

0.0234 

-0.14 

0.0252 

RE 2.27 2.37 2.60 2.48 

 

 

7    

RSS NMLE 

 √(MSE) 

0.34 

0.0447 

1.25 

0.216 

-0.21 

0.0131 

-0.16 

0.014 

SRS NMLE 

 √(MSE) 

0.29 

0.0687 

1.21 

0.343 

-0.22 

0.022 

-0.15 

0.0221 

RE 2.36 2.52 2.80 2.49 

 

 

9. Discussion and Conclusion 

 

From Table 1, it can be observed that as sample size increases the relative 

efficiency (RE) of RSS estimates increases compared to SRS estimates. 

Specifically, for sample size four, the RE of the parameter A  is 2.55, and it is 

2.73, 2.76 and 2.78 for sample size 5, 6 and 7, respectively (Table 1).  The same 

result is observed in the other Tables. From Table 1 and Table 2, we observed that 

for fixed BA, , g  and sample size n , as the value of kurtosis parameter k  

increases the RE of RSS estimates decreases but RSS estimate still remain more 

efficient than SRS estimates. Comparing Table 1 and Table 3, it can be observed 
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that for fixed BA,  and sample size n ,  as we increase skewness parameter g  and 

kurtosis parameter k  simultaneously the RE of RSS estimates decreases but still 

remain above unity .  

 

In practice, most of the analysis is based on the normality assumption, however 

the data may not be always from normal population. In this situation by 

considering the data from kandg   distribution, we can easily estimate the 

amount of departure from normality.  
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