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Abstract 

 

For the estimation of linear regression models in the presence of 

heteroscedasticity of unknown form, method of ordinary least squares does not 

provide the estimates with the smallest variances. In this situation, adaptive 

estimators are used, namely, nonparametric kernel estimator and nearest 

neighbour regression estimator. But these estimators rely on substantially 

restrictive conditions. In order to have accurate inferences in the presence of 

heteroscedasticity of unknown form, it is a usual practice to use heteroscedasticity 

consistent covariance matrix (HCCME). Following the idea behind the 

construction of HCCME, we formulate a new estimator. The Monte Carlo results 

show the encouraging performance of the proposed estimator in the sense of 

efficiency while comparing it with the available adaptive estimators especially in 

small samples that makes it more attractive in practical situations.  
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1. Introduction 

 

The usual regression model assumes that the expected value of all error terms, 

when squared, is the same at any given point. This assumption is called 

homoscedasticity. If this assumption is not met, there is an indication of the 

existence of heteroscedasticity. The most common framework in which 
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heteroscedasticity is studied in econometrics is in the context of the linear 

regression models. Errors of measurements, sampling strategies, model 

misspecifications, and presence of outliers etc. are the main causes to introduce 

heteroscedasticity (see Griffiths, 1999; Gujarati, 2003 for more details).  

 

In the presence of heteroscedasticity, ordinary least squares (OLS) estimators are 

although unbiased and consistent but no longer efficient.  In addition, the standard 

errors of the estimates become biased and inconsistent.  This, in turn, leads to 

incorrect inferences. Depending on the nature of the heteroscedasticity, 

significance tests can be too high or too low. These effects are not ignorable as 

earlier noted by Geary (1966), White (1980) and Pasha (1982), among many 

others.  

 

When the form of heteroscedasticity is known, using weights to correct for 

heteroscedasticity is very simple by using method of generalized least squares. If 

the form of heteroscedasticity is not known, the variance of each residual can be 

estimated first and these estimates can be used as weights in a second step and the 

resultant estimates are called the estimated weighted least squares (EWLS) 

estimates (see for example, Fuller and Rao, 1978; Carroll and Ruppert, 1988; 

Pasha and Ord, 1994; Greene, 2000). But in usual practice, the form of 

heteroscedasticity is seldom known that makes the weighting approach 

impractical. In such situations, we are required to formulate such estimators 

which give as adequate results as if we have known heteroscedastic errors and 

hence adaptive estimation procedures come in to fulfill such objectives. 

 

Specifically, in the sense of Bickel (1982), for a linear regression model in the 

presence of heteroscedasticity, an estimator is said to be adaptive estimator if it 

has the same asymptotic distribution as that of an estimator having information 

about the form of heteroscedasticity.  In the available literature, two adaptive 

estimators are popular, namely, nonparametric kernel estimator proposed by 

Carroll (1982) and nearest neighbour regression (NNR) given by Robinson 

(1987). Both of these adaptive estimators require substantially restrictive 

conditions for their applications.  

 

White (1980) introduces a heteroscedasticity consistent covariance estimator 

(HCCME) to draw correct inferences in the presence of heteroscedasticity of 

unknown form, popularly known as HC0. Then in order to improve small sample 

properties, MacKinnon and White (1985) present other versions of HCCME, 
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known as HC1, HC2, and HC3. These estimators are frequently used by the 

practitioners (e.g., see Long and Ervin, 2000; Flachaire, 2002). Since all available 

literature about HCCME limits up to the consistent estimation of Var-Cov matrix 

of the estimated regression coefficients and no progress yet has been made to 

construct weights based on this HCCM, this leads us to formulate weights based 

on HCCME and then to conduct EWLS. We present the performance of our 

formulation by means of Monte Carlo study.  

 

Our study unfolds in such a way that section 2 presents the heteroscedastic linear 

regression model along with HCCME. In section 3, we formulate a new estimator 

based on HCCME. In section 4, we present empirical results based on Monte 

Carlo simulations. Section 5 is reserved for application of our approach and, 

finally, section 6 gives conclusion.  

 

2. Heteroscedastic Linear Regression Model and HCCME 

 

Consider a heteroscedastic linear regression model of the form 

  

y = X + u,                                                                                          (2.1) 

 

where y is an n x 1 vector of observations, X is an n x p (p < n) nonrandom matrix 

of covariates,  is a p x 1 vector of unknown regression parameters, and u is an n 

x 1 vector of random errors with zero mean and variance  2
i .  

 

When the errors are homoscedastic, i.e.,  22 i , under the other standard 

assumptions, the coefficients  can consistently be estimated by the OLS as 

follows: 

 

yXXXOLS
 1)(̂                                                                                    

                                   

with the covariance matrix, denoted by , 

 
11 )()(   XXXXXX                        (2.2)                         

 

The estimation of  depends on the assumptions about }.,,,{ 22

2

2

1  ndiag   

In the presence of heteroscedasticity of unknown form, the OLS estimate becomes 

inefficient and its covariance matrix estimate inconsistent as discussed earlier. In 

this situation, White (1980) derives an asymptotically justified form of the 
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HCCME known as HC0 by letting ̂ = diag[ u iˆ
2 ], which results in estimation of 

(2.2) as  11 )(ˆ)(ˆ   XXXXXX 121 )(][)( ˆ
  XXXdiagXXX ui . 

                                            

As shown by White (1980) and others, HC0 is a consistent estimator of  under 

both homoscedasticity and heteroscedasticity of an unknown form. However, it 

can be considerably biased in the finite samples; see, e.g., MacKinnon and White 

(1985); Cribari-Neto and Zarkos (1999, 2001). MacKinnon and White (1985) 

raise their concerns about the performance of HC0 in small samples and present 

three alternative estimators to improve the small sample properties of HC0. The 

simplest adjustment, suggested by Hinkley (1977), makes a degree of freedom 

correction that inflates each residual by the factor )/( knn  . With this 

correction, Mackinnon and White (1985) obtain the version of HCCME known as 

HC1: 

 

0)(][)(1 121

ˆ HC
kn

n
XXXdiagXXX

kn

n
HC ui 




   

 

Based on work by Horn et al. (1975), MacKinnon and White (1985) propose: 

 

1
2

1 )(]
1

[)(2
ˆ  


 XXXdiagXXXHC
h

u

i

i , 

where hi = 
ii xXXx  1)( . 

 

Following Efron’s (1979) jackknife estimator, MacKinnon and White (1985) give 

a third variant of HCCME as: 

 

1

2

2
1 )(]

)1(
[)(3

ˆ  


 XXXdiagXXXHC
h

u

i

i
.                                             

Long and Ervin (2000) explore the small sample properties of test using these 

four versions of HCCME in linear regression model. Their Monte Carlo 

simulation shows that HC0 often results in incorrect inferences when n ≤ 250, 

while the other three versions of HCCME, especially HC3, works well even when 

n is as small as 25.  
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3. HCCME-Based Adaptive Estimation 

 

Following Horn et al. (1975), MacKinnon and White (1985) conclude that  

Var (u iˆ ) underestimates 
2

i (since 1/n ≤ hi ≤ 1). By showing, 
2

ˆ iu  to be a biased 

estimator of 
2

i , they suggest 
h

u

i

i

1

ˆ
2

 to be less biased. Furthermore, Wu (1986) 

also estimates 
2

i  by  2
| | / (1 )ˆ ˆi i iu h   , 

where hi = 
ii xXXx  1)( , and ̂ˆ

OLSiii xyu  . 

 

Following these ideas, we estimate  and weights      on the basis of u iˆ
2  as 

2

2

1

ˆ
ˆ i

i

i

u
h

 


, and ̂
2 iiw . 

The estimation of  is the same as used in HC2.  

 

Then we propose the following HCCME-Based weighted least square (HWLS) 

adaptive estimator as  






 



i
iii

i
iiiHWLS

wyXwXX

1

̂                      (3.1) 

                                

Following the formulation of HC3, we also present another version of above 

adaptive estimator by setting 

2

2

2

)1(

ˆ
ˆ

h

u

i

i

i


  

For convenience, we name both the estimators as HC2WLS-estimator (based on 

HC2) and HC3WLS-estimator (based on HC3), respectively.  
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4. Empirical Results 

 

To evaluate the performance of the proposed estimators, we calculate bias, mean 

square error (MSE) and relative efficiency (R.E). For this purpose, we conduct a 

Monte Carlo study and use the same scheme as carried out by Carroll (1982) so 

that our proposed estimator can directly be compared with already existing 

estimators.  The heteroscedastic linear regression model, under study, is:   

 

yi = 0 + 1xi + ii,  i = 1, 2, …, n,                                 (4.1)  

                            

where, 0 = 50, 1 = 60, i are i.i.d. standard normal variables and xi are i.i.d. 

uniform on the interval (-0.5, 0.5). Furthermore, it is assumed that i’s are 

observed independent to xi. Three different variance models (VMs) are considered 

to generate i. 

The first variance model (VM-I), given by Jobson and Fuller (1980), is 

 


2

21

2

ii aa  ,  xii  10

2    

   

We choose a1 = 100 and a2 = 0.25. 

The second variance model (VM-II), a model with more severe heteroscedasticity, 

used by Box and Hill (1974), is  

 

|)|exp( 21  ii aa ,  

                     

where, a1 = 0.25 and a2 = 0.04. 

The third model (VM-III), a model of severe heteroscedasticity, used by Bickel 

(1978), is 

)exp( 2

21  ii aa ,      

 

where, a1 = 1/4  and a2 = 1/3200. 

 

To evaluate the performance of the proposed adaptive estimators with the change 

in sample size, we use different sample sizes by taking n = 10, 25, 50, 100, and 

250. For each variance model and for each sample size, we run 1,000 simulations 

as done by Carroll (1982).  
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To estimate the model (4.1), we use the following estimators to highlight their 

comparative performances under different data generating schemes: 

1. Ordinary least square (OLS) estimator 

2. Adaptive kernel estimators: 

 Following Carroll (1982), we use adaptive kernel estimator. Since it is    

 well known in the nonparametric literature that the choice of the kernel is    

 not crucial as long as it satisfies certain regularity conditions (Roy, 1999),   

 so unlike Carroll (1982), we use normal kernel. We refer this estimator  

 by KWLS estimator for the next discussion. 

3. Nearest neighbor regression estimator:  

 Following Robinson (1987), we use nearest neighbor regression   

 estimator. We choose the number of nearly neighborhood, K = n
4/5

  

 (following Härdle, 1994). We refer this estimator by NWLS estimator. 

4. HCCME-based adaptive estimator: 

 We use our proposed adaptive estimator (3.1). We use both, above   

 discussed, versions of this estimator and refer them as HC2WLS and   

 HC3WLS estimators, respectively.  

 

For each VM and for each sample size, we calculate biases and mean square 

errors (MSEs) of the estimated coefficients obtained by 1,000 simulations in each 

case. We compute relative efficiency to compare the results as follows: 

 

  R.E = MSE (OLS)/MSE (Estimator under consideration) 

 

We carry out all the computational work by using the software, E-Views 3.0 for 

the said simulations. Table 1 shows the empirical results of the estimators about 

bias and MSE and R.E when the sample size, n = 10. These results show that with 

small sample and mild heteroscedasticity (VM-I), OLS performance is not so bad 

in estimating both of the coefficients. When estimating 0, OLS and H3WLS are 

almost equally efficient showing relatively minimum MSEs while comparing with 

rest of the estimators. Then KWLS and H2WLS show equivalent efficient 

behaviour while NWLS remains the worst so far.  

 

On the other hand, when estimating 1, NWLS again remains least efficient while 

the gain in efficiency of our proposed HC3WLS becomes about 11% as compared 

to that of OLS and 10% as compared to that of the other nonparametric estimator 

KWLS. 
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Although there is no question of bias in OLS under heteroscedasticity, but in 

order to compare this end with respect to our proposed estimators, we present the 

comparisons. In case of a small sample of size 10, HC2WLS remains a little bit 

more biased while computing the intercept and similar is the case for KWLS 

while estimating 1, as compared to all other estimators.   

 

Under VM-II, OLS performs quite badly as expected. Our proposed estimators 

outperform the two nonparametric estimators, NWLS and KWLS. The proposed 

estimators become 3 to 6 times more efficient as compared to the OLS.  Here, we 

also see that the performances of NWLS and KWLS are also similar to our 

estimators to some extent. We note that HC3WLS performs better than HC2WLS 

while NWLS performs better than KWLS. As far as biasedness is concerned, OLS 

gives least differences. Under VM-III, the bad performance of OLS continues but 

the other estimators do not remain as much efficient as they are under VM-II. In 

this case (under VM-III), HC3WLS again holds the leading role while all the 

other estimators perform in quite similar manner in the terms of relative 

efficiency.  

 

Table 2 (for n = 25) shows almost the same picture as Table 1 does under VM-I. 

However, under VM-II, the bad performance of OLS declines with increase in the 

sample size from 10 to 25 relative to the figures given in Table 1. The 

performance of our proposed estimators is quite encouraging for the variance 

models, VM-II and VM-III. It is also noted that HC3WLS and HC2WLS remain 

equally efficient under VM-II and VM-III. 

 

Through Table 3, we confirm the Carroll’s (1982) findings in terms of relative 

efficiency of the estimators. Carroll (1982) reports the gain in efficiency using the 

KWLS to be 19%, 188% and 125%, respectively, for VM-I, VM-II and VM-III 

while estimating 1. We find almost the same figures for gain in efficiency using 

the KWLS and they are 15%, 177% and 108% for VM-I, VM-II and VM-III, 

respectively. We also find similar results while estimating 0. We report the gain 

in efficiency to be 30% for HC2WLS and 32% for HC3WLS while comparing 

with OLS and this gain is almost double than the gain for the other two adaptive 

estimators while estimating 1. Our both proposed estimators show excellent 

performance for severe heteroscedasticity (VM-II) where the gain reaches to 

about 261% (see HC3WLS for 1). The situation for VM-III, is also quite 

encouraging. Moreover, the bias reduces expectedly, with the increase in sample 

size for all the cases.  



36                                                      Asadi and Pasha 
________________________________________________________________________ 

 

Similar findings are obtained for n = 100 and 250 (Tables 4 and 5). ). Our 

proposed estimators perform adequately well in all the cases. For larger samples, 

the nonparametric estimators and our proposed estimators become quite identical 

in performance.  

 

 

Table 1: Empirical Results of the Estimators about MSE and Bias (n = 10) 

 

Estimators 
̂

0
 (True value = 50) ̂

1
 (True value = 60) 

Bias MSE* R.E Bias MSE* R.E 

VM-I 

OLS 0.114 7.74  -0.059 119.19  

KWLS 0.148 8.68 0.89 0.125 117.72 1.01 

NWLS 0.156 9.02 0.86 0.096 122.47 0.97 

HC2WLS 0.181 8.77 0.88 0.064 117.31 1.02 

HC3WLS 0.113 7.72 1.00 -0.072 107.02 1.11 

VM-II 

OLS 0.002 19.72  0.007 281.51  

KWLS 0.013 6.34 3.11 0.039 47.81 5.89 

NWLS 0.013 6.24 3.16 0.040 46.73 6.02 

HC2WLS 0.011 6.51 3.03 0.042 46.88 6.00 

HC3WLS 0.008 5.96 3.31 0.032 44.81 6.28 

VM-III 

OLS 0.002 7.83  0.001 85.54  

KWLS 0.002 6.46 1.21 0.001 42.96 1.99 

NWLS 0.002 6.43 1.22 0.001 43.12 1.98 

HC2WLS 0.001 6.70 1.17 0.000 43.11 1.98 

HC3WLS 0.001 5.89 1.33 -0.002 37.89 2.26 

 

*The actual MSEs for VM-II are the figures presented in the Table divided by 10
2
 

while by 10
3
 for VM-III 
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Table 2: Empirical Results of the Estimators about MSE and Bias (n = 25) 

 

Estimators 
̂

0
 (True value = 50) ̂

1
 (True value = 60) 

Bias MSE* R.E Bias MSE* R.E 

VM-I 

OLS 0.014 4.50  -0.048 35.82  

KWLS -0.014 4.83 0.93 -0.040 34.79 1.03 

NWLS -0.013 4.83 0.93 -0.037 34.73 1.03 

HC2WLS 0.012 4.44 1.01 0.003 32.19 1.11 

HC3WLS 0.023 4.35 1.03 -0.007 31.20 1.15 

VM-II 

OLS -0.002 4.42  -0.030 64.02  

KWLS 0.007 2.90 1.53 0.008 22.75 2.81 

NWLS 0.007 2.88 1.54 0.008 22.56 2.84 

HC2WLS 0.006 2.59 1.71 0.012 19.10 3.35 

HC3WLS 0.004 2.58 1.71 0.005 19.33 3.31 

VM-III 

OLS 0.000 2.50  -0.002 26.29  

KWLS 0.000 2.25 1.11 0.000 19.96 1.32 

NWLS 0.000 2.25 1.11 0.000 19.98 1.32 

HC2WLS 0.001 2.07 1.21 0.002 17.86 1.47 

HC3WLS 0.001 2.04 1.22 0.002 17.76 1.48 

 

* The actual MSEs for VM-II are the figures presented in the Table divided by 

10
2
 while by 10

3
 for VM-III. 
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Table 3: Empirical Results of the Estimators about MSE and Bias (n = 50) 

 

Estimators 
̂

0
 (True value = 50) ̂

1
 (True value = 60) 

Bias MSE* R.E Bias MSE* R.E 

VM-I 

OLS 0.046 17.55  0.055 191.05  

KWLS 0.026 20.04 0.88 0.134 166.68 1.15 

NWLS 0.026 20.04 0.88 0.133 166.58 1.15 

HC2WLS 0.043 17.63 1.00 0.065 147.50 1.30 

HC3WLS 0.044 17.30 1.01 0.068 145.19 1.32 

VM-II 

OLS 0.002 12.95  0.034 355.69  

KWLS 0.001 11.42 1.13 0.009 128.24 2.77 

NWLS 0.001 11.39 1.14 0.009 127.79 2.78 

HC2WLS 0.000 9.64 1.34 0.004 104.34 3.41 

HC3WLS -0.001 9.44 1.37 0.000 98.65 3.61 

VM-III 

OLS -0.001 12.76  -0.003 260.27  

KWLS -0.001 10.61 1.20 -0.002 124.92 2.08 

NWLS -0.001 10.61 1.20 -0.002 125.12 2.08 

HC2WLS -0.001 9.54 1.34 -0.002 108.61 2.40 

HC3WLS -0.001 9.68 1.32 -0.002 108.77 2.39 

 

* The actual MSEs for VM-I are the figures presented in the Table divided by 

10, by 10
3
 for VM-II while by 10

4
 for  VM-III 
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Table 4: Empirical Results of the Estimators about MSE and Bias (n = 100) 

 

Estimators 
̂

0
 (True value = 50) ̂

1
 (True value = 60) 

Bias MSE* R.E Bias MSE* R.E 

VM-I 

OLS 0.004 7.61  0.104 114.71  

KWLS 0.015 8.95 0.85 0.151 109.26 1.05 

NWLS 0.015 8.95 0.85 0.151 109.26 1.05 

HC2WLS 0.006 7.60 1.00 0.117 92.69 1.24 

HC3WLS 0.007 7.62 1.00 0.127 92.62 1.24 

VM-II 

OLS -0.005 7.47  -0.019 134.92  

KWLS -0.006 6.62 1.13 -0.022 57.57 2.34 

NWLS -0.006 6.62 1.13 -0.022 57.52 2.35 

HC2WLS -0.006 5.86 1.28 -0.022 48.45 2.78 

HC3WLS -0.006 5.85 1.28 -0.022 48.02 2.81 

VM-III 

OLS -0.001 5.62  -0.004 128.15  

KWLS -0.001 5.32 1.06 -0.002 63.64 2.01 

NWLS -0.001 5.31 1.06 -0.002 63.58 2.02 

HC2WLS -0.001 4.63 1.21 -0.002 54.33 2.36 

HC3WLS -0.001 4.60 1.22 -0.002 53.57 2.39 

 

* The actual MSEs for VM-I are the figures presented in the Table divided by 10, 

by 10
3
 for VM-II while by 10

4
 for VM-III 
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Table 5: Empirical Results of the Estimators about MSE and Bias (n = 250) 

 

Estimators 
̂

0
 (True value = 50) ̂

1
 (True value = 60) 

Bias MSE* R.E Bias MSE* R.E 

VM-I 

OLS 0.017 3.33  -0.062 44.49  

KWLS 0.012 3.81 0.87 -0.086 39.69 1.12 

NWLS 0.012 3.81 0.87 -0.086 39.70 1.12 

HC2WLS 0.017 3.30 1.01 -0.072 34.55 1.29 

HC3WLS 0.018 3.31 1.01 -0.066 34.52 1.29 

VM-II 

OLS -0.001 3.10  -0.003 55.07  

KWLS -0.002 2.45 1.27 -0.007 20.22 2.72 

NWLS -0.002 2.45 1.27 -0.007 20.21 2.73 

HC2WLS -0.001 2.11 1.47 -0.005 17.12 3.22 

HC3WLS -0.001 2.06 1.51 -0.005 16.37 3.37 

VM-III 

OLS -0.001 2.63  -0.001 47.93  

KWLS -0.001 2.38 1.10 -0.001 23.83 2.01 

NWLS -0.001 2.38 1.10 -0.001 23.82 2.01 

HC2WLS -0.001 2.02 1.30 -0.001 19.49 2.46 

HC3WLS -0.001 2.01 1.31 -0.002 19.29 2.49 

 

* The actual MSEs for VM-I are the figures presented in the Table divided by 10, 

by 10
3
 for VM-II while by 10

4
 for VM-III. 

 

5. Applications 

 

To illustrate the performance of our proposed adaptive estimators and to compare 

them with the estimators already available in the literature, we take the example 

of compensation per employee ($) in Nondurable Manufacturing Industries of US 

Department of Commerce as quoted by Gujarati (2003, pp. 392). We take this 

example just to compare our findings for practical data with the findings already 

available in the literature.  

 

In Table 6, we report the performance of all the estimators discussed above. First 

of all, we apply OLS to the data and find it to be heteroscedastic by White’s Test 

of Heteroscedasticity (1980) with p-value 0.07. Then we report the estimates, 
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their standard errors and respective values of t-statistic. We note that our proposed 

estimators bear lower standard errors among all the remaining estimators 

presenting an adequate reliability for their adaptation. We also compute HCCME 

for giving the correct standard errors for the estimates in the presence of 

heteroscedasticity. We note that our estimators give better R
2 

and much improved 

standard errors of regression confirming the adequacy of the fitted model and this 

finding can be viewed in Fig. 1 about fitted values and residuals. Similarly, the 

proposed adaptive estimators give lowest Akaike Information Criteria (AIC) 

values that indicate the right specification of the weighting mechanism by using 

our proposed estimators. 

 

 

Table 6:  Comparative Statistics 

 

 

Estimators 

Estimation of  
0

 Estimation of 
1

 
 

R2 

 

S.E. of Regression 

 

AIC ̂
0

 SE t-statistic ̂
1

 SE t-statistic 

OLS 3417.70 81.04 42.17 148.81 14.40 10.33 0.9385 111.56 12.46 

HCCME ---- 106.94 31.96 ---- 16.85 8.83 ---- ---- ---- 

EWLS 3406.20 80.86 42.13 154.24 16.93 9.11 0.9645 126.54 12.71 

KWLS 3444.73 89.84 38.34 142.14 14.27 9.96 0.9962 93.61 12.11 

NWLS 3453.14 63.42 54.45 139.32 11.94 11.66 0.9998 60.52 11.24 

HC2WLS 3468.10 62.77 55.25 136.24 11.93 11.42 0.9999 56.61 11.10 

HC3WLS 3482.89 62.01 56.17 133.21 11.88 11.21 0.9999 52.87 10.97 
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Fig. 1:  Fitted Values and Residuals 

6. Conclusion 

 

In most of the practical situations, we seldom know anything about the form of 

heteroscedasticity so it becomes a question to have correct analysis of regression 

problems in the presence of heteroscedasticity. The available literature on this 

issue leads us to use adaptive estimators that give desirable results that are not 

possible when just OLS estimation is taken into account. Usually, nonparametric 

approaches are used for adaptive estimation. In these available approaches, 

nearest neighbour regression estimators give better results as compared to 

adaptive kernel estimators, in the presence of heteroscedasticity of unknown form. 

But we propose new estimators that are based on the idea as used in the 

formulation of HCCME. We report that our proposed HCCM-based adaptive 

estimators outperform in all the situations, from small to large samples and from 

mild to severe heteroscedasticity. These estimators become 3 to 6 times more 

efficient as compared to OLS and about one and half times more efficient as 

compared to both already available adaptive estimators. Specifically, our 

formulation becomes more attractive in small samples. 

 

-200

-100

0

100

200

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

Residual Actual Fitted

OLS

-200

-100

0

100

200

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

Residual Actual Fitted

KWLS

-200

-100

0

100

200

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

Residual Actual Fitted

NWLS

-300

-200

-100

0

100

200

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

Residual Actual Fitted

HC2WLS

-300

-200

-100

0

100

200

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9

Residual Actual Fitted

HC3WLS



Adaptive Estimation of Heteroscedastic Linear Regression Models using Heteroscedasticity      43 
Consistent Covariance Matrix 

________________________________________________________________________ 

References 

 

1. Bickel, P. J. (1978). Using residuals robustly I: Tests for 

heteroscedasticity, nonlinearity. Annals of Statistics, 6, 266-291.  

2. Bickel, P. J. (1982). On adaptive estimation. Annals of Statistics, 10(3), 

647-671. 

3. Box, G. E. P. and Hill, W. J. (1974). Correcting inhomogeneity of 

variance with power transformation weighting. Technometrics, 16(3), 385-

389.  

4. Carroll, R. J. (1982). Adapting for heteroscedasticity in linear models. 

Annals of Statistics, 10(4), 1224-1233. 

5. Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in 

Regression. Champon and Hall, London.  

6. Cribari-Neto, F. and Zarkos, S. G. (1999). Bootstrap methods for 

heteroskedastiac regression models: Evidence on estimation and testing. 

Econometric Review, 18(2), 211-228. 

7. Cribari–Neto, F. and Zarkos, S.G. (2001). Heteroskedasticity-consistent 

covariance matrix estimation: White’s Estimator and the Bootstrap. 

Journal of Statistical Computation and Simulation, 68(4), 391–411. 

8. Efron, B. (1979). Bootstrap methods: Another look at the Jackknife. 

Annals of Statistics, 7(1), 1–26. 

9. Flachaire, E. (2002). Bootstrapping Heteroskedasticity Consistent 

Covariance Matrix Estimator. Computational Statistics, 17, 501-506. 

10. Fuller, W. A. and Rao, J. N. K. (1978). Estimation for a linear regression 

model with unknown diagonal covariance matrix. Annals of Statistics, 

6(5), 1149-1158.  

11. Geary, R. C. (1966). A note on residual heretovariance and estimation 

efficiency in regression. American Statistician, 20, 30-31.  

12. Greene, W. H. (2000). Econometric Analysis. 4
th

 Ed. Prentice Hall, Upper 

Saddle River, NJ.   

13. Griffiths, W. E. (1999). Heteroskedasticity. Working Papers in 

Econometrics and Applied Statistics. ISSN 0157-0188.  

14. Gujarati, D. N. (2003). Basic Econometrics. 4
th

 Ed., McGraw-Hill, New 

York.  

15. Härdle, W. (1994). Applied nonparametric regression. An unpublished 

manuscript. Institut für Statistik und  Ökonometrie, D-10178, Berlin. 

16. Hinkley, D. V. (1977). Jackknifing in unbiased situations. Technometrics, 

19(3), 285-292.  



44                                                      Asadi and Pasha 
________________________________________________________________________ 

17. Horn, S. D., Horn, R. A. and Duncan D. B. (1975). Estimating 

heteroscedastic variances in linear model. Journal of the American 

Statistical Association, 70, 380-385.  

18. Jobson, J. D. and Fuller, W. A. (1980). Least square estimation when the 

covariance matrix and parameter vector are functionally related. Journal 

of the American Statistical Association, 75, 176-181.  

19. Long, S. J. and Ervin, L. H. (2000). Using heteroscedasticity consistent 

standard errors in the linear regression model. The American Statistician, 

54, 217-224. 

20. MacKinnon, J. G. and White, H. L.  (1985). Some heteroskedasticity 

consistent covariance matrix estimators with improved finite sample 

properties. Journal of Econometrics, 21, 53-70. 

21. Pasha, G.R. (1982). Estimation Methods for Regression Models with 

Unequal Error Variances. University of Warwick, Ph.D. thesis. 

22. Pasha, G. R. and Ord, J. K. (1994). Adaptive estimators for 

heteroscedastic linear regression models. Pakistan Journal of Statistics. 

10(1), 47-54.   

23. Robinson, P.M. (1987). Asymptotically efficient estimation in the 

presence of heteroscedasticity of unknown form. Econometrics, 55, 875-

891. 

24. Roy, N. (1999). Is adaptive estimation useful for panel models with 

heteroscedasticity in the unit-specific error component? Some Monte 

Carlo Evidence. Econometric Working Paper EWP9913, ISSN 1485-64  

25. White, H. (1980). A Heteroskedasticity-consistent covariance matrix 

estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 

817–838. 

26. Wu, C. F. J. (1986). Jackknife bootstrap and other resampling methods in 

regression analysis. Annals of Statistics, 14, 1261-1295.



Adaptive Estimation of Heteroscedastic Linear Regression Models using Heteroscedasticity      45 
Consistent Covariance Matrix 

________________________________________________________________________ 

 


