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Abstract 

 

This article investigates the consistency of maximum likelihood estimators for the 

logistic regression model using a different approach. In this approach, we verify 

all the regularity conditions for the logistic regression model needed for 

consistency of the maximum likelihood estimators. The performance of the 

maximum likelihood estimators for consistency in the logistic regression model is 

also examined via standard Monte Carlo simulation study. 
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1. Introduction 

       

A common name for a regression model for binary response variables is the 

logistic regression model, which has been widely used in the physical, 

biomedical, and behavioral sciences (Mehta et al., 2000). Let Y be a binary 

variable and let X be the associated 1p  vector of explanatory variables. Then 

the standard logistic regression model assumes the following model: 
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where, 0 is a scale parameter and   is a 1p  vector of parameters. The 

maximum likelihood estimation procedure is used to estimate the unknown 

parameters for the model (Hosmer and Lameshow, 2000). Since the logistic 

model is nonlinear in parameters, an iterative procedure such as Newton-Raphson 

method is applied (McCullagh and Nelder, 1989). Givens and Hoeting (2005) 

showed that if ( )l  is continuous and  
 is a simple root of ( )l  , then there 

exists a neighborhood of    for which Newton-Raphson method converges to    

when started from any 
( ) , 1,2,....t t   in that neighborhood, where ( )l   is the log-

likelihood of the function. Consistency of the maximum likelihood estimators for 

logistic regression model was previously studied by different authors, for 

example, Gourieroux and Monfort (1981), Amemiya (1985). All their work was 

based upon the fact that the probability of the existence of the estimator ̂  

approaches 1 as n tends to infinity and also assumed that the number of 

explanatory variable p is compelled to remain constant while sample size n 

increases. Beer (2001) showed that p is a variable but dependent on n and 

examined what relationship between p and n is necessary in order not to destroy 

the consistency of the estimator ̂ . However, this article focuses on a different 

approach to investigate the consistency of the maximum likelihood estimator ̂  

for the logistic regression model. More precisely, we are going to show that ̂  

converges under certain hypothesis to the real value 0  if the number of 

observations ( , )i iy x , where 1,( , )i i ipx x x , 1,2, ,i n  tend to infinity. To 

show this, we follow the procedure described by Lehman and Casella (1998) in 

which consistency of the maximum likelihood estimators hold if certain regularity 

conditions are satisfied.  It needs to be pointed out that none of the authors 

(Gourieroux and Monfort, 1981; Amemiya, 1985 and Beer, 2001) verified their 

work via the Monte Carlo simulation study. Gourieroux and Monfort (1981) 

noted, “it should be stressed that all these asymptotic results give little indication 

on the properties of the estimators in finite sample, and it would be interesting to 

clarify this point by means of Monte Carlo studies.”  In this article, we provide an 

extensive standard Monte Carlo simulation study in showing the consistency of 

the maximum likelihood estimators for the logistic regression model. 

 

This paper is structured as follows. In Section 2, we provide consistency of the 

maximum likelihood estimators as described by Lehmann and Casella (1998).  In 

section 3, we verified all the conditions needed for consistency noticed in Section 
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2 for the logistic regression model. A simulation study is presented in Section 4 to 

demonstrate the performance of consistency for the maximum likelihood 

estimators. Finally, a concluding remark is given in Section 5. 

 

2. Consistency of the Maximum Likelihood Estimator (MLE) 

 

Lehmann and Casella (1998) provided the following results of the consistency of 

MLE under some regularity conditions. These are: 

 

(A0) The distributions P  of the observations are distinct (otherwise,   cannot be  

        estimated consistently). 

(A1) The distributions P  have common support. 

(A2) The random variables are 
1( , , )i i ipX X X , i =1,…,n where the iX ’s are  

        independent and identically distributed (iid) with probability density )|( ixf   

        with respect to probability measure  . 

(A3) There exists an open subset  of   containing the true parameter point 0   

        such that for almost all x , the density )|( xf  admits all third derivatives  
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 for all   . 

 

(A4) The first and second derivatives of log f satisfy the equations 
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(A5) Since the p p  matrix ( )I  is a covariance matrix, it is positive  

        semidefinite. We will assume that ( )jkI  are finite and that the matrix  

       ( ) (( )), , 1,2,....,jkI I j k p    is positive definite for all   in  , and the p    

        Statistics 
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       are affinely independent with probability 1. 

 

(A6) Finally, we will assume that there exists function jklM  such that 
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   for all , , .j k l  

 

Theorem 1: Let 1, , nX X be iid each with a density ( | )f x  (with respect to  ) 

which satisfies (A0)-(A6) above. Then, with probability tending to 1 as n , 

there exist solutions 1
ˆ ˆ ( , , )n n nX X   of the likelihood equations 

 1( | ) ( | ) 0n

j

f x f x 






, 1, , ,j p  

or, equivalently,  

 log ( ) 0,
j

L 






 1, , ,j p  

such that  

(a) ˆ
jn is consistent for estimating 

j . 

(b)  is asymptotically normal with mean (vector) zero and   

      covariance matrix 1[ ( ) ]I   ,  and 

(c) ˆ
jn  is asymptotically efficient in the sense that  

                1ˆ( ) 0, ( )L

jn j jj
n N I  


  . 

 

3. Consistency of the MLE in Logistic Model 

 

We verify all the regularity conditions under the logistic regression model 

discussed in section 3 and then we apply Theorem 1 to show the consistency of 

MLE for the logistic regression model. 
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 Assumption (A0):  Let  
(1) (1) (1)

1 0 1( , ,..., )p     and 
(2) (2) (2)

2 0 1( , ,..., )p    . We 

define the models as  
(1) (1) (1) (1)
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where (1) (1) (1) (1)

0 1( , ,..., )
T

p    , (2) (2) (2) (2)

0 1( , ,..., )
T

p     and 0 1( , ,..., )T

px x x x  

If  (1) (2)  ,  then the above two equations  are the same. On the contrary, we 

are going to show that if the equations are equal, then 
(1) (2)   . 

We have, 

(1) (2)

(1) (2)

1 1

T T

T T

x x

x x

e e

e e

 

 


 
 

This implies, 
(1) (2) (1) (2) (1) (2)

0 0 0 1 1 1( ) ( ) ,..., ( ) 0p p px x x             

That is, 0 0 1 1 ,..., 0p pa x a x a x    , where (1) (2) , 0,1,...,i i ia i p     

Since  ’s are independent, so
0 1 ... 0pa a a    , this implies that, (1) (2)  .   

This indicates that the distributions are unique, therefore, if  21   , then the 

distributions P  of the observations are distinct. 

 

Assumption (A1): The variables in the model are 
1 2, ,..., px x x , let 

1 2( , ,..., )px x x x  where px  and the parameter   takes values j   , 

j=1,2,…,p. This is true for each model stated in the assumption (A0). Therefore, 

the distributions P  have common support. 

 

Assumption (A2): In the logistic model, we consider the observations of the form 

1( , , )i i ipx x x ,  i =1,…,n where the ix  are iid with probability density 

( 1| )P Y x . 

Assumption (A3): When Y=1, we define 
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Taking log on both sides and we get 
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Now, taking derivative with respect to 
j , we have 
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Now the derivative comes to the form 
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. If we take the derivative of kth 

order, the derivative comes to the form 
0(1 )

T
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, which can be proved by the 

mathematical induction. Therefore, not only does the derivative of ( | )f x   third 

order exist, but the derivatives of all orders exist. 

 Assumption (A4): The condition (A4) is proved, in general, for the density 

)|( xf  under the condition that the differentiation under the integral sign is 

allowed. The only thing we need to check for the logistic model is that whether it 

permits the differentiation under the integral sign. To show that part we consider 

the following theorem, which is available in standard real analysis or probability 

books (see, Durrett , 2005). This theorem allows us to perform the differentiation 

under the integral sign. 

 

Theorem 2.  Suppose we are given the following: 

         An open interval I  . 

         A measurable subset X . 

         A function :H I X   

         A function : [0, ]g X    

Assume the following: 

        )(),( xgxt
t

H






 
for every t I  and Xx . 

        g is integrable. 
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       ),( xtHt   is a differentiable function of It   for every Xx . 

       ),( xtHx   is an integrable function of Xx for every t I . 

Then the following hold: 

      ( , )
H

x t x
t





 is an integrable function of x X for every t I . 

      ( , )
X

t H t x dx   is a differentiable function of It  . 

      ( , ) ( , )
X X

d
H t x dx H t x dx

dt t




   for every t I . 

 

To verify the above assumptions of Theorem 2 for logistic regression model, we 

consider the following function when y =1.  
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Similarly, this can be shown for y =0. 

Since ( , )H x  is a differentiable function of x X for every p  and 

integrable for x X for every p  . Thus the results of the Theorem 2 hold. 

 

Assumption (A5): We take the derivative of log ( | )f x   with respect to 

1 2, , , p   , we have  

0

0

log

1

T

T

x

j

j x
j

x ef
x

e

 

 






 

 
, j =1,2,…,p 

Now we write the vectors in the form so that they are linearly dependent in the 

following way, 
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This implies that the statistics are affinely independent. 
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finite. Since the logistic model satisfies all the regularity conditions (A0)-(A6), 

therefore, ̂  converges to the real value 0  by Theorem 1. 

 

4. A Simulation Study 

 

We now assess, via standard Monte Carlo simulation, the finite sample 

performance of consistency of the maximum likelihood estimators. In the 

simulation study, we consider four explanatory variables 1x , 2x , 3x , and 4x  which 

are fixed and the binary response variable y, which  is treated as a random 

variable in the logistic regression model. For the fixed values of the intercept 

parameter 0 and four other parameters 1 , 2 , 3 , and 4 ,  our aim is to 

compare the performance of the values of parameters and their standard errors 

when sample size increases. For fixed values of 0 = 0.7, 1 =1.0, 2 =1.3, 3

=0.25, and 4 =0.05, the logistic regression model becomes: 

 
2 3 4

2 3 4

0.7 1.0 1.3 0.25 0.05

0.7 1.0 1.3 0.25 0.05
( )

1

i

i

x x x x

x x x x

e
x

e


   

   



 

 

In the simulation, we consider sample sizes of n 50, 100, 150, and 200 and 

generate 1,000 independent sets of random samples for each different sample size.  

For each set of random sample with particular sample size, we estimate 0 , 1 , 

2 , 3  and 4  
and their standard errors based on the logistic regression model.  

The final estimates and standard errors of  0 , 1 , 2 , 3 , and 4 are the average 
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of 1,000 estimates of  0 , 1 , 2 , 3 , and 4  for that particular sample size. The 

following Table gives the results of simulation study for different sample sizes. 

 

Table 1: Estimated parameter values and their standard errors using the logistic      

             regression model for different sample sizes of 50, 100, 150, and 200 

 
Parameters 

 

n  50 n  100 n  150 n  200 

Estimate SE Estimat

e 

SE Estimate SE Estimate SE 

0  1.23556 0.131

79 

0.86350 0.0426

0 

0.73616 0.0165

8 

0.74692 0.0147

4 1  2.64360 0.184

15 

1.26267 0.0575

5 

1.08362 0.0258

9 

1.08228 0.0249

6 2  4.14250 0.225

22 

1.75881 0.0808

0 

1.46068 0.0414

4 

1.38185 0.0248

7 3  1.02962 0.158

59 

0.31986 0.0413

3 

0.25220 0.0166

6 

0.26272 0.0147

3 4  0.37990 0.147

11 

0.01565 0.0442

7 

0.06005 0.0173

9 

0.04498 0.0148

9 
SE=Standard Error 

 

As seen in the above Table, for sample size n 50, the estimated values of 

parameters are different from the true values ( 0 = 0.7, 1 =1.0, 2 =1.3, 3 =0.25, 

and 4 =0.05), and also the standard errors become large.  However, when the 

sample size increases from n 50 to n 200, the estimated values of the 

parameters 0 , 1 , 2 , 3 , and 4  are close to the true values, and standard 

errors of the estimates are noticeably smaller.  This indicates that simulation study 

performs well in showing the consistency of maximum likelihood estimators for 

parameters of the logistic regression model. 

 

5. Conclusion 

 

This paper investigates a different approach to show the consistency of maximum 

likelihood estimators in the logistic regression model. In that approach, we verify 

all the regularity conditions for consistency mentioned in section 2 for the logistic 

regression model and conclude that the parameters of the logistic regression 

model converge to its true values when sample size increases. This paper also 

concentrates on Monte Carlo simulation study for showing the consistency of the 

maximum likelihood estimators for the logistic regression model. Results indicate 

that the simulation study performs very well and the simulation standard errors of 

the parameters get smaller as the sample size increases. 
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