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Abstract

Order statistics, record values and several other models of ordered random
variables can be viewed as special case of generalized order statistics (gos)
[Kamps, 1995]. In this paper explicit expressions for single and product moments
of generalized order statistics from a family of distributions have been obtained.
Further, some deductions and particular cases are discussed.
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1. Introduction

Let Xq,X,,---,X,, be a sequence of independent and identically distributed
random variables with absolutely continuous distribution function (df) F(x) and
probability density function (pdf) f(x), xe(a,8). Let neN,n>2 k>0,

n-1
M=(m,m,,...m ) eR", M, =>m, suchthat y, =k+n—r+M_>0 for all
j=r
re{l,2,---,n=1. Then X(r,n,m,k), r=12,---n are called generalized order
statistics (gos) if their joint pdf is given by

n-1 n-1
k[Hm J(H[l— FOOI™ f(x; )J[l— Fox)IF (%) (1.1)
j=1 i=1

on the cone F*(0)<x, <---<x <F(1) (Kamps, 1995).
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Let B;, 1<j<n, be independent random variables having Beta(y;,1)
distribution, then it can be seen that (Burkschat et al., 2003)
X(r,n,mk)~F*1-W), r=12,--n (1.2)
where W, :H B,
J:

Khan et al. (2008) have obtained explicit expressions for exact moments of
generalized order statistics from a general form of distribution. In this paper, we
have extended the results of Khan et al. (2008) and have obtained exact moments

of gos for a family of distributions F (x) =[axP +b]°. For some additional results,
one may refer to Keseling (1999), Kamps and Cramer (2001), Cramer and Kamps

(2003), Cramer (2003), Ragab (2004), Athar and Islam (2004) and references
therein.
2. Moments for Generalized Order Statistics

Let the general class of the distribution be:
F(x)=[ax"+b]’, p>0.n<x<w, (2.1)

where a,b and care so chosen that F(x) is a df over (7, w). Then from (1.2), we
have form =m,=---=m_, =m,

; 1/p
X (r.n.m k) ~[1{HB}’° bﬂ . 2.2)

a j:

2.1 Relations for Single Moments:
Theorem 2.1: For the distribution given in (2.1) and «=12,...

[e/p] [alp] ) (k)
E[X 4 (r,n,m,k)]:(}:’j > (—1)'bii£["‘: pl}% 2.3)

where [a/ p] represent the integer part of «/ p and
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(k+ ) r (k+ ) (k+

T A ke Lo ey (.4

Proof: From (2.2), we have

E[xa(r,n,m,k)]=EHﬁsjﬂc_bﬂ {‘?bj”f( - {“’pjl‘[—c“

j=1 C}/J +i

and hence the result.

Remark 2.1: At p=1 in (2.3), we get

(k)
E[X*(r,n,mk)] = (1)“( ] Z( 1) = (J i (2.5)

(k)
C.°c

as obtained by Khan et al. (2008).

2.2 Relations for Product Moments:
Theorem 2.2: For the distribution given in (2.1),

E[X“(r,n,mKk)X”(s,n,m,k)]
V
a+p k) ~ &)
=(_—bj[ R S T ([a/p]j ([ﬂ/le CHC”  (26)
a U0 V=0 bt u Vo k) (e
Cs—l Cr -1
where [a/ p] and [B/ p] are the integer parts of «/p and B/ p, respectively.

Proof: We have from (2.2)

E[X“(r,n,mKk)X”(s,n,m,k)]

a+p
_p\, Halpl [41p] / / r Cy; s Cy;
— (_abj p Z z (_1)u+v ([a p]] [[ﬂ p]] bu];—V I I j I I i

o Sl u v i €y H(U+V) S cy +v
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(k) (k)
atp Hy H7
:(—bj[ ][aip] [ﬂz/:p]( l)u+v([a/p]] ([ﬂ/p]] 1 j=1 j=ri1
u=0 v=0 u v pu*tv (k+ ﬂ) S (k+ )
L 17 [Ir; ©
1= j=r+1

and hence the result.

Remark 2.2: At =0, (2.6) reduces to single moments as given in (2.3).

Remark 2.3: At p=1in(2.6), we get

E[X“(r,n,mKk)X”(s,n,m,k)]

(k+7)

_(_1\o+B 9 & L u+v a IB C(k)C
RO XEEFH (s

u=0 v=0 (k+=—)

C C
s-1 r-1
as obtained by Khan et al. (2008).

3. Hlustrated Examples

This family, apart from the distributions considered by Khan et al. (2008) at p=1
also include Burr and Weibull distributions.

3.1 Single Moments

a. Burr distribution

F(x)=[@x"+1]*, 0<x<o where p=1/£>0 and & in an integer.

At a=60,b=1and c=—x in (2.1), we get

_\[e/p] [alp] al C(k)
E[Xa(r,n,m,k)]:(glj > (- 1! ([ IP]J
i=0
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b. Weibull distribution

F(x)=[ax”+b]°, p>0, O<x<oo. Let a:i, b =1, then we have
c

Lim F (x) =" by an application of result (Athar et al., 2009),

C—0

§&4yvgj 1 _(m+d) (=)
u=0 Vreu Hy(k)

We have
(~ple/ Pl gyla/pl

Cr[a/p](m+1)r—l( _1)|

[/ p] /
XZ(D(MpﬂdQZ(D( jT&W

E[X%(r,n,m,k)]=

[a/p]
Atc' = (1: =0, above expression is of the form % as . (-1’ ([a: p]j 0.
i=0

Therefore applying L’ Hospital rule and using the result (Ruiz, 1996)

2(3(}@u)4ﬂ (3.1)

u=0

we have,

WP arppct)
(m+1)r_1(r—1)!

E[X%(r,n,mKk)]=

1

xz< " ( 1}{ e ™

as obtained by Kamps (1995).
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3.2 Product moments

a. Burr distribution
F(X)=[0x"+1]*, O0<x<oo where p=1/£>0 and & in an integer.
Here a=6¢,b=1and c=—y,
From (2.6), we have

E[X*(r,n,mKk)X”(s,n,m,k)]

r S
(k) (k)
a+p Ilyj I17j
:—_1)[p ][aZ/:p] [ﬁép](_l)u+V 1 ([elp]) ([BI0]) ja j=r+l
0 putv U Vi) kMY s kY
H7j # H7j #
j=1

j=r+1

u=0 v=0
b. Weibull distribution

F(x) =[ax” +Db]°, Here az—i, b=1 and c'=1—>0,then
c c

E[X*(r,n,m,Kk)X”(s,n,m,Kk)]

[3522]
(1) o P VP (Tad R (A9 1
e % & U Uy e s
= = +VvC +(Uu+v)cC
R [ 117
j=r+1 j=1

In view of the relation (Athar et al., 2009)

sil(—l)i (s— r —1) 1 (m+1)""*(s—r-1)!

, ®)

Vs-i li[ j/J(k)

j=r+l
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E[X%(r,n,mK)XZ (s,n,m k)]

a+p
_ i[T] ) [“’p] Wp] e [a/p] ﬁ/p]
A )
« 1 Zr: oy [s—_r— J[V(km)]_l
Mm+1)S"Ys—r-11 3 1A1p]

1 r-1 r—1 [}/{k+(u+v)c}]_1
x -1
Lerl)r_l(r—l)! iZ(:)( )( i J ol pl

Taking the limit and using the relation (3.1), we get

a+p
=1 ¢l farpl (100

M+1)52 (s—r-D!(r-1!

s—r-1 » —r-1 1 .
Z( )( i J[ ()q1A7pHe Z( )( }[ (el Pl | mes
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