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Abstract 
 

This paper presents the reliability and Quantile analysis of the Weibull 

distribution. We also present the properties of Quantile analysis as the percentile 

life used B-life in engineering terminology. The main interests are in the 

relationship between   and various B-lives; measure of variability for B-lives as 

the numerical Quantities that describe the spread of the values in a set of data. 

Here these Quantiles models are presented graphically and mathematically.  
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1. Introduction 

The Weibull distribution is one of the most widely used probability distributions 

in the reliability engineering discipline. The Weibull distribution becomes a 

standard in reliability for modeling time-dependent failure data. This paper 

focuses to present the Quantile analysis as the percentile life used B-life in 

engineering terminology. This is the life by which the certain proportion of the 

population can be expected to have failed.  The Weibull Probability distribution is 

very useful life time model for checking the failure components (Liu, 1997; 

Abernathy, 2004). 

The Weibull model is very flexible reliability model that approaches different 

distributions. It is the generalization of the exponential distribution and is very 
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useful in reliability theory. Nelson (1982) and Liu (1997) explain in their works 

that if the item consists of many parts and each part has the same failure time 

distribution and the item falls in the experiment when the weakest part fails, then 

the Weibull distribution would be an acceptable model of that failure mode. 
 

2. Weibull Models Analysis  

 

2.1 Weibull Probability Distribution 

The Weibull probability distribution has three parameters  ,  and 0t . It can be 

used to represent the failure probability density function (PDF) with time, so that:
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Fig. 2.1: The Weibull PDF 

 

Here   is the shape parameter representing the different pattern of the Weibull 

PDF and is positive and   is a scale parameter representing the characteristic life 
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at which 63.2% of the population can be expected to have failed and is also 

positive, 0t  is a location parameter. If 00 t  then the Weibull distribution is said 

to be two-parameter since the restrictions in (2.1) on the values of ,,0t  are 

always the same for the Weibull distribution (Kao, 1957; Dubey, 1966; Liu, 1997; 

Cox and Oakes, 1984; Abernathy, 2004; Pasha et al., 2007). Fig. 2.1 shows the diverse 

shape of the Weibull PDF with 00 t  and value of 10  and   (= 1, 2, 2.5, 

3.4). When   = 1, the distribution is the same as the exponential distribution for 

the density function. When 2 , it is known as the Rayleigh distribution for the 

density function. When 5.2 , then the shape of the density function is similar 

to the Lognormal shape of function. When  = 3.4 then the shape of the density 

function is similar to the normal shape of function. To check the validity of Figs 

the relevant information is provided in Tables A and B given in Appendix.   

 
2.2 Cumulative Distribution Function 

The cumulative distribution function (CDF) of the Weibull distribution is denoted 

by )(tFw  and is defined as: 


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                                                                                     (2.2) 

 

When the CDF of the Weibull distribution has zero value then it represents no 

failure components by 0t . Using (2.2), the Weibull CDF 0t  is called minimum 

life. When  0tt , then )1(1)( 0 e
tFw  = 0.63212 which explains as 

‘characteristic life’ or ‘characteristic value’ (Gumbel 1958). Fig. 2.2 shows CDF 

of Weibull with 0t  = 0 and value of 10  and   (=1, 2, 2.5, 3.4). It is clear that 

all curves intersect at the point of (10, 0.632), the characteristic point for the 

Weibull CDF. 
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Fig. 2.2: The Weibull CDF 

 

2.3 Reliability Function 

The reliability function (RF), denoted by )(tRw , also known as the survivor 

function, is defined as )(1 tFw . 
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We see that 1)()(  tFtR ww . Fig. 2.3 shows RF of Weibull with 0t = 0 and value 

of 10  and   (=1, 2, 2.5, 3.4). From Fig. 2.3 it is clear that all the curves 

intersect at the point (10, 0.368) for the characteristic point of the Weibull RF. 

When   = 1, the distribution is the same as the exponential distribution for a 

constant RF. When 2 , it is known as the Rayleigh distribution for the RF. 

When  = 2.5, then the shape of the reliability function is similar to the 

Lognormal RF. When  = 3.4, then the shape of the reliability function is similar 

to the normal RF. 
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Fig. 2.3: The Weibull RF 

 

2.4 Hazard Function 

The hazard function (HF) of the Weibull distribution, also known as instantaneous 

failure rate, denoted by )(thw , is defined as ( ) / ( )w wf t R t : 
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                                                         (2.4) 

It is important to note that the units for )(thw are the probability of failure per unit 

of time, distance or cycles.  

 

When   = 1, the distribution is the same as the exponential distribution for 

constant hazard function and 


1
)( thw  so the exponential distribution is a special 

case of the Weibull distribution and the Weibull distribution can be treated as a 

generalization of the exponential distribution.  
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Fig. 2.4: The Weibull HF 

 

When   < 1, the hazard function is continually decreasing which represents early 

failures. When   > 1, the hazard function is continually increasing which 

represents wear-out failures. In particular, when 2 , it is known as the 

Rayleigh distribution. When  = 3.4, the shape of the PDF is similar to the 

normal PDF. These cases are called pseudo-symmetrical by Gumbel (1958). So 

the Weibull is a very flexible distribution. Fig. 2.4 shows the Weibull HF with 0t  

= 0 and value of 10  and   (=1, 2, 2.5, 3.4). 

 

3. Quantile Analysis of the Weibull Distribution 
 

One of the important properties of the Weibull distribution is the percentile life or 

B-life in engineering terminology and is defined as: 
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)( 01.0tFw = 0.01 mean, this is the life at which the unit will have a failure 

probability of 1%. Fig. 3.1 shows the relationship between  and various values of 

B-lives (B-l, B-2, B-3, B-4 and B-5 lives) for  = 1000. For B-2 life mean, this is 

the life for which the unit will have a failure probability of 2%. It is clear that 

larger the value of  , the longer the B-lives for the same value of . For the case 

of   = 1000, all the lives, B-l to B-5, are effectively zero for   0.3. Fig. 3.1 

shows the relationship between   = 0(0.1)10 and B-lives (B-1, B-2, B-3, B-4 and 

B-5 lives) when   = 1000. It is interesting to note that the values of B-1, B-2, B-

3, B-4 and B-5 lives for each cycle differ approximately by factors of 10 when 

 = 1. 

 

 

Fig. 3.1:   vs B-lives for   = 1000 

 

The values between B-1 and B-4 lives for these two cycles differ approximately 

by factors of 100 when  = 2, and between B-3 and B-5 lives for these two cycles 

differ approximately by factors of 50 when  = 2. The values between B-1 and B-
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3 lives for these two cycles differ approximately by factors of 100 when  = 3 

and the values between B-2 and B-5 lives for these two cycles differ 

approximately by factors of 100 when  = 3. The values between B-1 and B-3 

lives for these two cycles differ approximately by factors of 100 when  = 3.4, 

for the values between B-2 and B-5 lives. For these two cycle differ 

approximately by factors of 100. When  = 3.4. The values between B-1 and B-3 

lives for these two cycle differ approximately by factors of 100 when  = 5 and 

for the values between B-2 and B-5 lives for these two cycles differ 

approximately by factors of 100 when  = 5. Therefore, we conclude that the 

values between B-lives for each 10 cycles can be approximately determined when 

  is the integer. We have also shown the relationship between  and various B-

lives (B-l0, B-25, B-50, B-75 and B-90 lives) for  = 1000. These lives are used 

for censored data. For B-10 life mean this is the life for which the unit will have a 

failure probability of 10%.  

For B-25 life mean this is the life for which the unit will have a failure 

probability of 25%, for B-50 life mean this is the life for which the unit will have 

a failure probability of 50%, for B-75 life mean this is the life for which the unit 

will have a failure probability of 75%. It is clear that the larger the value of  , the 

longer the B-lives (B-l0, B-25 and B-50 lives) for the same value of  and for 

larger the value of  , the smaller the B-lives (B-75 and B-90 lives) for the same 

value of  . For these cases of   = 1000 all the lives (B-l0, B-25, B-50, B-75 and 

B-90 lives) are effectively used in manufacturing technology. 

 

The first Quartile life ( th25  percentile) of the Weibull distribution is defined as: 
1

25 0

4
(ln )

3
wB t                                                                 (3.2) 

Quartiles are the values in the order statistics that divide the data into four equal 

parts. This is the life by which 25% of the units will be expected to have failed, so 

it is the life at which 75% of the units would be expected to still survive. We 

obtain that the minimum value of lower Quartile life is 0.003883 for  =0.1 and 

the maximum value of lower Quartile life is 882.8589 for  =10. The relationship 

between   and B-25 life for   = 1000 is shown in Fig. 3.2. 
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Fig. 3.2:   vs B-25 life for   = 1000 

 

The second Quartile life ( th50  percentile) of the Weibull distribution is defined 

as: 
1

50 0 (ln 2)wB t                                                                     (3.3) 

 

This is the life by which 50% of the units will be expected to have failed, and so it 

is the life at which 50% of the units would be expected to still survive. We obtain 

that the minimum value of median life is 25.60086 for  =0.1 and the maximum 

value of median life is 964.0122 for  =10. The relationship between   and B-50 

life for   = 1000 is shown in Fig. 3.3. 

 

The upper Quartile life ( th75  percentile) of the Weibull distribution is defined as:                                                       



1

075 )4(ln tB w                                                                           (3.4) 
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Fig. 3.3:   vs B-50 life for   = 1000 

 

This is the life by which 75% of the units will be expected to have failed, and so it 

is the life at which 25% of the units would be expected to still survive. We obtain 

that the maximum value of upper quartile life is 26215.28 for  =0.1 and the 

minimum value of upper quartile life is 1033.203 for  =10. The relationship 

between   and B-75 life for   = 1000 is shown in Fig. 3.4. 

The th90  percentile life of the Weibull distribution is defined as: 



1

090 )10(ln tB w                                                            (3.5) 

 

Sometimes our interest is to know the position of an observation relative to the 

other data set. This is the life by which 90% of the units will be expected to have 

failed, so it is the life at which 10% of the units would be expected to still survive. 

We obtain that the maximum value of the percentile life is 4189449 for  =0.1 

and the minimum value of percentile life is1086.98 for  =10. The relationship 

between   and B-90 life for   = 1000 is shown in Fig. 3.5. 
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Fig. 3.4:   vs B-75 life for   = 1000 

   

Fig. 3.5:   vs B-90 life for   = 1000 
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4. Measures of Variability for B-lives 
 

A measure of variability for B-lives is defined as the numerical quantity (as 

percentile life) that describe the spread of the values in a set of data. It is possible 

that two or more set of data of the mechanical components may have the same 

MTTF but the vast differences in magnitude of their measure of variability would 

reveal that the two data sets of the components are different as MTTF and do not 

tell us any thing about the variation in the data set. For the percentile life the 

measure of variability is Quartile Deviation (Q.D). For B-10 life mean this is the 

life for which the unit will have a failure probability of 10%. Here are the 

relationships between   and various B-lives (B-l0, B-25, B-50, B-75 and B-90 

lives) for  = 1000. For B-25 life mean this is the life for which the unit will have 

a failure probability of 25%.  For B-50 life mean this is the life for which the unit 

will have a failure probability of 50%. For B-75 life mean this is the life for which 

the unit will have a failure probability of 75%.  For B-90 life mean this is the life 

for which the unit will have a failure probability of 90%. It is clear that larger the 

value of  , the longer the (B-l0, B-25 and B-50) lives for the same value of  and 

for B-75 and B-90 larger the value of  , the smaller the B-lives for the same 

value of .  

The Quartile Deviation ( WDQ. ) life of the Weibull distribution is defined as:         

 

2
. 2575 ww

w

BB
DQ


                                                             (4.1) 

 

WDQ.  is the measure that has positive or zero values. The minimum value of the 

WDQ.  shows that a small amount of variability in the set of data, whereas the 

large values indicate the more variability in the life time data. We obtain the 

maximum value 13107.64 for  =0.1 and the minimum value of quartile 

deviation life 75.17194 for  =10. The relationship between   and WDQ.  life for 

  = 1000 is shown in Fig. 4.1. We see that larger the value of   the smaller the 

value of WDQ. . 
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Fig. 4.1:   vs WDQ.  

 

Fig. 4.2:   vs Coeff. of WDQ.  
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The Coefficient of WDQ.  life of the Weibull distribution is defined as: 

Coeff. of 
ww

ww
w

BB

BB
DQ

2575

2575.



                                                    (4.2) 

The Coeff. of WDQ.  is the measure that is used to compare the variability of two 

or more set of life time data. It will take the same value for two or more 

populations if in each population the standard deviation is directly proportional to 

the mean. In these situations, we say that two or more populations are consistent. 

We obtain coeff. of WDQ. =1 for  =0.1 and obtain the minimum value of Coeff. 

of WDQ.  life is 0.078465 for  =10. The relationship between   and Coeff. of 

WDQ.  life for   = 1000 is shown in Fig. 4.2. We see that larger the value of   the 

smaller the value of Coeff. of  WDQ. . 

 

The coefficient of skewness ( WSK ) is defined as: 

ww

www
w

BB

BBB
SK

2575

507525 2




                                                         (4.3) 

It is a pure number and lies between -1 and +1. For symmetrical distribution its 

value is zero. WSK is the quantity used to measure the skewness of the 

distribution. If WSK  < 0, then the distribution is skewed to the left (Mean < 

Median < Mode); if WSK  = 0, then the distribution is symmetrical (Mean = 

Median = Mode) as in the normal distribution, and if WSK > 0, then the 

distribution is skewed to the right (Mean > Median > Mode). The relationship 

between   and WSK is shown in Fig. 4.3. 

The Percentile coefficient of kurtosis ( WK ) is defined as: 

ww

w
w

BB

DQ
K

1090

.


                                                                     (4.4) 

WK  is the quantity which can be used to measure the kurtosis or peakedness of 

the symmetrical distribution. WK  = 3 represents the peakedness of the normal 

distribution for the percentile coefficient of kurtosis. If WK  > 3, then the Weibull 

PDF shape is more peaked than a normal PDF for the percentile coefficient of 

kurtosis. 
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Fig. 4.3:   vs WSK  

 

Fig. 4.4:   vs WK  
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If WK  <3, then the Weibull PDF shape is flatter than the normal PDF for the 

percentile coefficient of kurtosis. The relationship between   and WK  is shown 

in Fig. 4.4. Here we note that as   then WK  has a maximum value 

asymptotically. Hence,   and WK  have a positive proportion when   > 0.1. 

 

5. Summary and Conclusions 
 

In this paper we have seen that the Weibull distribution is the flexible distribution 

that approaches to different distributions when its shape parameter changes. The 

Quantile comprehensive study of the Weibull Quantile modeling is predicted for 

finding the life time of the electrical and mechanical components. These 

properties of the Weibull distribution for quantile analysis are used as B-life in 

engineering terminology. These patterns of   and various B-lives are helpful for 

finding the life of components. In this paper we have also presented measure of 

variability for B-lives as the numerical quantities that describe the spread of the 

values in a set of data. Here we simulate these Quantiles models graphically and 

mathematically. This paper also proves the flexibility of Weibull distribution that 

approaches to different distributions. 
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Appendix 

Table A: Relationship b/w   VS B-lives for   = 1000 

  B-1life B-2 life B-3 life B-4 life  B-5 life 

0.1 1.05E-17 1.13E-14 6.87E-13 1.29E-11 1.26E-10 

0.2 1.03E-07 3.37E-06 2.62E-05 0.000113 0.000355 

0.3 0.000219 0.002246 0.008825 0.023423 0.050142 

0.4 0.010126 0.058013 0.161919 0.336694 0.59587 

0.5 0.101009 0.408149 0.927763 1.666435 2.631002 

0.6 0.468059 1.498589 2.970738 4.839759 7.081104 

0.7 1.399498 3.794517 6.82156 10.36485 14.36248 

0.8 3.182187 7.616614 12.72472 18.34923 24.41045 

0.9 6.02838 13.09549 20.66536 28.61206 36.87517 

1 10.05034 20.20271 30.45921 40.82199 51.29329 

1.1 15.26865 28.80469 41.83718 54.59798 67.19358 

1.2 21.63468 38.71162 54.50448 69.56837 84.1493 

1.3 29.05466 49.71288 68.17571 85.39985 101.7979 

1.4 37.40986 61.59965 82.59274 101.8079 119.8436 

1.5 46.57152 74.17765 97.53169 118.5576 138.0513 

1.6 56.41088 87.27322 112.8039 135.4593 156.2384 

1.7 66.80548 100.7354 128.2537 152.3628 174.2658 

1.8 77.64264 114.4355 143.7545 169.151 192.0291 

1.9 88.82109 128.2656 159.2052 185.7341 209.452 

2 100.2514 142.1362 174.5257 202.0445 226.4802 

2.1 111.8555 155.974 189.6537 218.0324 243.0766 

2.2 123.5664 169.7195 204.5414 233.6621 259.2173 

2.3 135.3265 183.3249 219.1529 248.9092 274.8886 

2.4 147.0873 196.7527 233.4619 263.7582 290.085 

2.5 158.8079 209.9732 247.45 278.2004 304.8065 

2.6 170.4543 222.9638 261.1048 292.2325 319.0579 

2.7 181.9981 235.7078 274.4191 305.8556 332.847 

2.8 193.4163 248.1928 287.3895 319.0735 346.1843 

2.9 204.6901 260.4105 300.016 331.8929 359.0817 

3 215.8043 272.3557 312.3006 344.322 371.5525 

3.1 226.7473 284.0259 324.2477 356.3702 383.6105 

3.2 237.5097 295.4204 335.8629 368.048 395.2701 

3.3 248.0848 306.5404 347.1529 379.3664 406.5456 

3.4 258.4676 317.3884 358.1252 390.3368 417.4515 

3.5 268.6547 327.9679 368.788 400.9707 428.0021 
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3.6 278.6443 338.2832 379.1497 411.2797 438.2112 

3.7 288.4356 348.3394 389.2192 421.2753 448.0926 

3.8 298.0287 358.1419 399.0052 430.9688 457.6593 

3.9 307.4246 367.6966 408.5168 440.3713 466.9241 

4 316.625 377.0096 417.7627 449.4936 475.8994 

4.1 325.6319 386.0871 426.7517 458.3463 484.5969 

4.2 334.4481 394.9354 435.4924 466.9394 493.028 

4.3 343.0764 403.561 443.9933 475.2829 501.2035 

4.4 351.5201 411.9702 452.2625 483.3861 509.1338 

4.5 359.7826 420.1693 460.3081 491.2582 516.8289 

4.6 367.8675 428.1646 468.1377 498.908 524.2982 

4.7 375.7786 435.9622 475.7589 506.3439 531.5508 

4.8 383.5196 443.5681 483.179 513.5739 538.5954 

4.9 391.0945 450.9882 490.4049 520.6058 545.4401 

5 398.5071 458.2283 497.4435 527.447 552.0928 

5.1 405.7614 465.2939 504.3011 534.1046 558.5611 

5.2 412.8611 472.1905 510.9841 540.5854 564.8521 

5.3 419.8102 478.9233 517.4986 546.8958 570.9725 

5.4 426.6124 485.4975 523.8502 553.0421 576.929 

5.5 433.2715 491.9179 530.0447 559.0303 582.7276 

5.6 439.7912 498.1895 536.0872 564.866 588.3743 

5.7 446.1751 504.3168 541.9831 570.5546 593.8747 

5.8 452.4269 510.3043 547.7371 576.1015 599.2343 

5.9 458.5498 516.1564 553.3541 581.5115 604.4581 

6 464.5475 521.8771 558.8386 586.7895 609.5511 

6.1 470.4231 527.4706 564.1951 591.9401 614.5179 

6.2 476.1799 532.9408 569.4276 596.9675 619.363 

6.3 481.8211 538.2913 574.5402 601.876 624.0907 

6.4 487.3497 543.5259 579.5368 606.6696 628.7051 

6.5 492.7688 548.648 584.4212 611.3521 633.21 

6.6 498.0811 553.6609 589.1968 615.9273 637.6093 

6.7 503.2896 558.568 593.8672 620.3986 641.9064 

6.8 508.3971 563.3723 598.4356 624.7694 646.1049 

6.9 513.406 568.077 602.9053 629.043 650.2079 

7 518.3191 572.6848 607.2792 633.2225 654.2187 

7.1 523.1389 577.1986 611.5602 637.3108 658.1402 

7.2 527.8677 581.6212 615.7513 641.3109 661.9752 

7.3 532.508 585.9551 619.8552 645.2255 665.7267 

7.4 537.062 590.2028 623.8743 649.0572 669.3972 

7.5 541.5319 594.3669 627.8113 652.8086 672.9892 

7.6 545.92 598.4496 631.6686 656.4822 676.5052 

7.7 550.2283 602.4532 635.4485 660.0801 679.9475 

7.8 554.4588 606.3799 639.1532 663.6048 683.3185 
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7.9 558.6135 610.2319 642.7849 667.0584 686.6201 

8 562.6944 614.0111 646.3456 670.4429 689.8546 

8.1 566.7032 617.7195 649.8375 673.7604 693.0239 

8.2 570.6417 621.3591 653.2624 677.0128 696.1299 

8.3 574.5117 624.9316 656.6221 680.2019 699.1746 

8.4 578.3149 628.4389 659.9185 683.3296 702.1595 

8.5 582.0529 631.8826 663.1533 686.3977 705.0865 

8.6 585.7272 635.2645 666.3282 689.4076 707.9573 

8.7 589.3395 638.5861 669.4448 692.3611 710.7733 

8.8 592.8913 641.8491 672.5047 695.2597 713.5361 

8.9 596.3839 645.0548 675.5093 698.1049 716.2473 

9 599.8188 648.2047 678.4601 700.8981 718.9081 

9.1 603.1973 651.3003 681.3585 703.6408 721.5201 

9.2 606.5208 654.3429 684.2059 706.3342 724.0844 

9.3 609.7906 657.3338 687.0036 708.9797 726.6024 

9.4 613.0078 660.2743 689.7528 711.5785 729.0753 

9.5 616.1738 663.1657 692.4548 714.1317 731.5043 

9.6 619.2896 666.0091 695.1108 716.6407 733.8906 

9.7 622.3565 668.8057 697.7219 719.1065 736.2352 

9.8 625.3755 671.5566 700.2892 721.5302 738.5392 

9.9 628.3477 674.2629 702.8138 723.9128 740.8036 

10 631.2742 676.9256 705.2967 726.2555 743.0295 

 

Table B: Relationship b/w   VS B-lives of Q.D., Coeff.  of Q.D., Coeff. of SK 

& Coeff.  of Kurtosis for   = 1000 

  Q.D. Coeff.of Q.D. CK Kurtosis(K) 

0.1 13107.64 1 0.998047 3.13E-03 

0.2 2559.058 0.999231 0.938246 3.95E-02 

0.3 1477.467 0.989474 0.811157 9.17E-02 

0.4 1109.186 0.96152 0.679392 1.38E-01 

0.5 919.5255 0.917428 0.567503 1.74E-01 

0.6 799.0945 0.864388 0.477511 2.00E-01 

0.7 712.9668 0.808692 0.405684 2.19E-01 

0.8 646.7795 0.75429 0.347893 2.33E-01 

0.9 593.52 0.703214 0.300789 2.43E-01 

1 549.3061 0.656289 0.26186 2.50E-01 

1.1 511.776 0.61367 0.229255 2.55E-01 

1.2 479.3847 0.575175 0.201613 2.59E-01 

1.3 451.0643 0.540471 0.177917 2.62E-01 

1.4 426.0439 0.509178 0.157402 2.64E-01 

1.5 403.748 0.480918 0.139483 2.66E-01 

1.6 383.7347 0.45534 0.123707 2.67E-01 
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1.7 365.6577 0.432128 0.109717 2.67E-01 

1.8 349.24 0.411001 0.097231 2.68E-01 

1.9 334.2573 0.391715 0.086023 2.68E-01 

2 320.525 0.374058 0.075908 2.69E-01 

2.1 307.8899 0.357845 0.066736 2.69E-01 

2.2 296.2233 0.342917 0.058382 2.69E-01 

2.3 285.4163 0.329133 0.050742 2.69E-01 

2.4 275.3763 0.316373 0.043729 2.69E-01 

2.5 266.0234 0.304531 0.03727 2.69E-01 

2.6 257.2887 0.293517 0.031303 2.69E-01 

2.7 249.1124 0.283248 0.025772 2.69E-01 

2.8 241.4422 0.273654 0.020634 2.68E-01 

2.9 234.2323 0.264673 0.015846 2.68E-01 

3 227.442 0.256248 0.011376 2.68E-01 

3.1 221.0357 0.248332 0.007192 2.68E-01 

3.2 214.9815 0.24088 0.003268 2.68E-01 

3.3 209.2511 0.233854 -0.00042 2.68E-01 

3.4 203.8189 0.227219 -0.00389 2.67E-01 

3.5 198.6623 0.220943 -0.00716 2.67E-01 

3.6 193.7608 0.215 -0.01026 2.67E-01 

3.7 189.0957 0.209363 -0.01318 2.67E-01 

3.8 184.6504 0.204009 -0.01596 2.67E-01 

3.9 180.4097 0.198919 -0.01859 2.67E-01 

4 176.3596 0.194074 -0.02109 2.66E-01 

4.1 172.4877 0.189456 -0.02346 2.66E-01 

4.2 168.7823 0.18505 -0.02573 2.66E-01 

4.3 165.2329 0.180842 -0.02789 2.66E-01 

4.4 161.83 0.176819 -0.02995 2.66E-01 

4.5 158.5645 0.172969 -0.03192 2.66E-01 

4.6 155.4283 0.169282 -0.0338 2.65E-01 

4.7 152.4139 0.165747 -0.03561 2.65E-01 

4.8 149.5142 0.162356 -0.03734 2.65E-01 

4.9 146.7229 0.159099 -0.03899 2.65E-01 

5 144.0341 0.15597 -0.04059 2.65E-01 

5.1 141.442 0.15296 -0.04212 2.65E-01 

5.2 138.9417 0.150063 -0.04359 2.65E-01 

5.3 136.5283 0.147273 -0.045 2.64E-01 

5.4 134.1973 0.144585 -0.04636 2.64E-01 

5.5 131.9446 0.141992 -0.04768 2.64E-01 

5.6 129.7664 0.139489 -0.04894 2.64E-01 

5.7 127.6589 0.137073 -0.05017 2.64E-01 

5.8 125.6188 0.134739 -0.05135 2.64E-01 
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5.9 123.643 0.132482 -0.05249 2.64E-01 

6 121.7283 0.130299 -0.05359 2.64E-01 

6.1 119.8721 0.128187 -0.05465 2.63E-01 

6.2 118.0716 0.126142 -0.05568 2.63E-01 

6.3 116.3245 0.12416 -0.05668 2.63E-01 

6.4 114.6283 0.12224 -0.05765 2.63E-01 

6.5 112.9809 0.120378 -0.05859 2.63E-01 

6.6 111.3802 0.118571 -0.0595 2.63E-01 

6.7 109.8242 0.116817 -0.06038 2.63E-01 

6.8 108.3111 0.115115 -0.06123 2.63E-01 

6.9 106.8392 0.113461 -0.06206 2.63E-01 

7 105.4067 0.111854 -0.06287 2.63E-01 

7.1 104.0121 0.110291 -0.06365 2.62E-01 

7.2 102.654 0.108772 -0.06442 2.62E-01 

7.3 101.3309 0.107293 -0.06516 2.62E-01 

7.4 100.0414 0.105854 -0.06588 2.62E-01 

7.5 98.78442 0.104453 -0.06658 2.62E-01 

7.6 97.5586 0.103089 -0.06727 2.62E-01 

7.7 96.36283 0.101759 -0.06793 2.62E-01 

7.8 95.19602 0.100463 -0.06858 2.62E-01 

7.9 94.05714 0.0992 -0.06921 2.62E-01 

8 92.94519 0.097968 -0.06983 2.62E-01 

8.1 91.85923 0.096766 -0.07043 2.62E-01 

8.2 90.79835 0.095593 -0.07102 2.62E-01 

8.3 89.7617 0.094449 -0.07159 2.62E-01 

8.4 88.74847 0.093331 -0.07215 2.61E-01 

8.5 87.75785 0.092239 -0.0727 2.61E-01 

8.6 86.7891 0.091172 -0.07323 2.61E-01 

8.7 85.84151 0.09013 -0.07375 2.61E-01 

8.8 84.9144 0.089111 -0.07426 2.61E-01 

8.9 84.0071 0.088115 -0.07476 2.61E-01 

9 83.11898 0.087141 -0.07524 2.61E-01 

9.1 82.24944 0.086189 -0.07572 2.61E-01 

9.2 81.39792 0.085256 -0.07618 2.61E-01 

9.3 80.56384 0.084344 -0.07664 2.61E-01 

9.4 79.74669 0.083451 -0.07708 2.61E-01 

9.5 78.94595 0.082576 -0.07752 2.61E-01 

9.6 78.16113 0.08172 -0.07795 2.61E-01 

9.7 77.39176 0.080881 -0.07837 2.61E-01 

9.8 76.63739 0.08006 -0.07878 2.61E-01 

9.9 75.89759 0.079254 -0.07918 2.61E-01 

10 75.17194 0.078465 -0.07957 2.61E-01 
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