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Abstract 
The well-known Winsor’s principle states that all the 

distributions are normal in the middle. Two new smoothly 
redescending ψ-functions based on Winsor’s principle are 
proposed in the family of M-estimators. The central sections of 
both of these new ψ-functions resembles with that of the mean, 
which is linear and this linearity is the actual reason of highest 
efficiency of the mean under the assumption of normality. The 
efficiency of an estimator is inversely related to the severity of its 
robustness. We show that in the class of redescending M-
Estimators, this new approach produces asymptotically very 
efficient ψ-functions than that of any other earlier one, while still 
robust against outliers. The Iteratively Re-weighted Least Squares 
(IRLS) method based on the proposed ψ-functions clearly detect 
outliers and ignoring those outliers by giving then zero weights. 
Two examples selected from the relevant literature, are used for 
illustrative purposes. The Weighted Least Squares (WLS) method 
based on the proposed new ψ-functions indeed achieve the goals 
for which it is constructed. It gives quite improved and satisfactory 
results in all situations. 
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1. Introduction 

Ordinary Least Squares (OLS) is the optimal regression 
estimator under a set of assumptions on the distribution of the error 
term and predictor variables. It is well known that OLS method 
behaves badly when the error distribution is not normal, 
particularly when the errors are heavy tailed that is if there exists 
outlying observations. This sensitivity of OLS to outliers results in 
very misleading results. To cope with this problem the technique 
of robust regression was developed. The most common general 
method of robust regression is M-estimation, introduced by Huber 
(1964). The most commonly used robust estimators are Huber’s M-
Estimators (Hampel et. al.,1986), MM-estimators (Yohai,1987), 
GM-Estimators, Siegel’s Repeated Median Estimators (Rousseeuw 
and Leroy 1987), Least Median of squares (LMS) estimators, Least 
Trimmed Squares (LTS) estimators (Rousseeuw 1984), S-
Estimators (Rousseeuw and Yohai 1984), Minimum Volume 
Ellipsoid (MVE) estimators (Rousseeuw and Leroy 1987), and 
Minimum Covariance Determinant (MCD) estimators (Rousseeuw 
and Van Driessen 1998).  

The aim of the current study is to introduce a new family of 
asymptotically more efficient, smoothly redescending M-
estimators. This new approach is based on the well-known 
Winsor’s principle (Tukey, 1960), which states that all the 
distributions are normal in the origin.  Huber introduced the notion 
of M-estimators in 1964 (Huber, 1964), which opened new gates in 
the theory of classical statistics. Afterwards several M-estimators 
were proposed from time to time and the theory of M-estimators 
got enriched by every day passed. A brief introduction of M-
estimators is given below. 
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2. M-Estimators 
M-estimators are based on the idea of replacing the squared 

residuals used in OLS estimation by another function of the 
residuals, yielding  
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where ρ is a symmetric function with a unique minimum at zero. A 
reasonable ρ-function should have the following properties, 

1. 0)0( =ρ  
2. 0)( ≥tρ  
3. )()( tt −= ρρ  (Symmetry) 
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5. ρ  is continuous ( ρ  is differentiable) 

Differentiating Equation (2.1) with respect to the regression 
coefficients yields 
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where ψ  is the derivative of ρ  and xi is the row vector of 
explanatory variables of the ith observation. The M-estimate is 
obtained by solving this system of ‘p’ nonlinear equations. The 
solution is not equivariant with respect to scale. Thus, the residuals 
should be standardized by means of some estimate of the standard 
deviation σ so that 
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where must be estimated simultaneously. One possibility is to use 
the median absolute deviation (MAD) scale estimator:   

( ))(medmed483.1ˆ ii rr −=σ  

The multiplication by 1.483 is made so that for normally 
distributed data σ̂  is an estimate of the standard deviation. The 
corresponding w-function (weight function) for any ρ is then 
defined as  
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where it  is the ith standardized residual. Employing this w-
function in OLS, we get weighted least squares (WLS) method and 
the resulting estimates are then called the weighted estimates 
(Hoaglin et. al., 1983).  The estimating equations may be written as 

2

1
)ˆ( ii

n

i
i yyw −∑

=

. 

The weighted estimates are computed by solving the equations 
( ) WyXWXX ′′= −1β̂  

where W is a n x n diagonal square matrix having the diagonal 
elements as weights. 
 
2.1 Redescending M-Estimators: 

The redescending M-estimators were introduced by Hampel 
(Hampel et. al., 1986), who used a three part-redescending 
estimator with ρ-function bounded and ψ-function becoming 0 for 
large |t|. They reject distant outliers completely, but not suddenly, 
allowing a transitional zone of increasing doubt, and are therefore 
much more efficient than “hard” rejection rules; they are usually 
about as good to clearly better than Huber-estimators. The logic of 
these estimators is that the very central observations (in the 
neighborhoods of 0) of the normal neighborhood receive maximum 
weight and as they departs from center their weight declines, and 
as they reach the specified bounds their ψ-function becomes 0.  

The Hampel’s three part redescending ψ-function is 
defined as 
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One can easily conclude that the Hampel’s three part redescending 
estimator is still not a good one, as the abrupt changes in its slope 
are unappealing because of the abrupt changes in the way the data 
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are used. The need of a ψ-function with a smoothly redescending 
nature. Several smoothly redescending M-estimators have been 
proposed from time to time. 

A real improvement came from Andrews (Andrews, 1974) 
and Tukey (Mosteller and Tukey 1977; Hoaglin et. al., 1983) who 
used wave estimators (also called sine estimators) and biweight 
estimators, respectively. Both Andrews’ wave and Tukey’s 
biweight estimators have smoothly redescending ψ-functions. 
Afterwards Qadir (1996) proposed a ψ-function, with weight 
function is a beta function with α = β. Recently, Asad (2004) 
proposed another ψ-function that attains more linearity in its 
central section. The weights for all these decline as soon as 
residuals departs from 0, and are 0 for |t| > a.  
Andrews wave function
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Turkey’s biweight function 
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Qadir’s beta function 
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2.2 Asymptotic Variance and Efficiency of M-Estimators: 
M-estimators are statistically more efficient (at a model 

with Gaussian errors) than L1 regression, while at the same time 
they are still robust with respect to outlying yi. The breakdown 
point of M-estimators is 0% due to the vulnerability to leverage 
points (Rousseeuw and Leroy 1987). In the univariate case, the 
asymptotic variance of the M-estimators at symmetric distribution 
F is given by 
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If Gaussian distribution is assumed so that the ri are i.i.d. and N (0, 
σ 2), the multivariate M-estimators have the asymptotic covariance 
matrix given as 
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3. Winsor's Principle 
Winsor's principle states that all distributions are normal in the 
middle. Hence, the ψ-function of M-estimators should resemble 
the one that is optimal for Gaussian data in the middle. Since the 
Maximum Likelihood estimate for Gaussian data is the mean 
which has a linear ψ-function, it is desired that tkt ≈)(ψ for 
small t , where k is a nonzero constant. In general, a ψ-function is 
linear in the middle results in better efficiency at the Gaussian 
distribution (Tukey 1960). 
4. The New ψ -Functions 
We propose some new ψ-functions and discuss their properties as 
compared with other ψ-functions: Andrews function and Turkey’s 
biweight function.   

The proposed new ψ-functions, which are derived by trial-
and-error method, are given below. 
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where a is the so-called tuning constant and for ith observation the 
variable ‘t’ are the residuals scaled over MAD. 
The ρ-functions corresponding to the above ψ-function satisfies 
the standard properties, generally associated with a reasonable 
objective function. 

Robustness and Efficiency 
Before proceeding to use a robust estimator one would naturally 
wish to know the answers of the two critical questions 

• How robust the estimator is? 
• What is the efficiency of the estimator? 
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One should be aware of the fact that the efficiency and robustness 
of an estimator are inversely related. Then a natural answer to both 
of these questions is “a compromise”, that is one have to choose an 
estimator, which has maximum resistance with minimum 
efficiency losses. One would certainly avoid using a robust 
estimator on the cost of large efficiency loss neither would use a 
completely non-robust estimator with high efficiency but would 
make a compromise between these two options.  

Now the proposed new ψ-functions given by Equations 
(4.1) and (4.2) have a different behaviour as compared to that of 
other redescending estimators such as Tukey’s biweight estimators. 
The proposal is based on the so-called Winsor’s principle stated in 
section (3). Recalling that the ψ-function of the arithmetic mean is 
just a linear straight-line rendering it theoretically the most 
efficient estimator. The proposed new ψ-function capture the 
property of longer linear central section from the ψ-function of 
mean and behaves linearly for large number of the central values 
as compared to other smoothly redescending ψ-functions. This 
increased linearity certainly responses in the enhanced efficiency. 
The ψ-function then redescends gradually for increasing values of 
residuals and becomes zero for values lying outside the specified 
band.  
In empirical situations a routine data set typically contains (1-10)% 
or up to 25% outliers in it. Certainly it is more realistic in applied 
regression to consider data sets with roughly 10% of outliers than 
with 50% outliers (Hampel et al 1986). In any case the proportion 
of outliers cannot exceed 50%, as then it will be very difficult to 
distinguish good data points from bad data points. In other words, 
we can say that at least 50% of the observations in a data set can 
still be considered as good observations (no matter how heavier 
tailed the error distribution is). This new approach takes this fact 
into account and the increased linearity of the central section of the 
proposed ψ-functions means that the central observations (at least 
50%) still receives almost equal weights like OLS.  
Asymptotic Efficiency of the Proposed M-Estimators   

It should be noted that a smoothly redescending M-
estimator behaves very badly if the errors are really normally 
distributed. We know that the application of M-estimators. 
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a -a/2 a/2 a 

Tukey’s ψ1 

ψ2 Mean 

produces bouncing residuals thus making the detection of outliers 
easier. Now Winsor’s principle states that all the distributions are 
normal in the middle; this means that the observations in the 
middle can still be treated by OLS method, which gives equal 
weights to all observations, which is the secret of its highest 
efficiency. But on the contrary almost all of the currently used 
smoothly redescending M-estimators produces bouncing (although 
a very little bounce) residuals for these middle observations too, by 
giving some weights to these observations which in turn increases 
residual’s sum of squares. The proposal of the current M-
estimators is aimed to treat the observations in the middle of the 
distribution linearly like OLS, which results in high efficiency 
gain. The proposed new ψ-functions given by Equations (4.1) and 
(4.2) have the highest ever-attained linearity in their central 
sections. We evaluate the asymptotic efficiency at the standard 
Gaussian distribution for the selected estimators, as shown in 
Figure 4.1.  
From the results presented in Table 4.1 we observe that as the 
tuning constant increase, linearity of the centre of all ψ-functions 
increases, which results in a higher efficiency of the estimator 
resembling with that of the mean. But the increment in the values 
of tuning constants will result in a wider band and the larger no of 
the observations to be included in the analysis, thus the killing the 
purpose of robustification, as the outliers may then be escaped. Of 
course one has to consider 2.5 as the cut off value in the case of 
standard Gaussian errors.  
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We use strictly theoretical approach, using limited integration with 
tuning constants as the limits, to pursue the asymptotic efficiency 
of the selected estimators with the assumption of standard 
Gaussian normality for noise. We see that asymptotic variance and 
efficiency of both of the new ψ-functions, that is, ψ1 and ψ2 are 
much improved as compared to other versions. This approach has 
the benefit of being independent of the sample size. 
One has just to evaluate the expectations of the two functions 
involved in the equation continuously. The above results can be 
easily verified by generating standard Gaussian random samples of 
different sizes e.g. 10, 20, 50 and so on, and then using equation 
2.16 we can find the numerical values for ê , for different tuning 
constants.  
In Figure (4.2), we see that the efficiency score curves of the 
proposed ψ1 (Dashed curve) and ψ2 (Solid curve) functions are 
above all others, approaching to that of OLS for a larger tuning 
constant. Actually Asad’s proposal [Asad (2005); Asad and Qadir 
(2005)] was also an attempt to gain higher efficiency with 
considerable robustness against outliers. But we see that the new 
ψ-functions attains the highest efficiency than any other previous 

Figure4.2 Asymptotic Efficiency of Tukey’s Biweight (Dash-Dot-Dash), 
Asad’s ψ-function (Dots), ψ1 (Dashes) and ψ2 (Solid) compared to OLS 
(Solid Straight Line). 

Figure 4.1. A comparative sketch of different ψ-functions 
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ψ-functions, while still having excellent robustness property.   
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5. The Method 
The method has a very similar procedure as used for a typical M-
estimator. First an ordinary least squares model is fitted to the data 
and the residuals obtained from the fit are standardized over the 
initial scale MAD while subsequent scaling is made over Huber’s 
proposal 2 described in Hampel et. al. (1986) and Street et. al. 
(1988). The scaled residuals are transformed using the proposed w-
function and the initial estimates of regression parameters are 
calculated. Then using the Huber's proposal 2 by IRLS method the 
final estimates are obtained. Simulation studies show that the new 
method of estimation is quite insensitive to the presence of outliers 
and can be applied to detect outliers with a higher efficiency.  
6. Real examples: 
Telephone Calls Data 
Our first example is the familiar telephone calls data set, which is a 
good example of real regression data with a few outliers in y-
direction. The data set is taken from Belgian Statistical Survey. 
The dependent variable is the number telephone calls made from 
Belgium and the independent variable is the year (Rousseeuw and 
Leroy 1987). The data set is executed and analysed by many 
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researchers including Rousseeuw and Leroy (1987), Qadir (1996) 
and Asad (2004). The scatter plot of the data along with different 
fits is shown in Figure (6.1). From the plot it is clear that the 
observations from 1964 to 1969 are outliers. Rousseeuw and Leroy 
(1987) state that actually from the year 1964 to 1969, another 
recording system was used, giving the total minutes of calls (the 
years 1963 and 1970 are also partially affected because the 
transactions did not happen exactly on New Year’s Day).  

The fits from OLS and other robust methods along with the 
proposed method are given in Table (6.1). The OLS fit is highly 
influenced by outliers as it has a very large residual sum of squares 
(RSS), thus the fit represent neither good nor bad data points well. 
This is what one could obtain by not looking critically at those data 
and by applying the OLS method in routine. Except the Qadir’s 
WLS all of the other robust fits ignore 8 outlying observations with 
a negligible difference among their RSS. Here it is to be noted that 
throughout our study we use the unweighted RSS so that a real 
comparison can be made among different robust methods. The fits 
from the OLS, Tukey’s biweight and the proposed method are 
sketched in Figure (6.1). It is obvious that with the proposed 
method, the model fits the data well. The OLS line (solid line) is 
pulled toward the middle of the two groups of observations which 
is the effect of y values associated with years 1964-69, rendering it 
a completely unrepresentative fit, where as the fit with the 
proposed method shows very much robustness and fits a model 
which represents the majority of the observations and avoids 
outliers.  

Table 6.1 Telephone Calls data fitted by OLS and different robust 
methods including the proposed method. 

Method Outliers Detected SS of Residuals 
OLS 0 695.44 
RWLTS 8 0.1313 
RWLMS 8 0.1313 
Tukey  (a = 3.8) 8 0.1362 
Asad (a = 3.0) 8 0.1314 
ψ1 (a = 2.7) 8 0.1313 
ψ2 (a = 2.6) 8 0.1313 
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The robust fits by the proposed method and Tukey’s biweight 
differ very little therefore in Figure (6.1), the two robust lines 
cannot be differentiated from one another. 
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Hadi-Simonoff Data:  
Hadi and Simonoff (1993) generated an artificial data set by using 
the equation given below. 

exxy ++= 21  
The data contains 25 observations with the errors for first three 
cases, while for the rest of the 22 observations; the errors were 
generated from N (0, 1). This data set has three outliers in the 
response direction.  The results summarized in Table (6.2) reveal 
that the proposed method is quite effective in detecting the 
artificially introduced outliers. If we exclude the three outlying 
observations from the actual data set then the OLS fit results in the 
model,  

21 055.1012.1535.0 xxy ++−=      (6.2) 

Figure 6.1 Telephone Calls Data fitted with OLS (solid line) and new  
WLS based on ψ1, ψ2-functions (dashed lines). 
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The Residual Sum of Squares (RSS) obtained from this fitted 
model is equal to 13.594.  

Now the RWLTS and RWLMS both detect several observations as 
outliers other than the actual outliers. Our new method also detects 
the same number of outliers for a narrow band of tuning constants. 
Of course this results in a more robust fit but on the cost  
 
Table 6.2 Hadi-Simonoff data fitted by OLS and different robust methods 
including the proposed methods. 
Method Outliers Detected SS of Residuals 

OLS --- 35.800 
RWLTS 8 3.176 
RWLMS 10 1.265 
ψ1  (a = 2.0) 10 1.270 

ψ1  (a = 2.5) 9 2.167 

ψ1  (a = 3.0) 5 9.517 

ψ1  (a = 4.0) 3 13.628 

ψ2  (a = 2.0) 10 1.266 
ψ2  (a = 2.5) 7 4.409 

ψ2  (a = 3.0) 5 9.482 

ψ2  (a = 4.0) 3 13.600 

of reduced sample size and hence the reduced efficiency of the 
estimators. For a = 4.0 both of our functions gives results very 
similar to that of OLS (Equation 6.2) with three observations 
removed, declaring it as efficient as the OLS. The rest of the 
summary is self-explanatory. We know that RWLTS and RWLMS 
are actually OLS fits to the refined data set after the outliers 
removed. The residuals from the proposed method are actually the 
weighted residuals and hence their sum of squares is a weighted 
RSS, which is still much more similar to that of OLS-RSS with 
deleted observations. For example see results for a = 2.0 and a = 
4.0. 
7. Simulation Study: 

We report a Monte Carlo study in this section, which is 
designed to investigate the performance of the newly proposed M-
Estimators. A simulation strategy described by Rousseeuw and 
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Leroy (1987) has been adopted to verify the performance of the 
proposed method. The strategy consists of two steps. The first one 
is the normal situation,  

 ipiiii exxxy +++++= .2,1, .....1  

 
in which ei ~ N (0, 1) and the explanatory variables are generated 
as xi,j ~ N (0, 100) for   j = 1,…, p. In the second step we construct 
outliers in y-direction. For this purpose, we generate samples 
where some of the observations (e.g. 90%, 80%, etc) are as in the 
first situation and the remaining are contaminated by using the 
error term ei ~ N (10, 1). The number of simulations used in this 

Table 7.1 Simulation results for Simple and Multiple Regression 
 Value

s 
OLS 
No 
Outliers 

OLS RWLMS RWLTS Tukey 
Asad 

ψ1 ψ2 

n =20 βo 0.912 3.236 1.032 1.032 0.987 0.991 0.998 0.999 
Outliers 
= 4 

β1 0.996 0.994 1.012 1.012 1.011 1.008 1.004 1.008 

 RSS 18.756 358.330 13.214 13.214 13.415 13.285 13.245 13.225 
Outliers 
Detected 

---- ---- 4 4 4 4 4 4 

n = 
1000 

βo 0.984 1.461 0.993 0.997 0.998 0.990 0.994 0.999 

Outliers 
= 50 

β1 1.003 0.995 1.002 1.001 1.002 1.002 1.002 1.002 

 RSS 995.540 5611.72 839.144 828.172 945.428 945.221 945.324 945.054 

Si
m

pl
e 

R
eg

re
ss

io
n 

Outliers 
Detected 

---- ---- 65 67 50 50 50 50 

n = 50 βo 1.165 3.154 1.182 1.182 1.221 1.220 1.174 1.180 
Outliers 
= 10 

β1 0.981 1.032 0.989 0.989 0.968 0.991 0.987 0.991 

 β2 1.021 0.910 0.994 0.994 0.989 0.987 0.995 0.994 
 RSS 41.895 739.765 37.745 37.745 37.895 37.865 37.754 37.750 
Outliers 
Detected 

---- ---- 10 10 10 10 10 10 

n = 
1000 

βo 1.121 1.591 1.001 1.060 0.944 0.966 0.997 0.998 

Outliers 
= 50 

β1 0.923 1.052 0.936 0.931 0.955 0.943 0.931 0.935 

 β2 1.051 0.952 1.051 1.055 1.058 1.066 1.041 1.061 
 RSS 1088.50 5945.65 924.70 912.19 1045.67 1041.61 1040.21 1040.15 

M
ul

tip
le

 R
eg

re
ss

io
n 

Outliers 
Detected 

--- --- 65 66 50 50 50 50 
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study was 5000. The results for both ψ1 and ψ2 with different 
(simple and multiple) regressions are given in Table (7.1). From 
the Table it is clear that the proposed method is quite effective in 
detecting outliers and reduces the RSS to a reasonable extent. 
8. Conclusions 

We proposed two new ψ-functions in the class of smoothly 
redescending M-estimators. We showed that under the normality 
assumption of errors, the proposed estimators are asymptotically 
more efficient than any other earlier version of smoothly 
redescending M-estimator. The theoretical results are verified by 
two well-known numerical examples. The simulation results 
strengthen our results. The estimators are quite successful in 
detecting outliers with a weighted RSS equivalent to that of OLS 
with omitted outliers hence gaining efficiency equivalent to that of 
OLS in the center of errors distribution.  
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