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Abstract 
 In this paper we established some recurrence relations for 
the product, ratio and single moments of order Statistics from 
doubly truncated Inverse Weibull distribution. 
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1. Introduction 

Order statistics arise naturally in may real life applications. 
The moments of order statistics have assumed considerable interest 
in recent years and have been tabulated quite extensively for 
several distributions. For an extensive survey, see for example, 
Arnold, Balakrishnan and Nagaraja (1992) and Balakrishnan and 
Sultan (1998). Many authors have established some recurrence 
relations for the single and product moments see for example, Ali 
and Khan (1998) and Khan, Yaqub & Parvez (1983),Aleem and 
Pasha (2003),and Aleem (2004). 
 
 A random variable X has a doubly truncated Inverse 
Weibull Distribution with pdf )(xf is given by: 
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And the corresponding cdf F(x) 
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Where Q and 1-P (0 < Q < P < 1) are respectively the properties of 
truncation on the left and right of the Inverse Weibull distribution, 
respectively. 
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If we put Q = 0, the distribution will be truncated to the right and 
for P = 1, it will be truncated to the left. Where as for Q = 0 and P 
= 1 i.e. Q* = 0, get the non-truncated distribution. 

Let 1)(
+

= mx
mxh

θ
and then from (1.1) and (1.2) we have  
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If we put m = 1, it reduces to the truncated Inverse Exponential 
distribution. If we put m = 2, it reduces to the truncated Inverse 
Rayleigh distribution. The doubly truncated Inverse Weibull 
Distribution may be used to describe some phenomena that depend 
on time start from 00 ≠t . 
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2 For Single Moments 
 
 Let nnnn XXX ;;2;1 ≤≤≤ L be the order Statistics. The 
truncated pdf of nrX ; (1≤r≤n) is given by 
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Theorem 2.1 
 For the truncated inverse Weibull distribution (1.3),  
Let 
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Proof: 
Using the pdf of Xr:n from (2.1) with (1.3), we have 
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upon integrating by parts treating 1−−mJx  for integration and rest 
of the integrand for differentiation, we get 
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Rewriting the above equation, we get 
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Hence the Theorem is proved. 
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 Corollary 2.1 
 By repeated application of the recurrence relation in (2.2), 
we obtain for r ≥ 0 and J=0,1,2,… 
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3. For Product Moments 
 Let nnnn XXX ::2:1 ≤≤≤ L  be the Order Statistics. the 
doubly truncated joint pdf of nrX :  
And nsX : (1 ≤ r < s ≤ n) is given by 
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Theorem 3.1 
For truncated inverse Weibull distribution (1.3), let 
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Proof: 
Using the joint pdf of nrX : and nsX : from (3.1) with (1.3), we 
have 
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Upon Integrating R.H.S with respect to X  by parts taking XJ-m-1 
for integration and rest of the integrand for differentiation, we get. 
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Rewriting the above equation, we get 
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Hence the theorem is proved. 
Corollary 3.1 
 By repeated  application of the recurrence relation in (3.2) 
we obtain for 0 ≤ r < s ≤ n and 
J,k = 0,1,2,… 
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Conclusion and Remarks 
The recurrence relations for the single and product moments of 
order statistics are established for truncated IW distribution. These 
relations may be used to compute the single, product and ratio 
moments in a simple recursive manner for any sample size. Some 
remarks that connect our results with relevant literature results are 
listed below:  
1. Setting m=1 in (2.2), (2.3), (3.1) & (3.2) we get the 

corresponding recurrence relations for the single & product 
moments of order statistics in the case of IE distribution 
(Aleem 2003). 
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2. Putting m=2 in (2.2), (2.3), (3.1) & (3.2) we get the 
corresponding results for IR distribution (Mohsin 2001)  

3. If Q=0 & P=1 then (2.2), (2.3), (3.1) & (3.2) reduces to the non 
- truncated  case (Aleem 2003, 2005). 
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