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In this paper the product, ratio and single moments of the Lower 
Record values are obtained from Inverse Weibull distribution. 
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1. Introduction: 

A random variable X has an Inverse Weibull distribution with pdf 
given by 

              f(x) = )1exp(1 mm xx
m

θθ
−+                (1.1) 

 
where  x>0, (θ ,m)>0 
 
And the corresponding cdf is given by 
 

               F (x) = exp (- mxθ
1 )                                      (1.2) 
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   where x>0, (θ , m)>0 
 
If we put m=1, it reduces to the Inverse Exponential distribution. If 
we put m=2, it reduces to the Inverse Rayleigh distribution. Some 
work has been done on Inverse Rayleigh distribution by Voda 
(1972), Ghanaph (1993), Mukargee & Saren (1984) and Mukarjee 
& Mait (1996). For distributional properties of Record values of 
inverse weibull distribution see Aleem and Pasha (2003), 
Aleem(2004). Other references are Ahsanullah (1995), Ahsanullah 
and Novzorov (2001). 

Let v(x) = mxθ
1    and from (1.1) (1.2), we have 

                   F(x) = )(.
)(

1 xf
xv•  

 
2. Product Moments 
 
The lower record values are respected by X )1(L , X )2(L , ---, X )(nL  
The joint pdf of X )(rL  and X )(sL   (s>r) is 

f )).(( sr  (x,y) = C sr ,  [H (x)] 1−r  [H (y) – H (x)] 1−−rs   h(x) . f(y)                   
(2.1) 

where C sr ,  = - 
)!1()!1(

1
−−− rsr

                           ∞−  < y < x < ∞  

 
and             H (x) = - LnF (x)                                     0 < F(x) < 1 

                   h (x) = - 
dx
d  H(x) 

If g is a Borel measurable function from R 2  to R, then  
            E )},({ )()( sLrL XXg  = 

∫∫
∞<<<

−−− −
xy

rsr
sr xHyHxHyxgC

0

11
, )]()([)]()[,(   

        h(x) f(y) dxdy           (2.2) 
Theorem 2.1 : 

For the distribution function F(x) in (1.2), we have 
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             E )},({ )()( sLrL XXg  = )},({ )1()1( −− sLrL XXuE - 

)},({ )1()( −sLrL XXuE  

Where u • (x,y) = )(),,(),( xvyxgyxu
x

•=
∂
∂  

And )()( xv
x

xv
∂
∂

=•  

 
Proof: Using (1.3) in (2.2), we have  
 
               E )},({ )()( sLrL XXg  = 

∫∫
∞<<<

−−−• −
xy

rsr
sr xHyHxHyxuC

0

11
, )]()([)]()[,(    

f(y) 
dxdy 

Integrating RHS w.r.t “x”, we get as : 
 
 
                

∫∫
∞<<<

−−−
−− −=

xy

rsr
sr dxdyyfxhxHyHxHyxuC

0

12
1,1 )()()]()([)]()[,(  

                    - 

∫∫
∞<<<

−−−
− −

xy

rsr
sr dxdyyfxhxHyHxHyxuC

0

21
1, )()()]()([)]()[,(  

 
 
 
 
and  
               E )},({ )()( sLrL XXg  =  )},({ )1()1( −− sLrL XXuE - 

)},({ )1()( −sLrL XXuE  
Hence the Theorem 
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Theorem 2.2: 

For the distribution function F(x) in (1.2) the recurrence relation 
for the product Moments of Inverse Weibull distribution is given 
by: 

               ][
)(

),(
)1(),(

),(
)1(),1(

,
)(),(

KmJ
sr

KmJ
sr

KJ
sr uu

mJ
mu −

−
−

−− −
−

=
θ

 

Proof: Now mx
xv

θ
1)( =  and g(x,y) = KJ yx  This gives 

KmJ yx
mJ

myxu −

−
=

)(
),(

θ
 , putting in Theorem (2.1), we get the 

required recurrence relation. 

Note, For the ratio, let K= - j, then 
J

s

rJJ
sr X

XEu ⎟
⎠
⎞

⎜
⎝
⎛=−

)(

)(,
)(),(  J∀  

3. Single Moments 

The lower record values are represented by X )1(L , X )2(L , ---, X 

)(NL  . The pdf of X )2()( ≥nnL  is 
 

        )(
)!1(

)]([)(
1

)( xf
n

xHxf
n

n −
=

−

                (3.1) 

 
where H(x) = -LnF(x)   0<F(x)<1 

 h(x) = - )(xH
dx
d  

  
If g is a Borel measurable function from R 2  to R, then  
 
 

)}({ )(nLXgE  = nC  ∫
∞<<

−

x

n dxxfxHxg
0

1 )()]()[(    (3.2) 

       0<x<∞  

where 
)!1(

1
−

=
n

Cn  
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Theorem 3.1: 

For the distribution function F(x) in (1.2), we have 
 
           )}({ )(nLXgE  = )}({)}({ )()1( nLnL xuExuE −−  
 
Proof: Using (1.3) in (3.2), we have 
           )}({ )(nLXgE  = nC  ∫

∞<<

−•

x

n dxxFxHxu
0

1 )()]()[(  

Integrating RHS, we get 
 

              = ∫
∞<<

−
−

x

n
n dxxfxHxuC

0

2
1 )()]()[(  - nC  

∫
∞<<

−

x

n dxxfxHxu
0

1 )()]()[(  

and  
             )}({ )(nLXgE = )}({)}({ )()1( nLnL xuExuE −−  
Hence the Theorem 
Theorem 3.2: 

For the distribution function F(x) in (1.2) the recurrence relation 
for the single moments of Inverse Weibull Distribution is given by 

              J
nu )(  = 

)( mJ
m
−θ

 [ ]mJ
n

mJ
n uu −−
− − )()1(  

Proof: Now mx
xv

θ
1)( =  and )( )(nLXg  = Jx  this gives 

)( )(nLXu  = 
)( mJ

m
−θ

mJx −  , putting in (3.1) we get the recurrence 

relation. 
 
Remark: This recurrence relation in Theorem (2.2) between 
the moments of ratio of two lower record values, quasi-ranges, 
joint moment generating function, characteristic functions, 
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whenever they exist can be obtained by setting respectively g(x,y) 
equal to  
 
             ( ) ( ) )()( ,,, YXiTYXTKJ eexyyx ++− − . 

Note: All the above results goes for single lower record values 
if one replace the function g(.,.) by a function of single variable 
g(.). 
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