Product, Ratio and Single Moments of Lower Record Values of Inverse Weibull Distribution

M. Aleem

Abstract:

In this paper the product, ratio and single moments of the Lower Record values are obtained from Inverse Weibull distribution.

Key Words:
Moments, Recurrence Relations, Lower Record values, Inverse Weibull distribution.

1. Introduction:

A random variable X has an Inverse Weibull distribution with pdf given by

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{m}{\theta x^{m+1}} \exp \left(-\frac{1}{\theta x^{m}}\right) \tag{1.1}
\end{equation*}
$$

where $\mathrm{x}>0,(\theta, \mathrm{~m})>0$
And the corresponding cdf is given by

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=\exp \left(-\frac{1}{\theta x^{m}}\right) \tag{1.2}
\end{equation*}
$$

where $\mathrm{x}>0,(\theta, \mathrm{~m})>0$
If we put m=1, it reduces to the Inverse Exponential distribution. If we put $m=2$, it reduces to the Inverse Rayleigh distribution. Some work has been done on Inverse Rayleigh distribution by Voda (1972), Ghanaph (1993), Mukargee \& Saren (1984) and Mukarjee \& Mait (1996). For distributional properties of Record values of inverse weibull distribution see Aleem and Pasha (2003), Aleem(2004). Other references are Ahsanullah (1995), Ahsanullah and Novzorov (2001).
Let $v(x)=\frac{1}{\theta x^{m}}$ and from (1.1) (1.2), we have

$$
\mathrm{F}(\mathrm{x})=\frac{1}{v^{\bullet}(x)} \cdot f(x)
$$

2. Product Moments

The lower record values are respected by $\mathrm{X}_{L(1)}, \mathrm{X}_{L(2)},---, \mathrm{X}_{L(n)}$ The joint pdf of $\mathrm{X}_{L(r)}$ and $\mathrm{X}_{L(s)} \quad(\mathrm{s}>\mathrm{r})$ is
$\mathrm{f}_{(r) .(s)}(\mathrm{x}, \mathrm{y})=\mathrm{C}_{r, s}[\mathrm{H}(\mathrm{x})]^{r-1}[\mathrm{H}(\mathrm{y})-\mathrm{H}(\mathrm{x})]^{s-r-1} \mathrm{~h}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})$
where $\mathrm{C}_{r, s}=-\frac{1}{(r-1)!(s-r-1)!}$ $-\infty<\mathrm{y}<\mathrm{x}<\infty$
and

$$
\begin{aligned}
& \mathrm{H}(\mathrm{x})=-\mathrm{LnF}(\mathrm{x}) \\
& \mathrm{h}(\mathrm{x})=-\frac{d}{d x} \mathrm{H}(\mathrm{x})
\end{aligned}
$$

$$
0<\mathrm{F}(\mathrm{x})<1
$$

If g is a Borel measurable function from R^{2} to R , then

$$
\begin{gather*}
\mathrm{E}\left\{g\left(X_{L(r)}, X_{L(s)}\right)\right\} \\
C_{r, s} \iint_{0<y<x<\infty} g(x, y)[H(x)]^{r-1}[H(y)-H(x)]^{s-r-1} \\
\quad \mathrm{~h}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{dxdy} \tag{2.2}
\end{gather*}
$$

Theorem 2.1:
For the distribution function $\mathrm{F}(\mathrm{x})$ in (1.2), we have

$$
\begin{aligned}
& \quad \mathrm{E}\left\{g\left(X_{L(r)}, X_{L(s)}\right)\right\}=E\left\{u\left(X_{L(r-1)}, X_{L(s-1)}\right)\right\}- \\
& E\left\{u\left(X_{L(r)}, X_{L(s-1)}\right)\right\} \\
& \text { Where } u^{\bullet}(\mathrm{x}, \mathrm{y})=\frac{\partial}{\partial x} u(x, y)=g(x, y), v^{\bullet}(x) \\
& \text { And } v^{\bullet}(x)=\left|\frac{\partial}{\partial x} v(x)\right|
\end{aligned}
$$

Proof: Using (1.3) in (2.2), we have

$$
\begin{gathered}
\mathrm{E}\left\{g\left(X_{L(r)}, X_{L(s)}\right)\right\} \\
C_{r, s} \iint_{0<y<x<\infty} u^{\bullet}(x, y)[H(x)]^{r-1}[H(y)-H(x)]^{s-r-1}
\end{gathered}
$$

Integrating RHS w.r.t "x", we get as :
$=C_{r-1, s-1} \iint_{0<y<x<\infty} u(x, y)[H(x)]^{r-2}[H(y)-H(x)]^{s-r-1} h(x) f(y) d x d y$
$C_{r, s-1} \iint_{0<y<x<\infty} u(x, y)[H(x)]^{r-1}[H(y)-H(x)]^{s-r-2} h(x) f(y) d x d y$
and

$$
\begin{aligned}
& \mathrm{E}\left\{g\left(X_{L(r)}, X_{L(s)}\right)\right\}= \\
& E\left\{u\left(X_{L(r)}, X_{L(s-1)}\right)\right\}
\end{aligned}
$$

Hence the Theorem

Aleem

Theorem 2.2:
For the distribution function $\mathrm{F}(\mathrm{x})$ in (1.2) the recurrence relation for the product Moments of Inverse Weibull distribution is given by:

$$
u_{(r),(s)}^{J, K}=\frac{m}{\theta(J-m)}\left[u_{(r-1),(s-1)}^{(J-m), K}-u_{(r),(s-1)}^{(J-m), K}\right]
$$

Proof: Now $v(x)=\frac{1}{\theta x^{m}}$ and $\mathrm{g}(\mathrm{x}, \mathrm{y})=x^{J} y^{K}$ This gives
$u(x, y)=\frac{m}{\theta(J-m)} x^{J-m} y^{K}$, putting in Theorem (2.1), we get the required recurrence relation.
Note, For the ratio, let $\mathrm{K}=\mathbf{-} \mathbf{j}$, then $u_{(r r),(s)}^{J,-J}=E\left(X_{(r)} / X_{(s)}\right)^{J} \forall J$

3. Single Moments

The lower record values are represented by $\mathrm{X}_{L(1)}, \mathrm{X}_{L(2)},---, \mathrm{X}$ ${ }_{L(N)}$. The pdf of $X_{L(n)}(n \geq 2)$ is

$$
\begin{equation*}
f_{(n)}(x)=\frac{[H(x)]^{n-1}}{(n-1)!} f(x) \tag{3.1}
\end{equation*}
$$

where $\mathrm{H}(\mathrm{x})=-\operatorname{LnF}(\mathrm{x})$

$$
0<\mathrm{F}(\mathrm{x})<1
$$

$$
\mathrm{h}(\mathrm{x})=-\frac{d}{d x} H(x)
$$

If g is a Borel measurable function from R^{2} to R , then

$$
\begin{equation*}
E\left\{g\left(X_{L(n)}\right)\right\}=C_{n} \int_{0<x<\infty} g(x)[H(x)]^{n-1} f(x) d x \tag{3.2}
\end{equation*}
$$

$$
0<x<\infty
$$

where $C_{n}=\frac{1}{(n-1)!}$

Theorem 3.1:

For the distribution function $\mathrm{F}(\mathrm{x})$ in (1.2), we have

$$
E\left\{g\left(X_{L(n)}\right)\right\}=E\left\{u\left(x_{L(n-1)}\right)\right\}-E\left\{u\left(x_{L(n)}\right)\right\}
$$

Proof: Using (1.3) in (3.2), we have

$$
E\left\{g\left(X_{L(n)}\right)\right\}=C_{n} \int_{0<x<\infty} u^{\bullet}(x)[H(x)]^{n-1} F(x) d x
$$

Integrating RHS, we get

$$
\begin{aligned}
& \quad=\quad C_{n-1} \int_{0<x<\infty} u(x)[H(x)]^{n-2} f(x) d x \\
& \int_{0<x<\infty} u(x)[H(x)]^{n-1} f(x) d x \\
& \text { and } \quad-C_{n} \\
& \quad E\left\{g\left(X_{L(n)}\right)\right\}=E\left\{u\left(x_{L(n-1)}\right)\right\}-E\left\{u\left(x_{L(n)}\right)\right\}
\end{aligned}
$$

Hence the Theorem
Theorem 3.2:

For the distribution function $\mathrm{F}(\mathrm{x})$ in (1.2) the recurrence relation for the single moments of Inverse Weibull Distribution is given by

$$
u_{(n)}^{J}=\frac{m}{\theta(J-m)}\left\lfloor u_{(n-1)}^{J-m}-u_{(n)}^{J-m}\right\rfloor
$$

Proof: Now $v(x)=\frac{1}{\theta x^{m}}$ and $g\left(X_{L(n)}\right)=x^{J}$ this gives $u\left(X_{L(n)}\right)=\frac{m}{\theta(J-m)} x^{J-m}$, putting in (3.1) we get the recurrence relation.

Remark: This recurrence relation in Theorem (2.2) between the moments of ratio of two lower record values, quasi-ranges, joint moment generating function, characteristic functions,

Aleem
whenever they exist can be obtained by setting respectively $\mathrm{g}(\mathrm{x}, \mathrm{y})$ equal to

$$
\left(x^{J} y^{-K}\right),(y-x), e^{T(X+Y)}, e^{i T(X+Y)} .
$$

Note: All the above results goes for single lower record values if one replace the function g(...) by a function of single variable g(.).

References:

1) Ahsanullah, M. \& Novzorov, V. B. (2001), "Ordered Random Variables" Nova Science Publishers, Inc. New York
2) Ahsanullah, M. (1995). Record Statistics. Nova Science Publishers, Inc. New York.
3) Aleem, M. (2004), Some Distributional Properties, Characterization, Ratio, Product and Inverse Moments Of Lower Record values of Inverse Weibull distribution. JOPAS, vol 22(2), 49-56.
4) Aleem, M and Pasha G.R. (2003). Ratio, Product and Single Moments Of Order Statistics from Inverse Weibull Distribution. JS, vol x (1), 7-8.
5) Gharraph, M.K. (1993). Comparison of Estimators of Location Measures of an Inverse Rayleigh Distribution. The Egyptian Statistical Journal. 37,295-309.
6) Mohsin, M (2001). Some Distributional Properties of Lower Record Statistics for inverse Rayleigh Distribution. (Unpublished M. Phil Theses) University of Lahore, Pak. Oct. 2001.
7) Mukarjee, S. P. and Maiti, s.s.(1996). A Percentile Estimator of the Inverse Rayleigh parameter. IAPR Transactions, 21, 63-65.
8) Mukarjee, S. P. and Saren L.K (1984). Bivariate Inverse Rayleigh Distribution in Reliability Studies, Journal of Indian Statistical Association. 22,23-31.
9) Voda, V. Gh.(1972). On the "Inverse Rayleigh" Distributed Random Variables, Report in Statistical Applied Research JUSE, 19, 13-21.
