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Outliers in Designed Experiments;

I - Classical Robust & Resistant Methods

ABSTRACTS: The robust regression analysis and the designed
experiments are two of the fastest growing fields in contemporary Statistics.
There has been very little overlap between these fields. In designed
experiments, designs were contrived for the efficient use of the least square
estimates to maximize response, while in robust regression analysIs. robust
alternatives to the non-robust conventional least square estimates were
developed. This paper, the first in the series of three, is an attempt to bridge
the gap. It discusses classical robust, like M estimators using a lIJ function
developed by Huber, Hampel, & Tukey, and resistant estimators of these for-
regression-analysis techniques to deal with outliers in the domain of designed
experiments. Further, a Monte-Carlo simulation is carried out to appraise the
efficiency of these methods in designed experiments and then a factorial
experiment, with possible outliers, is reanalyzed. It is revealed that these
techniques, with some precautions and modifications, work excellent in
designed experiments.

Keywords: Outliers, M-Estimates, Huber Estimates, Hampel Estimates,.
Tukeys' bi weight method, Resistant Methods, Least
Trimmed Median Squares methods.

1. INTRODUCTION

In the introduction to The Design of Experiment, Fisher [12] states
statistical procedure and experimental designs are only two different
aspects of the same whole, and that whole comprises all the logical
requirements of the complete process of adding to natural knowledge of
experimentation. Investigators in virtually all fields of inquiry, usually to
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discover something about a particular process or system and to improve
the process functioning, perform experiments. Observations coming out
from these experiment are an explicit manifestation of different facets of
the process, or system, and exhibiting a peculiar harmony, balance and
alliance in their magnitudes. Many a times, this is not the case and some
surprising observation(s) stands apart from the bulk of data and the
should-be harmony, balance and alliance shatters. These surprising
observations are called outliers, in statistical literature, and the focal point
of this study.

Experience shows that in a typical industrial setting 1 to 10% of all
measurements performed for the purpose of the planned experiments
results in grossly surprised data and should be treated as outlier (see, for
related comments, Daniel [8], Anscombe [2], Morgenthaler & Schumacher
[23]). Whole complexion of the data, and of its interpretation, changes
because of these outliers. The presence of outliers in a set of data, quoting
Hawkins [15] and Barnett & Lewis [3], may by tackled by (a) their outright
rejection from the data by considering it an error, (b) further analyzes for
suspected outliers for ascertaining their validity, (c) their incorporation by
using special modifications either in the model or in the design, or (d) re-
experimentation, to be sure what is happening. It has been a common
practice, among the experimenters, to throw such observations out, just by
labeling them as erroneous. But, these cannot be erroneous all the time
and in that case the experimenter may run the chance of loosing an
important, may be the most important, aspect of the experiment. On the
other hand, once the measurements have been taken, it is in most
situations impossible to check the validity of single measurements by
repeating selected experiments. It is, therefore, important to search for
specialized methods that may used to adjust the analysis, and
interpretations, for possible surprising observations without kicking them.
out.
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The literature on outliers in designed experiments seems to be divided
into two broad categories; (a) using for-regression techniques and (b)
specialized design based techniques. The for-regression techniques are
pioneered by Huber, and will be discussed in section O. While the
specialized design based techniques are discussed by Box & Draper [4], &
[5]), Herzberg & Andrews [16], Andrews & Herzberg [1] and Draper &
Herzberg [10] primarily for developing robust design from central
composite designs. Then in 1980s Taguchi and his school of thought give
new edge to these robust designs (see, for example, Taguchi & Wu [29],
Taguchi [30] & [31]). His parameter designs are a sort of industrial
adaptation of statistical experimental designs, and are still controversial
among statisticians. As a result, the experimental designs robust to
outliers provide more rigorous statistical approach to analysis by
considering noise variables as outliers.
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Here, I am studying these surprising observations with emphasis on
for-regression techniques to anticipate them, instead of throwing them out,
in the domain of experimental designs. This first paper, in a series of three,
will discuss the classical robust, like M estimators, Huber estimates,
Tukey's bi-weight method, and resistant methods least trimmed median
squares, since these considered to be the most robust family of estimators.
While the remaining two would discuss the non-parametric and neural
network methods respectively. Section 0 is giving a brief introduction of
these methods, while the 3,dand 4'h sections deal with their applications. A
Monte-Carlo simulation is carried out, in the 3rd section, to compare the
performance and efficiency of these methods. While in the 4th section, an
experiment is reanalyzed to see how well these estimators perform on a
real data.

2. ROBUST & RESISTANT METHODS

Robust and resistant methods are developed primarily to reduce the
malignant effect of potential delinquencies in the application of statistical
theory. These procedures can both minimize the effect of such
delinquencies as well as help to identify them. In the domain of regression
analysis, robust techniques are pioneered by Huber ([19), [20], and (21))
primarily to address the problem of outliers. Since then, several robust
estimates for regression with high breakdown point have been proposed.
Starting with M-estimates, the statistical literature, now, has a robust
method named almost after each alphabet addressing not only the problem
of outliers but almost all sorts of delinquencies. The resistant methods are,
simply, another class of robust methods where a regression analysis is
carried out by using only good points in the data set, thereby achieving a
regression estimator with a high breakdown point. These include the least
median of squares estimates and the least trimmed squares estimates
proposed by Rosseeuw [26], the scale estimates proposed by Rousseeuw
& Yohi [27], the MM estimates proposed by Yohai (33), the T estimates
proposed by Yohai & Zamar [34], etc. These estimates have a very high
computational complexity (see Pena & Yohai (24), and Faraway (11)) and
thus usual algorithms compute only approximate solutions.

The majority of approaches in robust regression assume that the
independent variables, predictors, are random and outliers can appear also
in these independent variables. For designed experiments, these
assumptions make no sense. The analysis, presented in this paper,
suggests that robust, and resistant, regression may be a valuable tool for
experimentalists concerned with the possibility of outliers or of data which
are not normally distributed. Let us discuss some classical robust and
resistant methods. Consider a linear regression model of the form
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Where Y is a (n x 1) vector of response variables, X is a (n x p) known
design matrix of rank p, 9 is a (p x 1) vector of unknown parameters, and E

is a (n x 1) vector of errors. The statistical theory necessitates a number of
precincts in the application of this model including the normality of errors
with mean zero and a constant variance. In presence of outlier(s), this
normality precinct is no more be abided by, that results in misinterpretation
of the data especially when methods are used which relied heavily on the
normal distribution, like ordinary least square estimation. Here is another
approach to this age-old method of least square estimation to adjust it for
outliers. The least squares estimation attempts to minimize

{2} tS'~i-e)

where 9 is a location parameter and ~ is of continuous type. Suppose
that this minimization can be achieved by differentiating and solving the

function in Eq.{2}; I.e., finding the appropriate () that satisfies

{3} t\'l~,-e)=o
where ",(x) is the first differential of ~(x). The solution of this equation
(Eq.{3}) that minimizes the sum in Eq.{2} is called M-estimator of 9, the
parameter in concern. Care should be taken to select ~ (.) so that the
resultant estimator protect us against, at least a small percentage (around
10%).of outliers and, in addition, efficient enough (around 95%) in case the.
data actually enjoys the normality precincts. There are several solutions
available for the equation in Eq.{3}. Rey [25] gives a comprehensive
discussion on a number of such solutions. The function sign(x) in the
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Table 1 is equal to -1, 0, or 1 according to whether x is less than, equal to,
or greater than zero. The constants a, b, and c may be chosen so that the
resultant estimator has desirable properties. The fact that Hampel's,
Andrews' and Tukey's lfJ(x) descend to zero suggests that they give no
weight to unusually large outliers (see Hampel (14)). But, this is not the
case with Huber's that does give some weight (no doubt much smaller than
the least squares) to these unusually large outliers. But, such a descending
function may have problems with convergence. As Venables & Ripley [32]
observes that Huber's y(x) corresponds to a convex optimization problem
and gives a unique solution, while the other may have multiple local
minima and a good starting point, for iterations, is desirable.

The least trimmed mean squares methods, on the other hand, attempts to

minimize a randomly selected subset of errors, I:'i,' where. q is some

number less than nand '1 indicates sorting; that is, they are defined by

{4} e = arg(min S(i, ,..., i,,))

where ii = y, - xie, i = 1,2, ... ,n and S is some appropriate scale of

residuals. The usual approximate solution to the estimates defined by
Eq.{4} are of the form

{5} e = arglmin S(i, ,..., i,,))
flEA

where A = (B(') ,... ,B(")) is a sorted finite set of parameter estimates.
Selection of the element of this finite set is quite scheming. Rosseeuw [26]
proposed a scheme of choosing random n sub-samples of p different
design points defined by

{6} min I Iy, - el'o (i)
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Table 1: Some Popular Solutions for ~(x) and lI'(x)

Criterion fix) lI'(x) Ranae 1I , Ixl ~ c-x x
2

Huber

(Ixle -~c') c.sign(x) Ixl > c

a(1-COS~) . x [xl ~ WI"SIn-
Andrews (I

2a 0 Ixl > (IffI 2 [xl >a-x x
2

(Ixl(l - ~h2 ) a.sign(x) a <Ixl ~ h
Hampel

a(elxl- 0.5x2
) 7 , asign(x)(c -Ix[)

h < [xl ~ e--a-
c-h 6 c-h

a(h+c-a) 0 e < Ixl

( ')'x-
(I ~ Ixl

Bi-weight
x 1--;
0 a <Ixl

Tukey C3'(I-(~rJ c ~Ixl
Bi-square ,c c < Ixl-,

J

This fit is very resistant, and needs no scale estimate. Unlike the robust
regression, it can reject values that fit badly because their Xi are autlier.
However, this merit is of no use in case of experimental data where the x's
are fixed. Hettmansperger & Sheather (17) and Davies (9) remark that it
displays marked sensitivity to central data values. There are also differing
opinions over the selection of q. Rosseeuw suggests that the sum should
be taken over the smallest
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squared errors, while Marazzi ([22), p. 200) opines for Rosseeuw & Leroy
[28] show, for a small fraction p/2, the probability of getting a clean subset
is given by (1-(1-(1-I])P)") where I] is the fraction of outliers. They also
compute the number of sub-samples required to make this probability (1-
0) is given by

{8}
-loga

'" )"n'],(l,p - (1 - '7

Incidentally, this number increases exponentially with an increase in p.
Resultantly, methods based on random sub-sampling can be appropriate
only when p is not very large. Venables & Ripley [32), however, is using an
iterative procedure with different functions of the sorted squared errors, in
writing algorithms (named Its, Ims, Iqs) for S-Plus and R, including quantile
squared errors, sum of the quantile smallest squared errors with different
default values. To control the complexity and time intensity of the
procedures, he uses three levels; (1) 5p, (2) exhaustive enumeration up to
5000 samples, and (3) complete enumeration. The complete enumeration
may take several hours to have a solution ..

3. MONTE CARLO SIMULATION FOR COMPARISON

It is very difficult to discriminate these methods for the best, or even for
an optimal. Monte Carlo Simulation, however, has the advantage that it is a
brutal force technique that solve many problems for which no other
solution exist. Here is a Monte Carlo simulation for discriminating among
these methods. Consider a 2' full factorial experimental design for a
second order model with all the two factor interaction terms. Translating,
the model in Eq.{l} for the given situation results in

{9} IIO II"IIO)',=00+ O,X,+. O"X,X,+c,
I J I .

Suppose the true values for the model parameters are known and are given
by Table 2.

Table 2: True Values for the Model Parameters
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One thousand samples are taken from a normal distribution to
estimate these model parameters employing different methods of
estimation, described in the previous section. An outlier is introduced by
making use of mean shift model approach (see Cook & Weisberg, [7), pp.
20) assuming that vector d (a 16 x 1 vector with zeros everywhere except at
the point where the outlier is to be introduced) is added to error vector.
Results are shown in Figure 1, which is showing the empirical distributions
for all the eleven model parameter estimates under different methods.

The fit is considered to be as good as it is close to the true value. The
solid black line is used for the ordinary least square fit, the thick line is
used for a M estimator under Hubers' rp function with tuning constant equal
to unity, the dotted line is used for a M estimator under the Hampel's rp
function with initial set of parameters estimates taken from the ordinary
least squares fit, while the spotted line is used for a least trimmed mean
square fit. A computer code, written in R, is available in appendix for this
simulation, which takes approximately 3 hours on a PIV 2.4 GHz, 512 MB
RAM machine.

The vertical line in each panel is showing the actual value of the
parameter. Evidently, the least square fit is pathetically poor even in the
presence of a single moderate outlier. No doubt, it is more efficient but it
stands a way apart from the true value. While the robust estimators seem
to be less efficient but they are more close to the true values. Among the
Robust methods, the Hampel's M estimates are behaving just like that of
ordinary least squares'. Hubers's estimates, however, are doing slightly
better. But, the least trimmed mean square fit is the best. It manages to
estimate all the model parameters with approximately zero standard error.

Let us take a real data example, from the literature, to see the behaviorJ
of these estimates. .
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I am taking an already analyzed data from Goldsmith & Boddy ([13),
second example). The previous analysis would be used to compare the
efficiency of the new methods. The example relates to a 26•1 fractional
factorial design used to look into the fibrillation occurring in a polyester
tape when two contra-rotating air jets twist it. The analysis was done with
SAS. The factors explored are

A: Tape Width

C: Type of Jet

E: Air Pressure

B: Tape Thickness

D: Tape Speed

F: Tape Tension

with the defining contrast F = ABCDE. The formal analysis of the, by
Goldsmith & Boddy [13), using all main effects and only some two-factor
interactions, and making use of their own special method based on the
residual sums of squares, shows that the data may have two outliers
[observation #12 and #16). I am using here, however, all the two factor
interactions. The half-normal plot, in
Figure 2, produced by R, for the least square residuals.

Figure 2: Half Normal Plot for Residuals

Goldsmith & Boddy [13] Data
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The two suspected outliers (design point #12 and #21) revealed by the half-
normal plot, in Figure 2, are allocated the least weights. The Hampel's psi
function, with initial values of parameter's estimates given either by
ordinary least squares (/s) or by least trimmed squares with 200 samples
(Its), tells a different story.

The weight allocation renders the Huber fit, with a tuning constant
c=1.a, closest to the ordinary least square solution. A lower tuning
constant gives a less than unity weight even to contiguous-to-suspected-
outliers, but smaller tuning constant increases the residual standard error.
The parameter estimates, and their significance status, for the intercept
and all the included interaction effects are the same for different values of
c.

There are two observations (#12 and #21) stand apart from the data,
may be outliers, and the normality assumption also seems to be in danger.
Resultantly, the least square estimation can not be relied upon. let us
apply the robust procedure to extract M-estimates for the model
parameters. Errorl Not a valid bookmark self-reference. gives these parameter
estimates, while the Table 4 gives the weight for design points, for different
selection of Ip(x), constants and initial values for iterations involved,
explained in Table 1.
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The weight allocation, in this case, is quite different from that of Huber's.
There are some design points that are given zero weights. The function
with least trimmed mean square estimators are initial values renders the
same design points as outliers, while the other initial values renders a
different set of suspected design points. The ath and 9th columns give the M
estimates by using Tukeys' biweight psi function. Quite interestingly, this
gives another set of suspected design points, different from the previous. It
also renders a few effects as significant.
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Table 3: Parameter Estimators under Different lJl(x)

Linear Huber Hampel luke Resistant
Regression C " c " Is Its Is Its Estimates0.2 1.8

Intercept 9.125 9.125 9.125 9.125 8.625 9.125 11.625 8.563 8.613

A 1 0.750 0813 0625 0.250 0.292 .1.750 1 1.625

B 2.875 2.75 2.688 2.5 1.5 2.167 2 4 3.375

C 2.813 .2.193 .2.165 2.438 .0.5 2.105
.3 .2.5 .2.125

0 1.5 0.443 0.415 1.125 1.75 0.792 .0.25 0.75 0.125

E .2.25 .2.114 .2.125
1.875 .0.75 1.542 1.25 .2.5 .2.125

F 0.813 0.136 0.125 0.438 .1.25 0.105 0.25 0.75 0.125
AB 1.375 1.375 1.375 1.375 0.75 1.375 1.875 0.813 0.94

AC 1.063
.1.063 .1.063

1.063 0.25 1.063
.1

1.313
.1.9

AD 1.25 1.25 1.25 1.25 0.375 1.249 3.25 1.938 2.69

AE 0.625 .0.625 .0.625 0.625 1.375 0.625 .2.875 0.813 .0.6

AF 0.813 0.813 0.813 0.813 0.625 0.813 0.375 1.438 1.3

BC 0.688 .0.688 .0.688 0.688 0.875 0.688
.2

1.563 .1.6

BO 0.875 0.875 0.875 0.875 .1.5 0.875 2.5 2.188 2.3

BE 0.875 .0.875 .0.875 0.875 .0.25 0.875 .1.625 0.563 .0.9

BF 1.063 1.063 1.063 1.063 1 1.062 2.125 1.188 1.69

CO 1.063 .1.063 .1.063 1.063 0.25 1.063 .1.625 2.188 .1.6

CE 1.313 1.313 1.313 1.313 .0.25 1.312 1.25 1.563 1.4

CF 1.125 .1.125 .1.125 1.125 .1.75 1.125 .2 2.688 .2.4

DE .1.75 .1.75 .1.75 .1.75
1.375 1.749 -4.5 3.188

.3.2

OF 0.563 0.563 0.563 0.563 2.125 0.563 0.75 0.188 .0.3

EF .0.563 .0.563 0.625 .0.625 .1.3

O"c

The main difference between the Huber method and the Tukey's
biweight method is the sharper solution with Tukey's. Both techniques
minimize some criterion function computed from the residuals, but the
Huber criterion is a convex function of the unknown regression parameters
while the Tukey's may have more than one local minima, as Hogg [18]
points out. This is particularly true with the data with more than one fit,
which is the case here. Collins [6] also warns the use of these sensitive-to-
multi-minima estimators in case of acute asymmetric data. The very last
column gives the estimates for the trimmed median squares. These
estimates are quite different in magnitude, significance (calculated through
the Bootstrap method) and the sign. Most of the interactions effects have
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different signs, while only two of them are significant. The Monte Carlo
simulations renders these estimators are the best.

4. DISCUSSION & CONCLUSION

61

The classical, least square approach for estimating the model
parameters is founded on stringent precincts. But, the real word does not
behave as nicely as described by these precincts. The performance and the
valid application of the procedure requires strict adherence to the
assumptions. Consequently, semi parametric (as discussed in this paper)
and non parametric approaches are sometimes the only possible solutions.
In many practical situations, the experimenter does have an idea about the
experimental error and thus the fault, if exist, can easily be sensed. This
paper addresses what to do next. There exists a bunch of robust and
resistant methods and I have tried to compare some of them with particular
reference to experimental designs. The Monte-Carlo simulation and the
analysis of the 26-1 factorial design data led us to the following
conclusions;

• In a designed experiment, these techniques are applied only on
response data and not on X data.

• A very unusual observation should be taken away from the data
either for a separate peeking or dustbin. All the robust and resistant
methods are sensitive to grossly unusual data points(s).

Table 4: Weights for Design Points under Different lIl(x)

Obs.
Linear Huber HamDel Tukev
Regression c-0.2 c-1.0 c=1.8 Is Its Is Its

1 1 . 0.0899 0.3914 1 0 1 1 0
2 1 1 1 1 0 1 0 1
3 1 1 1 1 0.9884 1 1 1
4 1 0.0219 0.0932 1 1 1 1 1
5 1 1 1 1 1 1 1 0
6 1 0.1738 1 1 1 1 1 1
7 1 0.7181 1 1 1 1 0 1
8 1 0.0278 0.1173 1 1 1 0 1
9 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 0
11 1 0.1868 1 1 1 1. 1 0
12 1 0.0107 0.0459 0.4004 0 0.0561 1 1
13 1 0.0663 0.2795 1 0 1 1 1
14 1 1 1 1 0 1 1 1
15 1 1 1 1 1 1 1 1
16 1 0.0899 0.3913 1 1 1 1 1
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17 1 0.0899 03913 1 0 1 0 1
18 1 1 1 1 1 1 0 0
19 1 1 1 1 1 1 0 1
20 1 0.0663 0.2795 1 1 1 1 1
21 1 0.108 0.04585 0.4004 1 00561 0 0
22 1 0.1868 1 1 1 1 0 1
23 1 1 1 1 1 1 0 1
24 1 1 1 1 0 1 1 1
25 1 0.0278 0.1173 1 0 1 1 ~26 1 0.7181 1 1 1 1 1 1
27 1 0.1738 1 1 1 1 0 0
28 1 1 1 1 1 1 1 1
29 1 0.0219 0.0932 1 1 1 1 0
30 1 1 1 1 0 1 1 0
31 1 1 1 1 1 1 1 1
32 1 0.0899 0.3914 1 1 1 1 1

-- --

• The robust estimators are biased and are less efficient than that of
ordinary least squares, but they estimate the parameters with more
accuracy.

• The robust procedures are two prong attack; they identify and
locate the outliers and secondly adjust the analysis for their
presence.

• The experimenter does not have to worry about the magnitude and
number of outliers, like the design based procedures.

APPENDIX

## Monte Carlo Simulation
## Code written in R
library(Mass)
library(lqs)
bols<-matrix(O, 1000,11)
bhub<-matrix(0,1 000,11)
bham<-matrix(0,1 000,11)
bres<-matrix(O, 1000,11)
## Construction of Design Matrix
a<-c(rep(c( -1,1),c(8,8»))
b<-rep(c(rep(c( -1,1 ),c(4,4»)),2)
c<-rep(c(rep(c(-1,1 ),c(2,2))),4)
d<-rep(c(-1,1 ),8)
x<-c bind (1,a,b ,c,d ,a* b,a *c ,a'"d, b'"c, b*d I c'* d)
## Supposed Values of Parameter Estimates
bta<-c(5,3,6,8,4,5,1,7,0.4,3,6)
## Simulations Starts
for ( i in 1:1000){
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## Error is supposed to be normally distributed
e<-rnorm(16)
## Error is corrupted with an outlier
e[8]<-e[8]+(9+runif(1 ))
y<-x%"'%bta+e
bols[i ,]<-coef( Im(y-( a+b+c+d)A 2»
bh ub[i,] <-coef( rlm(y-( a+b+c+d)A 2,
psi=psLhuber,
method=c("M"),scale.est="MAD" ,maxit=150),k=1)
bham[i ,]<-coef( rlm(y-( a+b+c+d)' 2,
psi=psi.hampel,
method=c("M") ,sea le.est="MAD" ,maxit=150) ,in it=" Is")
bres [i,]<-coef( Itsreg(y-( a+b+c+d)A 2,nsam p="exact"»
}
## Density Plots for Empirical Distributions
pa r(mfrow=c(3,4))
for (i in 1:11) {

plot(density(bols[,i]),main=" ")
Iines( density( bh ub[,i]) ,lty=2,col=2)
Iines( de nsity( bh amI, i]), Ity=3,col=3)
lines( de nSity(bres[,i]),lty=4,col=4)
abline(v=bta[i])

}
par(mfrow=c(1,1 ))
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• A marketing researcher has so much to do in order to survey a
population's perceptions of quality dimensions of products and
services.

So, whether one likes it or not, quantitative techniques, statistics in
particular, often finds their applications in all areas of management may
mention that a recent survey in the USA revealed that more than 80% of
American organization uses one or other quantitative technique. In
Pakistan as well, the trend in this regard has been visibly rising.

Information is fundamental for change and improvement. Without
useful information, our approach to problems remains shallow, superficial
and vague, and one may walk aimlessly and pointlessly. With the growing
awareness about quality management, the importance of reliable
information is now no longer under-emphasized. Information may be
qualitative or quantitative, it is conceived as an important assets, a
powerful basis to comprehend a business phenomenon, situation or event.
When information involved is poor, we all know the management functions
suffer. It is like when at a road crossing the false information may send a
traveler to opposite direction, a manager experiences similar
disappointments after using fallacious information. But at times we do
encounter situations where even when reliable information is available the
managers may formulate biased policies, or conduct the operations
dishonestly to suit their certain interests. It is do with one's behaviour.

Ethics refer to principles of moral duty and obligations relating to right
behaviour of an individual or a group. Adherence to these principles
provides security, direction and integrity. These principles derive..their
support from a religion, from common law, or from the standards of
conduct accepted as right over a long period of time. Ethical principles
display impartiality and do not allow, encourage or approve special
exceptions benefiting or harming specific persons or groups if not all, most
of these principles have their applications in all professions, including
Management and statistics. 'J

Regarding managers, it depends as to what their areas of management
are. Marketing ethics except fair treatment of consumers, selling quality
product according to marketing claims at a reasonable price. A production
manager is expected to produce a product according to the stated
specifications and not mislead his customers. An inventory manager
should protect his inventory from damage and destruction. The advertising
managers portray women as advertising strategies for the promotion of
industrial products, which may seen unethical to many. The ethics of
management accountants and auditors emphasize that they should
communicate information fairly and objectively disclosing all information.
Human resource management is expected to hire, fire, promote employees
in view of well written rules. Corruption, bribery, discrimination, coercion,
deception thefts, nonperformance of duties are all unethical aspects of
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management, Some researchers exploit their subjects when doing their
research; and it may happen anywhere, in a developed or developing
country. For instance, in 1990 the prestigious John Hopkins University
displayed a highly unethical behaviour in "exposing hundreds of poor
infants to major health risks without alerting their parents, with the
consequence that some of them suffer learning disabilities".

No doubt workers in management organizations follow, or are also
expected to follow ethical principles. In this regard, I refer to an important
survey conducted in the USA. Henry Fountain published an article "Of
White Lies and Yellow Pads", in New York Times on July 6, 1997. His
research comprised the following questions which he posed Times on July
6, 1997. His research comprised the following questions which he posed to
1.300 workers who said they were involved in unethical activities in their
work. The percentage of the respondents who admitted the unethical
behaviour is also given:

1. Cut corners on quality control 16%

That is, they do not strictly follow the prescribed

specifications In producing quality products or services

2. Covered up incidents. 13%

That is, if they do anything wrong or fallacious the conceal it.

3. Abused or lied about sick days. 11%

It is again an unethical tendency among the workers.

4. Lied to or deceived customers. 9%

It refers to misleading of customers

5. Put inappropriate pressure on others. 7%

It reflects selfishness to achieve certain unethical motives.

6. Falsified numbers or reports. 6%

7. Dismissed or promoted an employee unfairly 6%

8. Lied to or deceived superiors on serious matters 5%

9. Withheld important information. 5%

10. Misused or stole company property 4%

11. Engaged in or overlooked environmental infraction. 4%

12. Took credit for someone's work or idea. 4%

13. Discriminated against a co-work or idea. 4%

14. Abused drugs or alcohol. 4%
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15. Engaged in copyright or software infringement. 3%

16. Lied to or deceived subordinates on serious matters. 3%

17. Overlooked or paid or accepted bribes. 4%

18. Had extramarital affair with business associate. 3%

19. Abused an expense account. 2%

20. Abused or leaked proprietary information. 2%

21. Forged name without person's knowledge 2%

22. Accepted inappropriate gifts or services. 1%

23. Filed false regulatory or government reports. 1%

24. Engaged in insider trading. 1%

Some more unethical activities can also be entered depending on the
conditions prevailing in an organization.

Unethical activities in an organization dwindle the quality of its
products and services, reduce the volume of its productivity, adversely
affect its goodwill and image. The environment may also lose its decency,
grace and its overall impact.

STATISTICIANSAND THEIR BEHAVIOURS

Apart from the above kind of behaviour relating to management we
have the behaviour of statisticians. When statistical information is
deliberately fabricated, distorted, inflated or deflated, we leave the domain
of statistical ethics. It is an area where most of the people take liberty in
criticizing against those who produce statistical information. for a
management activity. Political leaders when in opposition quite often
accuse the government to justify their management policies based on false
statistics.

Generally speaking, errors for whatever reason OCCur in all
professional activities. Statistical work is not is an exception. To
understand the nature of errors involved in any profession we need to ,
know the purpose of that profession. In 1869 Adolphe Quetlet gave a '
number of definitions of statistics including the one that became popular
because of its pleasant circularity. He said statistics is what statisticians
do. But then one may wonder with a sense of curiosity as to what do they
do. And whatever they do how ethical they are.

A statistician whether meeting the needs of management or other
disciplines has two main functions.

One is that he collects quantitative information as reliable as possible
through surveys, experiments, trials or observation in consistence with


	2022-03-22 01
	2022-03-22 02
	2022-03-22 03
	2022-03-22 04
	2022-03-22 05
	2022-03-22 06
	2022-03-22 10
	2022-03-22 11
	2022-03-22 12
	2022-03-22 13
	2022-03-22 14
	2022-03-22 15
	2022-03-22 16
	2022-03-22 17
	2022-03-22 18
	2022-03-22 19
	2022-03-22 20
	2022-03-22 21
	2022-03-22 22
	2022-03-22 23
	2022-03-22 24
	2022-03-22 25
	2022-03-22 26
	2022-03-22 27
	2022-03-22 28
	2022-03-22 29
	2022-03-22 30
	2022-03-22 31
	2022-03-22 32
	2022-03-22 33
	2022-03-22 34
	2022-03-22 35
	2022-03-22 36
	2022-03-22 37
	2022-03-22 38
	2022-03-22 39
	2022-03-22 40
	2022-03-22 41
	2022-03-22 42
	2022-03-22 43
	2022-03-22 44
	2022-03-22 45
	2022-03-22 46
	2022-03-22 47
	2022-03-22 48
	2022-03-22 49
	2022-03-22 50
	2022-03-22 51
	2022-03-22 52
	2022-03-22 53
	2022-03-22 54
	2022-03-22 55
	2022-03-22 56
	2022-03-22 57
	2022-03-22 58
	2022-03-22 59
	2022-03-22 60
	2022-03-22 61
	2022-03-22 62
	2022-03-22 63
	2022-03-22 64
	2022-03-22 65
	2022-03-22 66
	2022-03-22 67
	2022-03-22 68
	2022-03-22 69
	2022-03-22 7
	2022-03-22 70
	2022-03-22 71
	2022-03-22 8
	2022-03-22 9



