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ABSTRACT

The size and power per/hrmanc:e flf asymplotically robust
tests for testin;4 the equality of two (;ouariance matrices (ilr,
dependent Cl~.<.;tc'r".o.;arnpies described by Pervai.z (1988b) is
empiricaii.", evaluated. The ~tanclard error test i~ jfwnd
reasonable.

Some key words: Robust. supvpopuiation. consistent. null
di.c;trihution.

1. INTRODUCTION

,,

'1J,I:n '.

Pervaiz (1988a) obtained asymptotically robust tests for
testing the equality of two covariance matrices, under cluster
sampling design. The cluster samples were supposed to be
independent. But the cluster samples mayor may no't be independent.
For example consider the male and female population of U,K for
different area clusters, Here the clusters consist of units from both
finite populations, To obtain cluster samples from tillite populations
clusters are selected from union of populations and p81titioned for the
respective finite population, Therefore cluster samples are no more
independent, Pervaiz (l988bl considered the case of dependent cluster

25
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26 Muhammad Khalid Pervaiz A monte-carlo comparison of multivariate homogeneity tests." 27

samples and modified the tests given by Pervaiz (198811)accordingly.
The object. of this paper is to investigate empirically size and power
performance 'of the tests for testing the. equality of two covariance
matrices for dependent cluster samples proposed by Pervaiz (1988b).

n m'e - - T
1: E <!lice~ ]!;i"X]!;ice- ]!;iJ

c=l e=l

r,I
( 2. TEST STATISTICS

s' =-'
1

Iloi

[

Si,20

S,= S'II_I I,

Sample covariance matrix.

Si,11

Si,u:/.

2.1. Notation 2.2. Sampling design

u

N

The suffix i denotes the finite population, i = 1,2.

Union of finite populations.

Number of clusters in the union of
finite populations,

We assume that n clusters are selected from the N clusters of
U by simple random sampling; The cluster samples from finite
populations are obtained by respective partition of selected clusters
from U. Within each selected cluster all subunits are included in a
sample,

2;3. Null hypothesis of interest

n Number of clusters in sample. Without
loss of generality we assume the
sampled clusters are labled c = 1,.".n.

We adopted model/superpopulation
unrestrictive assumptions. (cf, Pervaiz, 1986).

approach with

We assume that ]!;iceare random variables which implies that
Qi's are also random variables. We also assume that Qi converges to
);i as Ni increases. Then the finite population with covariance
matrices Qi's may be viewed as samples from infinite populations
called superpopulation with covariance matrices );i. The hypothesis
of interest is:

. ffiic

N
Noi= E mic

c=l

n
1101;;:; E ffii(:

c=l

Number of observations in c.th cluster .

Finite population size.

Sample size,
IL, : b1 = .la vs H1: );1 ;0' .la,

lfice = (Xiceh Xice2.)T e.th vector observation of c.th cluster.
e = 1, ..., ffiic. 2.4. Description oftest statistics

~2]]
1Therefore Y<Q1Y-SzY) = Ii (I1 +Iz -2I12) because of I12=Iz1.

n'h [ [~: ]. [:: 1 1 ~N6 [ [~], [~1

(a) Standard Errol' Test

Let Qi v = (Si,"h Si,02.Si,II)T From Fuller (1975) and Skinner
(1986) we say SiYobey the central limit laws as n -,-00, i.e.

Mean vector of finite population

Sample mean vector.

Covariance matrix of finite population.

1 Nm. - -
C' = - 1: E' (x' - X, XX' - X, )T_, N _Ice _t .. _Ice _1..

oi c=l e=l

_ 1 N m.
Xi ..:;:: N- E rC

' ~ice
oi c="l e=l

1 n m'e
~i.= - E E 2iice

I1<li c=l e=1

,I

I '
I I
\, I
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Thus under Ho ' the test statistic

(~hV_~bv)T [ Y.<Qlv-Q2vW1 (Q1v-Q2"l

is approximately distributed as X} provided Y is consistent estlmate
of y. Theorem 1 provides the consistent estimate of,Y.The.£,s are
respective covariance matrices of SV's. "',' '. ,~,'''0'"'. -.'.

_ '1 11 \'

Siv = -; L Sj~.- n g~l -,

The Y+(Q1v- QZV)can be determined by using

r.+ =
1 11 V - v -T
-'-1 l: (Qi,< - QiV)(Qi,g - QiV)-, n - g~l

A 111 v- V--'"

and f12+ = n'-l gEl (Sl,g - Q1V)(Q2,g- S2v)T

,.. ),~, ."' _. ; . ",-..
• The Taylor expansion estimate of Y(Q1v -, S2V)is:, I

l;.' ;! ',,"'" .: ,'-

1
Y(Q,v_Q2V)~ n(n-1)

Theorem 1
. ,'L.
.. ~ 1

where ~ =

I : ~•

1 n -- E z,and
n c=l -

" . i

n _ _ _

l: (~c-iX~,-iJT,
c=l

,.\1

"

(e) J aekknife Test
.. ,

v; I., 1

,Let Si,c = n Qiv - (n-l) QVi_c.The elements of QVi_c'are
second order sample moments by using (n -1) clusters with c.th
cluster omitted. The jackknife estimators Qi'v are the average of QVi,c'
The, QVi" are apPl'Oximately independent and have asymptotically
equal mean vectors and coval'iance matrices. Thus the null
distribution of the test statistic:

, (8 ,'v _ 8 'v)T [V'(8 v - S v)]-l (8 'v - 8 'V)_1 _2 _1 _2 _1 _2 ,"

is approxim.ately 'Hotelling's TZ with 3 and (n -1) degrees of freedom.

The V'(S, v '- Q2V)can be determined by using
k=

{ n m~. -." n m,. -" _, mlo ~ m"." "}_ L. b:loo1-Xl ..lT"'" - z;- (X2cel-X2 ..lr -~Il,"""'-- X4:1..1- - r'z ..u
DOl .-1 IlO2•.••1 1101 1102 .

{ n ,,!>. -." n •••• (' -." _, m" ~ m', ~ _'}_ ~ (XlceZ-XI ..zr- - I;- X2cd-X2 ..v- - Ill, - X"'I..2 - = x 2..~nol ,_I noz 0-1 nol l'102

n "". - - n m,. - -
{-no I; , (Xlcel - XLV (Xlee2 -: Xl..V - -no '.":1 (Xlled - X2..V (X2C92~ X2:.2) -

1 e_l.. 2 = '.
mle - - mZI: - -

n( nol Xl.1 X1..2 - no2 %2..1 %2..2H (3

Ii* = 1
n-1

n
l:

c=l
(Si~(; - Si*V) (Si,<:v - Si*v)T

For proof see Pervaiz (1990). If role = mj then OOi = nmi and the

constant term oci: is cancelled out in the formula of y.

(b) Grouping Test

and 1hz' = n-l
n
l:

(;=1
(S v 8 'V)(SV S 'v)T-:-1,<: - _1 Q2.c - _2 ..

We divide each cluster sample randomly in to n' groups of
clusters of size L, i.e. n = Ln' for L '" 2. We compute the second-order
sample moments for each gl'OUPof clusters. The vectors of these are
approximately independent and asymptotically multival'iate normal
with equal mean vectors and covariance matrices. That being so the
null distribution of the test statistic.

( ~lv _ ~2V)T [Y+ (Q1v- S2,)]-l (~lV - ~ZV)

is approximately Hotelling's T2 with 3 and (n' -1) degrees offreedom.
Where

3. SAMPLING EXPERIMENTS

The population used in empirical investigation was collected
by the U.8. Bureau of the census in March, Ul67 Current Population
Survey. There are 3240 clustel's or p,imary units. The clusters eoniiisi
of-units.fl'Om both finite populations. We deleted clusters having less
than 4 units for each population ..The v'ariables '

• I
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Xa Number of persons in household in labour force,

X9 Total income of household,

XlO Income of household head,

Xu Age of the household head,

Xl2 Sex of the household head.

Xl7 Years of school completed by household head,

are studied. For the null hypothesis we defined the populaltions by
even and odd values of Xl7. Two pairs of covariance matrices which
represent the null hypothesis are obtained from the populations using
the pairs of variables:

(p) Xu & XlO,

(q)Xs & X9.

Although these populations are not identical but they should be
approximately equivalent.

For the alternative hypothesis we used Xl2 and Xl? to define
. two populations. Three pairs of covariance matrices which ,represent
the alterntive hypothesis are obtained from the populations using the
pairs of variables:

r

statistics computed, are compared with the 5% and 1% points of the
approximate null distributions. The results for, the 1% case,
essentially corroborate those of the 5% case, so we are not reporting
here. There are five sampling units in each group for the grouping
test, (L=5).

The observed significance levels for the test.sample size.
matrix combinations are recorded in the Table. The observed sizes are ~
ranging from a minimum of 3% to a maximum of 6.6% for the
standard error test, from a minimum of 1.8% to a maximum of 5.2%
for the grouping test and from a minimum of 4.4% to a maximum of
8.8% for the jackknife test. There is no affect of size of samples on
these tests.

The standard error test maintained very good nominal levels
for all situations. Its. observed significance levels performance is
better than the independent cluster samples from the natural
populations (cf. Pervaiz 1986). The observed significance level
performance of the grouping test is very good for (p). It rejected the
null hypothesis too infrequently for the sample. size - matrix
combinations (55 & 70.q). The sizes for these combinations are (1.8 &
2.8)%,respectively. An interesting point is that the test prodlfced such
a low observed size Le. 1.8%. The jackknife test produced high sizes
for combinations (50,55,60 & 75-p) and (65 & 70.q). The observed sizes
for these combinations are (7.8,8.4,8.8 & 7.2)% and (7.6 & 7.4)%,
respectively. As a whole its observed significance level.performance is
not. as good as that for the independent samples from the natural.
-poplulations (cf. Pervaiz 1986).

(1')

(s)

(t)

"Xl7 & XlO" when males are household head and when
females are household head;

"Xs & X9" when males are household head and when females
are household head;

"Xs & X9"w.henXl7 > 10 and when Xl7 ,,;10.

The grouping test is less powerful than the jackknife test for
all situations but it has comparable power with the standard error
test for large samples. However it has very low power with samples of
size nl =n2,,;35. The standm'd en'or test is little less powerful than the
jackknife test.

CONCLUSIONS

.4.DISCUSSION OF EMPIRCAL RESULTS
"

~ considering the results it should be noted that the standard,
deviation of the estimated binomial. proportion' for a true proportion'
of .0.05. with samples 'of size 500 is 0.010.' Therefore for 500:
replications observed proportions lying in (3.0, 7.0) %do not differ
significantly fmm a true propOltion of 5% at 95% level. The test I

The standard error test performs better in maintaining
nominal levels than the others_ The test is more powerful thart the
grouping test for moderate size of samples. Therefore it may be a
better choice. The reason for not very good performance of the
grouping and the jackknife tests may be small group size (L=5) and

\" L.
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