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ABSTRACT

Background: Injudicious pesticide use can hinder sustainable
agriculture practices by causing several ecological and
environmental safety issues. Nanotechnology has enabled the
development of nano-sized pesticides, including improved plant
absorption and conduction with increased efficacy, lower dosage,
delayed resistance, reduced residues, and protection from
beneficial insects and natural predators. Assessing the
insecticidal qualities of zinc oxide nanoparticles (ZnO-NPs)
made from Ocimum basilicum (basil) leaves extract against
Diatraea saccaralis, Spodoptera frugiperda, and Cavelerius
excavates that damage sugarcane crops was the aim of this study.
Methodology: Preparation of leaf extract and salt solution was
done for the synthesis of zinc oxide nanoparticles.
Characterisation of ZnO-NPs were done by using different
techniques such as UV visible spectroscopy, X-ray diffraction
(XRD), Fourier Transmission Infrared spectroscopy (FT-IR), and
Scanning Electron Microscopy (SEM). Insects were exposed to
various concentrations of ZnO-NPs (i.e. 100, 200, 300, and 500
ppm) to evaluate their insecticidal activity. One-way (ANOVA)
was used to analyse mortality data. Result: Results revealed that
mortality against ZnO-NPs was concentration-dependent, with
greater concentrations leading to higher mortality rates.
Conclusion: It is concluded from the study that ZnO-NPs can be
used effectively against sugarcane pests in a pest management
program. However, to fully understand the ecological
implications of using ZnO-NPs as pesticides, more research is
required.
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INTRODUCTION

The branch of technology concerned with
materials having dimensions less than 100 nm,
and the manipulation of these materials, such
as atoms and molecules, is known as
Nanotechnology (Bhat, 2023). The unique
qualities and capabilities of nanotechnology
have positioned it as an emerging technology
that holds immense promise for scientific
advancements across various sectors, including
nutrition delivery, target specificity, crop
protection, medications, electronics, material
sciences, environmental remediation, water
purification, textiles, clothing, and other areas
(Gupta et al., 2024). Nanotechnology involves
manipulating the materials at the nano scale
level to alter their properties, leading to unique
features that are utilised for specific purposes
(Sarwar et al., 2024).

Inorganic nanoparticles encompass a variety of
metals and metal oxides including metals like
silver (Ag), molybdenum (Mo), tin (Sn),
titanium (Ti), gold (Au), copper (Cu), indium
(In), tungsten (W), aluminum (Al), iron (Fe),
nickel (Ni), Bismuth (Bi), zinc (Zn), cobalt
(Co) as well as metal oxides such as copper
oxides (CuO), cerium oxides (CeQ,), indium
oxide (Inz0s), aluminum oxide (Al2O3),
magnesium oxides (MgO), lanthanum oxide
(Laz03), nickel oxide (NiO), tin oxide (SnOy),
titanium oxides (TiOy), zirconium oxides
(Zr0Oz), and quantum dots and organic
nanoparticles includes fullerenes and carbon
nanotubes (Shukla, et al., 2024).

Zinc oxide nanoparticles (ZnO-NPs) are
extremely valued for their exceptional
chemical and physical characteristics, making
them an important and versatile organic
compound among metal oxide nanomaterials
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(Islam et al., 2022). They have excellent
chemical stability, a strong electrochemical
coupling coefficient, a wide radiation
absorption spectrum, and exceptional photo
stability (Zhou et al., 2023). ZnO-NPs have
found extensive applications in a wide range of
additives and commercial products. These
include cosmetics, ceramics, fire retardants,
cement, ferrite, plastics, glass, batteries,
pigments, ointments, sealants, adhesives,
sunscreens, and even as an alternative source
of zinc nutrients (Zafar & Igbal, 2024).
Sugarcane (Saccharum officinarum) plays a
significant role in sugar production, bioenergy
production, and has economic importance,
environmental benefits, and diversification
opportunities, which hold crucial importance
in the global economy (Mirajkar et al., 2019).
Conventional techniques of pest management,
including the application of chemical
pesticides, have achieved successful outcomes
however, they have several limitations, such as
harmful impacts on non-targeted species,
environmental pollution, and the emergence of
insect populations that have pesticide
resistance (Ahmed et al., 2021). The speedy
advancement of nanotechnology with its
unconventional methodologies such as green
agriculture intended to manufacture
nanomaterials having the least environmental
persistence and high insecticidal activity,
causing less harm to the environment and
human health (Dangi & Verma, 2021; Abel &
Scott, 2020). Different nanoparticles have
emerged in the last few years, such as Ag
(Raguvaran et al., 2021), CuO (Rahman et al.,
2022), MgO (Abdelfattah et al., 2023), and
ZnO (Thakur et al., 2022), which exhibit
insecticidal action against insects of many
orders, either by itself or in combination with
other medications (Ishwarya et al., 2018).

The physical impact of nanoparticles is
noteworthy, as they have the potential to
engage in physical interactions with pests,
resulting in mechanical harm, disturbance of
the insect cuticle, or obstruction of respiratory
structures  (Pittarate et al., 2021). The
generation of reactive oxygen species (ROS)
by nanoparticles has been observed to cause
oxidative stress in pests, resulting in damage to
cellular components. This phenomenon has
been documented in studies conducted by
Kumar et al. (2019). In addition, it has been
discovered that nanoparticles can impede the
biological processes of pests through the
interference of  enzymatic  activities,
modification of hormone regulation, or
disruption of cellular signalling pathways
(Igbal et al., 2022).

The Labiatae family includes the genus
Ocimum L., or basil. Ocimum is a vital herb
for  both  commerce and  medicine
(Shahrajabian et al., 2020). It is also a
recognised source of additive agents and
essential oils that have antimicrobial and anti-
oxidative activities (Naji-Tabasi & Razavi,
2017). It is an odorous herb that has been
broadly utilised in gastronomic applications
(Li & Chang, 2016). Terpenes and
phenylpropanoids are the major components of
basil essential oil, followed by aldehydes and
alcohols (da Silva et al., 2022). Recent studies
have looked into the possibility of using
extracts from basil leaves to create ZnO-NPs
with enhanced pest management capabilities in
a variety of agricultural settings (Lucic et al.,
2022).

MATERIALS AND METHODS

The study was conducted at the zoology lab,
University of Education, Lahore, Faisalabad
Campus.

Preparation of leaf extract

After being collected from Gatwala Park in
Faisalabad, Punjab, the Ocimum basilicum
leaves were cleaned with distilled water and
allowed to dry in the shade. The Geepas
1000W Mixer Grinder was then used to grind
the leaves into a fine powder. For the
preparation of aqueous leaf extract of O.
basilicum, using a magnetic stirrer, 5 g of
finely ground leaves were continuously stirred
for 30 minutes while boiling in 100 millilitres
of purified water. The extract was cooled to
room temperature, filtered through Whatman
No. 1 filter paper, and stored at 4°C for use in
subsequent studies.

Preparation of the salt solution

To prepare the 0.5M stock solution, 100
millilitres of distilled water were used to
dissolve 1.749 grams of zinc nitrate
hexahydrate, or {Zn(NOs),. 6H,0}.

Synthesis of zinc oxide nanoparticles (ZnO-
NPs)

ZnO-NPs were synthesised by the titration
method. For the synthesis of the ZnO-NPs, 50
ml solution was taken in a beaker. Fifty
millilitres (50 ml) of salt (0.5 M of Zn(NOs)..
6H,0) solution was taken in a beaker. After
that, the O. bascilium extract was taken in
beuarte and added drop by drop into zinc
nitrate hexahydrate solution until the mixture's
colour shifts from pale to brown. The mixture
was heated at 80°C with continuous stirring
during the reaction. After that mixture was
centrifuged in a Hettich centrifuge (D-78532)
at 1000rpm for 15 minutes. The pellets of
nanoparticles were separated, and the
supernatants were disposed of. After three
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rounds of washing with distilled water, ZnO-
NPs were dried in a Memmert hot air oven at
600°C. The ZnO-NPs were obtained in powder
form and stored for insect bioassay and
additional characterisation.

Characterisation of ZnO-NPs

To determine the size, structure, and optical

characteristics of ZnO-NPs, they were

characterised by UV-visible spectroscopy, X-

ray Diffraction (XRD), Fourier Transmission
Infrared Spectroscopy (FT-IR), and Scanning
Electron Microscopy (SEM).

a. UV visible spectroscopy: For the analysis
of ZnO-NPs by UV-visible
spectrophotometer, one gram of ZnO-NPs
powder was suspended in 10ml of distilled
water, homogenised and subjected to a UV-
spectrophotometer. The absorption
spectrum was recorded at 200-800 nm.

b. X-ray diffraction (XRD): The XRD (D8
Advance Bruker Germany) of ZnO-NPs
was performed at Nano-Materials and Bio-
Sensing  Research  Centre  (NBRC),
Department of Physics, Government
College  University, Gurunanakpura,
Faisalabad, Pakistan. Using Debye's
Scherrer Equation, the Silver nanoparticles'
average crystalline size (D) was
determined.

D=KMBCOSH

In this equation:

D=crystalline size

A=the used X-ray radiation's wavelength

0= Bragg's angle derived from the
pattern of X-ray diffraction

B= diffraction peak's full width at half
maximum (FWHM)

c. Scanning Electron Microscopy: At the
Nano-Materials and Bio-Sensing Research
Centre (NBRC), Department of Physics,
Government College University,
Gurunanakpura, Faisalabad, Pakistan, ZnO-
NPs were examined using scanning
electron microscopy (SEM). SEM was used
to determining the shape of ZnO-NPs.
SEM is a powerful analytical technique that
is used for imaging the smaller particles
(Nanoparticles) at high magnification and
resolution.

Collection of insects

Insects such as Diatraea saccharalis,

Spodoptera  frugiperda, and Cavelerius

excavates were collected from sugarcane

production area of Ayub Agricultural Research

Institute, Faisalabad. Samples were taken in

the early morning. Samples were transported to

the Zoology Lab in plastic jars covered with
mesh clothes after being collected using
standard instruments such as forceps, aerial
nets, sweep nets, and hand picking. In the lab

standard feed was provided to the insects and
were kept at 27°C temperature and 70%
humidity with 12 hours light and dark period.
Insecticidal activity of ZnO-NPs

The insecticidal activity of ZnO-NPs against
D. saccharalis, S. frugiperda and C. excavates
was assessed by residual bioassay. To evaluate
the performance of ZnO-NPs, various
treatments were designed. Each jar contained
100, 200, 300, or 500 ppm of ZnO-NPs, which
were utilized to treat insects of each kind (i.e.,
T1, T2, T3, and T4, respectively). Distilled
water was utilised as the negative control,
while the manufacturer's suggested field dose
of lambda-cyhalothrin was employed as the
positive control. The bioassay filter paper was
lined on the bottom and walls of each
individual jar after submerging and air
dryingin each treatment independently.
Following the release of twenty insects in each
jar for an hour, mortality was measured at
specific intervals, such as six, twelve, eighteen,
twenty-four, thirty, and forty-eight hours
following treatment. The mortality rate was
then determined using the following formula.
Every bioassay was carried out three times.

Number of dead insects
X

Mortality rate =

total number of insects
100

Statistical analysis

One-way ANOVA was performed by SPSS 16

to analyse the mortality data. Results were

expressed as Mean mortality rate (+ Standard

Error).

r_ = — }
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Figure 1: Graphical summary of methodology.

RESULTS

UV visible spectroscopy

The ZnO-NPs UV visible absorption spectrum
is shown in figure 2, with the absorption peak
appearing at 221 nm.
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XRD analysis

An important source of information about the
level of crystallinity shown by nanoparticles in
a sample is provided by XRD spectra. The
XRD spectra of the ZnO-NPs produced using
the leaf extract from O. basilicum are shown in
Figure 3. There are four unique peaks at
28.81°, 32.45°, 38.27°, and 47.54°,
respectively. ZnO-NPs crystalline size, as
determined by the equation, was 14 nm.

|

| |

Flgure 2: XRD Patterns of ZnO-NPs.

Figure 3: Absorption spectrum of ZnO-NPs
produced by UV-Vis Spectrophotometer.

FT-IR analysis of ZnO-NPs

Figure 4 shows FTIR spectra for zinc oxide
nanoparticles. FTIR spectra displayed a variety
of peaks, including 666, 818, 1002, 1334,
1610, 2433, and 3526. These peaks represent a
variety of O. basilicum biomolecules that were
involved in the generation of zinc oxide
nanoparticles. During the creation of the
nanoparticles, these compounds acted as
reducing, stabilising and capping agents.
Scanning Electron Microscope (SEM)
analysis

SEM examination was used to evaluate the
ZnO-NPs shape and elemental makeup, as
shown in figures 5. A, B, and C. According to

the micrographs, ZnO-NPs were found to have
a uniform dispersion, a spherical morphology,
and diameters in the nanoscale range.
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Figure 4: FTIR analysis of zinc oxide

nanoparticles

Figure 5: SEM Micrograph of Zinc oxide
nanoparticles at 5 um (A), 3 um (B),
and 1 um (C).

Insecticidal effect of ZnO-NPs on sugarcane
pests

Mortality rate of Diatraea saccharalis: The
effects of increasing ZnO-NP dosages on D.
saccharalis mortality rates are displayed in
table 1.

The mortality rate in this trial was 6+1.67 for
the negative control group and 95 +2.89 for the
positive control group. Death rates of D.
saccharalis increased as ZnO-NPs
concentrations were raised. The death rate was
15+2.84 at 100 ppm, 18.33+1.67 at 200 ppm
45+5.78 at 300 ppm, and 51.67+1.67 at 500
ppm (Table 1).

Mortality rate of Spodoptera frugiperda: The
mortality rates of S. frugiperda insects
subjected to varying concentrations of ZnO-
NPs are also shown in Table 1.

At 100 ppm, the mean mortality was
16.67+1.67, which increased to 36+2.84 at 200
ppm. The death rates increased as the
concentration increased further, reaching
38.33+1.67 at 300 ppm and 68.33 £1.67 at 500
ppm. The positive control group had a
mortality rate of 87.67+6. The low mortality
rate for the negative control group was 1.67
+1.67.

Mortality rate of Cavelerius excavates: The
positive control group had a mortality rate of
93.33+4.41. The minimal mortality rate for the
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negative control group, which was given
simply distilled water, was 6.67+£1.67. As
Zn0O-NPs concentration grew, so did the death
rates of C. excavates. The average death rate
was 10£2.89 at 100 ppm and 16.67+1.67 at
200 ppm. When the concentration reached 300
parts per million, the average death rate was
28.33£1.67. The maximum mortality rate,
48.33+4.41, was seen at the highest quantity
tested, 500 ppm. According to these
investigations, ZnO-NP significantly inhibits
C. excavates, and higher concentrations result
in a higher mortality rate.

Table 1: Comparison of mortality rate in
sugarcane Insect pests due to insecticidal effect
of ZnO-NPs

Concentration | Diatraea [Spodoptera|Cavelerius
(ppm) saccharalis | frugiperda | excavates
Positive 95¢ 86.67¢ 93.33¢
Control +2.89 +6 +4.41
Negative 62 1.672 6.672
Control +1.67 +1.67 +1.67
T1 152 16.67° 108
(100 ppm) +2.84 +1.67 +2.89
T2 18.332 360 16.67%
(200 ppm) +1.67 +2.84 +1.67
T3 45P 38.33¢ 28.33°
(300 ppm) +5.78 +1.67 +1.67
T4 51.67° 68.33¢ 48.33°¢
(500 ppm) +1.67 +1.67 +4.41
P-Value <0.05 <0.05 <0.05
Df 5,12 5,12 5,12
DISCUSSION

In recent years, nanoparticles have attracted a
lot of interest in the agricultural sector due to
their ability to control diseases (Elek et al.,
2010; Guan et al., 2008). The findings from the
research suggest that using nanoparticles to
control sugarcane pests might represent a
practical approach. The results of our study
show a strong relationship between pesticide
concentrations and insect mortality, which is
consistent with other researchers' prior
investigations (Rouhani et al., 2011; Samih et
al., 2011), One benefit of using them is that
resistance is less likely to develop with
continued use. The current study investigated
how ZnO-NPs, which were made from
Ocimum basilicum (Basil) leaf extract, affected
the mortality rates of various insect pests that
prey on sugarcane crops. The findings show
that exposure to ZnO-NPs and insect mortality
for all investigated insect species are
concentration-dependent.

These results are in line with prior
investigations examining how ZnO-NPs affect

insect mortality. In a study conducted by
Thumar et al. (2020), Aphid mortality from
ZnO-NPs was shown to be concentration-
dependent, with greater concentrations leading
to higher mortality rates. Similarly, Khooshe-
Bast et al. (2016) reported concentration-
dependent mortality in whiteflies exposed to
ZnO-NPs. The concept that ZnO-NPs can
successfully cause mortality in various insect
species is supported by these investigations.
Additionally, our results are consistent with
research looking into how nanoparticles affect
insect pests in different agricultural settings.
As an example, Siddique et al. (2022) showed
that exposure to ZnO-NPs had a concentration-
dependent effect on the mortality of
Rhyzopertha dominica. Hemiptera treated with
ZnO-NPs showed concentration-dependent
death, according to a study reported by
Gutiérrez-Ramirez et al. (2021), C. maculatus
was exposed to 1,000 ppm of 100 nm-sized
zinc oxide nanoparticles during the
experiment, which resulted in a 100%
mortality rate (Mohammed & Aswd, 2019),
When tested against the same pest in green
grams, zinc oxide nanoparticles at a dosage of
200 ppm produced the lowest egg production
and the highest mortality rate of 100%,
according to a recent study (Lakshmi et al.,
2020).

ZnO-NPs combined with leaf powder from
Citrus paradise, Jatropha curcus, and Ricinus
communis had a mortality rate of 49.51% for
T. granarium and 66.32% for T. casteneum
(Haider et al., 2020). When R. dominica was
exposed to 600 ppm for 15 days, the use of E.
globulus extract in the production of ZnO led
to an 80.5% mortality rate (Siddique et al.,
2022). Similarly, the cumulative mortality
in T. castaneum after exposure to different
concentrations of ZnO-NPs (20.42%, 27.08%,
and 33.96%) was recorded for 1, 3, and 5 days
post treatment (Hilal et al., 2021). In another
study, when combination of chitinase enzyme
from Lactobacillus coryniformis and ZnONPs
was applied, the maize weevil, Sitophilus
zeamais, died completely, with an average
death rate of 2.4 days (Dikbas et al.,
2021). These investigations demonstrate ZnO-
NPs' potential as a useful tool for managing
pests in a range of crop systems.

It is crucial to remember that the recorded
death rates are probably due to the lethality of
ZnO-NPs. Nanoparticles can greatly increase
their toxicity and bioactivity to insects due to
their unique physicochemical characteristics.
Because of their small size and large surface
area, nanoparticles can make more contact
with insect tissues, which eventually leads to
higher rates of toxicity and death. The
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generation of Zn2+ ions from the ZnO-NPs is
part of the toxicity mechanism. In insects,
these ions may cause oxidative stress and
interfere with physiological functions, both of
which may lead to mortality.

Conclusion

The current study makes important advances in
expanding our understanding of ZnO-NPs'
shape, elemental makeup, and insecticidal
effectiveness. There has been evidence of a
concentration-dependent relationship between
ZnO-NP exposure and insect death, suggesting
that ZnO-NPs have the potential to be used as
highly effective insecticides. The maximum
mortality rate for Diatraea saccharalis,
Spodoptera  frugiperda and  Cavelerius
excavates was seen at the highest quantity
tested, 500 ppm.

The results of our investigation suggest that
ZnO nanoparticles may be useful tools for
implementing pest management programs in
sugarcane farming and may also be effective
agents  for  controlling  pests.  The
aforementioned findings make a valuable
contribution to the continuous endeavors
aimed at devising  sustainable and
environmentally  conscious methods for
controlling pests.

In the future, advance research on the effects
of ZnO-NPs synthesized from O. basilicum
leaf extract on sugarcane pests should
concentrate on numerous key aspects. These
include maximizing the synthesis process to
increase the stability and efficacy of
nanoparticles, examining the cellular and
molecular mechanisms of action to create
targeted pest control strategies, assessing
various nanoparticle formulations and delivery
systems for increased efficacy, carrying out
extensive research to determine the long-term
environmental impact and potential
accumulation of nanoparticles, carrying out
extensive field trials to confirm their
effectiveness in real-world settings, and
investigating the synergistic effects of
combining  ZnO-NPs  with  other  pest
management tactics, like biological control
agents and integrated pest management
approaches. These opportunities for the future
will help create effective and sustainable
methods of managing pests in sugarcane
farming, which will eventually lessen the need
for chemical pesticides while maintaining the
best possible crop protection.
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