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Abstract 

A landslide is a natural disaster that can cause significant global damage 
and human casualties. As a flood-prone area, the Battagram district of 
Khyber Pakhtunkhwa, Pakistan, has seen an increase in urbanization, 
making it challenging to choose an appropriate location for seismic activity. 
This study seeks to assess the susceptibility to landslide risk through the 
application such as seismic activity and flooding. This analysis employs 
Geographic Information System (GIS) and Remote Sensing techniques. The 
research utilized several data sets, encompassing geological data processed 
with the ArcGIS 10.8 software, Shuttle Radar Topography Mission (SRTM) 
data, Landsat thermal images from missions 5 and 8, thematic data, 
meteorological data, and a seismic catalogue. SAR photos are used to map 
Sentinel-1A in Google Earth Engine (GEE) to determine the extent of 
floods. The landslide inventory was separated into training and validation 
sets for this investigation. Significant contributing factors, including slope 
aspect, elevation, land cover and use during earthquakes, normalized 
difference vegetation index (NDVI), road distance, fault distance, rainfall, 
and geology, are taken into consideration when assessing landslip 
susceptibility. To establish the spatial correlation between landslides and 
these parameters, the frequency ratio model and weighted sum analysis 
were utilized. The WSM analysis indicates that 1.74% of the region is 
classified as having very low susceptibility, with the remaining areas being 
classified as low (14.26%), moderate (36.01%), high (2.57%), and very high 
(5.41%). 44.67% of the region is classified as having very high 
susceptibility by the FR model, with high (40.94%), moderate (11.61%), 
low (1.96%), and very low (0.79%) following. The FR model demonstrated 
reliability in risk assessment, with an accuracy of 85.7% against known 
landslide events. These findings support the use of GIS-based statistical 
modeling in urban planning and hazard mitigation by demonstrating how 
well it can identify high-risk areas. For increased accuracy and scalability, 
future developments should concentrate on adding more localized data. 

Keywords: Landslide susceptibility, weighted sum analysis, GIS, frequency ratio, 
remote sensing, Google earth engine  
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Introduction 

 One of the most common geological disasters, landslides are said to cause significant 

property loss and fatalities all over the world  (Linkha, 2024). According to CRED, the 

landslides segment accounts for 17% of fatalities in all natural disasters worldwide (Alimonti 

& Mariani, 2024). Climate models project that the intensity of monsoon rainfall in southern 

Asia will rise in the future owed to climate change. This could feasibly enhance the winter 

rebound and cause more seismic events. Rainfall and flash floods can cause rockfalls and debris 

flow, and environmental factors like rock deterioration over time can also cause landslides. 

Similarly, natural disasters like earthquakes can cause a slope to become weak due to 

construction along its banks (Shabbir et al., 2023). Every year, during the monsoon season, 

landslides and floods in the Himalayan region reason fatalities and damage to property (Sana 

et al., 2024). The rough terrain, active seismicity, monsoon rains, and human activity on uneven 

slopes make northern Pakistan one of the most landslide-prone areas (Hussain et al., 2023). 

The deadliest and worst flood disaster in the past ten years occurred in Pakistan in 2022. 

Pakistan encountered a monsoon climate and extremely hot weather in mid-June 2022 (NASA, 

2022), and as a result, at least two-thirds of the nation experienced the most precipitation in 

almost 30 years. Following the flood in 2022, some of the highland's volcanic mountains are 

still active. Additionally, fissures and cracks truncate the main rock types in this highland. 

 Many landslides have occurred in the area as a result of earthquakes destroying them 

(Sana et al., 2024). In order to forecast future landslides, it is vital to identify the zones that are 

vulnerable. By using scientific analysis to identify and forecast landslide-prone areas, 

appropriate preventative measures can reduce landslide damage (Jena et al., 2021). Therefore, 

the two main causes of landslides in the region are earthquakes and rainfall (Vasil Levski & 

Dolchinkov, 2024). Using the data that is currently available and geospatial techniques, this 

study attempts to create landslide susceptibility mapping over the Battagram district that is 

caused by earthquake and flood activity. As a result, the study evaluates the primary causes of 

landslides in the Battagram district as well as the effects of land cover change over the previous 

16 years on landslides in the study area. The study area has a primarily monsoonal climate, and 

landslides are typically caused by heavy rainfall. The risk of landslides is influenced by human 

activity in addition to climate and geotectonic factors. 

 Disasters appear on the news headlines almost every day, according to (Dietrich et al., 

2024). Most of them take place in distant areas and pass by swiftly. In light of (Lu et al., 2024), 

there have been eighteen fatal earthquakes worldwide 

between 1989 and 2015, which have caused extensive landslides across a 
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wide area. Examples of large-magnitude earthquakes in the past ten years, according to (Saima 

Akbar, 2024), include the 2005 earthquake in Kashmir caused thousands of landslides in 

northern Pakistan, resulting in a thousand deaths. Some of the most notable landslide 

disasters that have occurred in northern Pakistan include the 2005 Kashmir earthquake, which 

caused thousands of landslides over an area of more than 7,500 km³ in Kashmir and its 

surroundings, killing 87,350 people. (Bali et al., 2025) stated that three major mountain ranges, 

the Himalayas, Karakoram, and the Hindu Kush, are the dominant feature of the northern 

regions of Pakistan. These mountain ranges comprise the world's steepest peaks with a 45° 

slope (Ahmed et al., 2019). Flash floods and landslides occurred on October 3-4 in Khyber 

Pakhtunkhwa Province (Northern Pakistan) due to heavy rain, leading to casualties. Across 

Charsadda and Lower Kohistan Districts, the Provincial Disaster Management Authority 

(PDMA) reports that two people have died and six have been injured. Rescue operations are 

taking place in Charsadda, as a few families have been relocated to relief camps. On October 

6-7, there is a forecast of dry conditions over Khyber Pakhtunkhwa Province. Pakistan's history 

has shown numerous flood events starting from its creation, such as the floods of 1950, 1992, 

1998, and 2010 (Saima Akbar, 2024) 

 Several revisions in this area focused on geospatial and GIS-based methods to analyze 

numerous spatial data types, the evolution of geostatistical models, and the predictable points 

of risk and vulnerability for a given area (Rehman et al., 2022) A susceptibility map that 

identifies areas that are likely to experience landslides in the future (Tyagi et al., 2023). An 

essential first step in hazard and risk assessment, landslide susceptibility assessment is a 

widespread practice worldwide, primarily utilized for landslide mitigation strategies. Landslide 

susceptibility assessment requires the use of remote sensing and Geospatial-derived outcomes, 

such as landslide inventory and contributing and triggering factors. Landslide susceptibility 

assessment methods can be divided into two categories: quantitative methods, such as statistical 

models, heuristics (multi-criteria analysis), and physical-based models, and qualitative 

methods, such as knowledge-based and geomorphological mapping (Batar & Watanabe, 2021).  

According to (Dou et al., 2019) usually, rainfall or earthquakes cause landslides, though 

sometimes an earthquake causes a rainfall event, or vice versa. A digital elevation model 

(DEM) is used in large-scale physically based landslide susceptibility processes to describe the 

terrain constraints that fundamentally define the local elevation, slope, hydrologic, and further 

geomorphic processes (Schlögel et al., 2018). Land use and land cover variation can modify 

the geological circumstances and distress the manifestation of the landslides (Chen et al., 

2019). Remote sensing data, land-based data, and numerous other data sources are used to 
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extract the spatial information related to the aforementioned factors. Landslide susceptibility 

maps demonstrate the comparative possibility of future landslides based exclusively on the 

vital assets of a background or site (Rahim et al., 2018). Landslide susceptibility mapping 

(LSM) is regarded as a prime phase in the execution of instant disaster management planning 

and risk mitigation events (Camilo et al., 2017).  

 The occurrence of landslides is primarily ascribed to the combined effect of various 

factors, and it is never easy for researchers to assess the extent of these factors' influence (Abdı 

et al., 2021). Unusually, in recent years, firm changes in global climatic conditions have 

controlled to extreme weather events that increase the propensity of landslides (Zou et al., 

2021). Even though landslides have been studied extensively, little is known about how floods 

and seismic activity interact to cause landslides. This is especially true in Northern Pakistan's 

Battagramdistrict, which is particularly vulnerable because of its complicated topography, 

active tectonics, and unpredictable climate. Current models frequently ignore the compounding 

effects of multiple hazards and only take into account landslide triggers in isolation. 

Additionally, little research has been done to incorporate changes in land cover over the past 

few decades into susceptibility assessments. By using the Frequency Ratio (FR) model and 

Geospatial techniques to generate an extensive Landslide Susceptibility Map (LSM), this study 

seeks to close these gaps. 

Study Area 

 The geographical location of District Battagram is latitude 34.79147 and longitude 

73.121641, which covers an area of 350,172 acres. The district usually has dense forests and 

mountains with peaks higher than 4000 meters. It is bordered to the north by Kohistan District, 

to the east by Mansehra District, to the south by the Kala Dhaka Tribal Area, and to the west 
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by Shangla District. 

 
Figure 1: Study Area Map  

 The corporate headquarters is located in Battagram town, which is about 75 kilometers 

from Mansehra along the Silk Highway. Battagram and Allai are the two tehsils that make up 

the district. It features a number of stunning valleys. The Nindhyarkhawar and Allai Khawar 

are the two main streams, which are referred to as Khawar in the local dialect. Beginning in 

the "Hill" mountains, the Nindhyar Khawar flows over the main village before joining the Indus 

River at Thakot in the east. The Chaur Mountains are the source of the other large stream, Allai 

Khawar, which empties into the Indus River at Kund in the east. The maximum temperature 

on an average day for each month in Battagram is displayed by the "mean daily maximum" 

(solid red line). Similarly, the average minimum temperature is displayed by the "mean daily 

minimum" (solid blue line). The average of each month's hottest day and coldest night over the 

previous 30 years is displayed by hot days and cold nights (dashed red and blue lines). 
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Figure 2: Graphical representation of temperature (1979_2023) 

 
Figure 3: Graphical representation of precipitation (1979-2023) 

 The graph displays an approximation of the mean total precipitation for the greater area 

of Battagram. The dashed blue line is the linear climate change inclination. In the lower part, 

the graph demonstrates the so-called precipitation stripes. Respectively colored stripe 

represents the total precipitation of a year - green for wetter and brown for drier years. There 

is an entire 369 km road network in the valleys. The Karakoram Highway or the Silk Highway, 

arrives in the district at Sharkool, Mansehra, and leaves it at Thakot. The major roads in the 
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district are Battagram-shamlai, Batagram-Oghi, Battagram-paimal Sharif and Chattar-

Kuzabanda road. 

 It's interesting to note that geologists have long recognized a connection between 

seismic activity and rainfall rates. For instance, the yearly rainfall cycle of the summer 

monsoon season in the Himalayas affects the frequency of earthquakes (Mir et al., 

2024). According to investigation, only 16% of Himalayan earthquakes happen throughout the 

monsoon season, with 48% occurring during the drier pre-monsoon months of March, April, 

and May. (Munir et al., 2021) stated that Pakistan continues to experience flooding and 

landslides due to the country's heavy rainfall, which also causes an increasing amount of 

damage and fatalities. In Khyber Pakhtunkhwa Province, flash floods and landslides caused at 

least 13 fatalities and 27 injuries between August 31 and September 1. According to the NDMA 

report, there have been 2,245 damaged homes, 189 fatalities, and 128 injuries since the start of 

the monsoon season. According to (Bahram & R. Paradise, 2020), nearly every element of the 

people's socioeconomic lives as well as the district's physical infrastructure was impacted by 

the earthquake. In the last ten years, 1389 earthquakes of magnitude four or higher have 

occurred within 300 kilometers (186 miles) of Battagram, Khyber Pakhtunkhwa. This 

translates to an average of 11 earthquakes per month, or 138 earthquakes annually. Near 

Battagram, an earthquake occurs approximately every two days on average. Battagram has 

experienced 19 earthquakes with magnitudes greater than 2 and up to 5.0 since 2022. 

Materials and Methods 

Data acquisition 

 Multi-source data has been used for landslide susceptibility monitoring in Battagram. 

This study's landslide susceptibility map was created using ten factors. The factors were 

entirely chosen based on their availability and efficacy. For LULC variation analysis, multi-

temporal cloud-free Landsat 5 and 8 Thematic Mapper (TM) data of August 2010, 2015, and 

2022 (Table 1) were obtained from USGS Earth Explorer (EarthExplorer (usgs.gov). The 

extraction of topographic information, including elevation, slope, aspect, hill shade hydrology, 

was obtained from the Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-

DEM) with 30 m resolution. The geological data were obtained from toposheets from the 

Geological Survey of Pakistan (GSP) and satellite data from the U.S. Army KMZ. The monthly 

rainfall data from 2010 to 2022 were collected from the Data Access Viewer-NASA POWER 



Climate Change and Disasters, Vol. 1 Issue 1 June 2025 
 

 
 

12 

(https://power.larc.nasa.gov/data-access-viewer/). The historical landslide data have been 

collected from the NASA Landslide Viewer. 

Table 1:  Evidence about satellite data 

Satellite Dates of Images Resolution Reference 

system/Path/Row 

Landsat 5 18/06/2010 30m WRS/150/36 

Landsat 8 15/06/2015 30m WRS/150/36 

Landsat 9 20/06/2022 30m WRS/151/40 

Data processing 

 The data was then imported, processed, and analysed in ArcGIS software to create 

various maps of the factors impacting the incidence and spreading of groundwater in the 

watershed. Multiple factors have been considered to regulate landslide-susceptible zones.  

 

Figure 4: The methodological framework 
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Data analysis 

Flood extent  

 Sentinel-1 SAR data were principally utilised in this study to map the flood inundation 

in the Battgaram District in 2022. A population dataset and land use/cover (LULC) have been 

used in the evaluation of flood damage. The Global Human Settlement Layers (GHSLs) and 

Gridded Population of the World (GPW v4) datasets were analyzed for population and density, 

respectively, in order to assess the effects of flooding. Using the monthly precipitation data 

from Terra Climate, the rainfall pattern and anomaly during the 2022 flood event have been 

recognized. The crop land and population density had been calculated using ArcGIS software. 

 
Figure 5: The methodological framework for assessment of flood extent  

Landslide inventory map 

 A landslide inventory map, which illustrates the positions and contours of landslides, 

expresses the knowledge of landslides in a specific area. A data set that may include one or 

more incidents is called a landslide inventory. Forecasting the likelihood of landslides in a 

study area primarily relies on historical and present landslide inventory data. Sentinel-1 and 

Google Earth pictures were used to generate the landslide inventory map for this study.  
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Common factors controlling landslides 

 The primary determinants of seismic landslides include geological, seismic, and 

topographic factors. Ten common landslide-causative characteristics that are used to analyze 

landslides triggered by earthquakes and rainfall were examined in this study. The topography, 

geology, tectonic features, weather, land cover, and human activity all have a significant 

influence on the intensity and spatial distribution of landslides. It is crucial to assess how these 

causal elements affect the landslide's spatial distribution for the purpose to comprehend how 

they work and create a map of landslide vulnerability. The primary factor influencing the 

location and severity of landslides is the slope of the terrain (Jin et al., 2024).  

 Slope is an important causal component in landslide inquiry, according to (Mir et al., 

2024), since it causes loose sediment material to migrate downslope. The current research area's 

slope was calculated using a DEM with a spatial resolution of 12.5 m. Next, using ArcGIS 

10.8, the computed slope was divided into five classes, as Figure 8 illustrates. The research 

area's terrain aspect was calculated using a 3*3 moving window in ArcGIS 10.8 based on the 

DEM. It is usually recognized that lithological structures have a substantial influence on the 

physical potentials of both surface and subsurface material, counting their strength and 

permeability, which in turn influences the probability of landslides (Khan et al., 2019). The 

distribution of landslides is greatly affected by land cover; generally, landslides are less 

common in forested areas than in barren ones. Strong root systems of the vegetation give the 

mechanical and hydrological forces that frequently stabilize the slopes. The area's land cover 

was categorized as consisting of permanent snow, glaciers, irrigated agricultural land, barren 

ground, woodland and shrub land, and water bodies. The prevalence and intensity of co-seismic 

landslides are primarily determined by the spatial spreading and character of fault lines (Duan 

et al., 2023). The region's fault lines were taken from the geological map of the region. Using 

ArcGIS 10.8 software, the distance to the fault was split into five regions spaced 50 meters 

apart (Fig. 6e). Building roads and railroads as part of a communication network in hilly areas 

frequently causes instability in slopes and ultimately landslides (Dahiya et al., 2025). The road 

network was derived from the obtained Sentinel 1 pictures and then verified in the field to 

evaluate the influence of the road network on the landslides in the research area. Then, using 

ArcGIS software, distance from the road was measured at 50-meter intervals. Streams can 

cause undercutting from toe erosion and saturation of the slide toe from increased water 

penetration, both of which can negatively impact a slope's steadiness (Hussen et al., 2024). 

Using Arc Hydro tools, the stream network for the study area was computed using the ASTER 
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DEM to evaluate the influence of the streams on the distribution of landslides. The streams that 

accumulated more than 20 square kilometers were extracted. 

Weighted Sum Analysis 

 There are ten elements - Roads, Streams, Vegetation, and Slope - and three criteria 

established for each element to regulate habitat correctness for the black bears. Feature to 

Raster, Euclidean Distance, Slope, Reclassify and Weighted sum are cast-off for the analysis. 

First, layers are converted and analysed to formulate for reclassification. Next, converted and 

evaluated layers are reclassified giving to the criteria provided in the study. Reclassification for 

additional specifics concerning reclassification. Finally, all the reclassified layers are draped. 

A map representing appropriate areas for the black bears, representing three levels of habitat 

suitability, is fashioned. 

Frequency Ratio model  

 According to (Khan et al., 2019) to assess the likelihood of landslides, it is crucial to 

comprehend the physical features unique to the place and the mechanisms that cause them. A 

quantitative method for assessing landslide susceptibility that makes use of geographic data 

and GIS technology is the frequency ratio. For mapping landslide susceptibility, the frequency 

ratio (FR) technique is widely and successfully employed. It depends on the measured 

correlation between the causal variables for landslides and the landslide inventory. We compute 

the FR for each factor using Eq. 5. 

FR = (Ni P x/N)/N i l Q/Nl 

 Where N is the total number of pixels in the study area, N i lP is the number of landslide 

pixels in each landslide conditioning factor, Nl is the total number of landslide pixels in the 

study area, FR is the frequency ratio, and Ni Px is the number of pixels in each landslide 

conditioning factor class. 

Landslide susceptibility mapping 

 It is crucial to make the assumptions that future landslides will occur within the same 

conditions as prior landslides and that the geographical distribution of landslides is inclined by 

the elements that trigger landslides while doing landslide susceptibility mapping. Frequency 

Ratio (FR) has been utilized throughout this research to map the vulnerability to landslides. 
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Results and Discussion   

 Although landslide growth is influenced by a variety of natural and man-made 

elements, it is a complex process. (Khan et al., 2019). The most significant criteria for 

precipitation and the detachment to the fault lines were determined to be those created by 

consulting experts in the landslide susceptibility study (Konurhan et al., 2023). In order to 

lessen the effects of present and future hazards, LSM was created in this work using geospatial 

approaches that consider landslide events and risk influences (elevation, slope, aspect, 

curvature, precipitation, LULC, distance to fault, lithology, distance to road, and distance to 

streams). 

Landslide inventory map  

 First, we used data from satellites and ground stations to create an inventory map. The 

determining characteristics for landslides can be observed in the topographic aspects of aspect, 

curvature, slope, and altitude. As seen in Figure 1, 324 past and present landslide occurrences 

in the research area were found using ground-based data and satellite imagery.  

 

Figure 6: The landslide inventory map of Battgaram 
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 To generate a non-landslide area, we first abstract the landslide polygon after the 

research area polygon. Next, we created random spots in the study zone which has been 

designated as a non-landslide area using ArcGIS tools(Jin et al., 2024). The various forms of 

landslides that occur during these occurrences include mudflows, debris flows, rockfalls, and 

rockslides, topples, and creeps. Three bivariate models are used in this study to generate the 

study area's LSM. Table 2 displays particular details of each model's outcomes. 

Causative Factors of Land sliding 

 According to (Khan et al., 2019), elevation is a significant requirement for landslide 

incidence. The current study's elevation characteristics show a substantial correlation with 

landslide occurrences. >4,500 m is the most significant elevation class, followed by 494 – 

4,891 m. The slope, which is the independent variable in this study, is seen to be the most 

important component. According to Table 2, the slope component has an impact up to 30° 

because landslides occur more frequently at higher slopes. Above that point, however, landslide 

activity declines as the slope increases. The results showed that the most prone class of slope 

is 15-30 °, while the most resistant class to landslides is >30 °, followed by the 10°–15 ° class. 

According to Table 2, the most important class of aspects is SE, which E, S, and SW. As shown 

in Table 2, the tabulated findings clarified that the critical class of landslides is concave 

structure. As Table 2 illustrates, the current study's findings suggest that faults have no direct 

bearing on the likelihood of landslides. The findings show that a relatively limited number of 

landslide pixel values of 0−39,644 for WOE and FR, respectively, occurred in a zone <50 m 

equidistance from the fault. To measure the relationship between rainfall parameters and 

landslide incidents, a rainfall map derived from CHIRPS data was created in the current study, 

verified using data collected from the ground, and classed into five classes. The precipitation 

data in Table 2 indicate that rainfall plays a substantial part in the occurrence of landslides. 

  The precipitation period is the censorious class for landslides, according to the results, 

followed by 301.87–391.30 mm/year. The vegetation cover is crucial for stabilizing slopes 

because roots anchor and strengthen soil layers. The NDVI values of plant formations are 

mainly positive and fall between 0.571 to 0.086. The results demonstrate that lithology plays a 

major causal role in the analysis of landslides. The furthermost prone geological creation for 

landslides is pC, tracked by Mi, PzpC, and S, as Figure 9 illustrates. It is believed that road 

construction is a direct effect of human activity, which leads to slope instability. The road 

network map is a polyline vector generated from the data, as seen in Figure 9. As a result, 
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varying land use plays a vital role in determining landslide susceptibility in numerous studies 

(Abdı et al., 2021). Different land uses have varying effects on landslides. Table 1 results 

indicate that the current study area's flooded vegetation and forest land make it particularly 

vulnerable to landslides. 
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Figure 7: The resultant maps included land use and cover, geology, rainfall, lineament 

density, slope, and soil. 
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Figure 8: The frequency ratios of different landslide-related factors 

Flood Extent in 2022 as Derived from SAR 

 A continuous rise in flooding was pragmatic in the inundation area from the Sentinel-

1A data within 3 months since 13 March 2022 to 31 August 2022. In March, a significant 

percentage of the region was flooded under water owing to a particularly impacted exposure in 

Figure 10. Nevertheless, in later months, such as August of 2022, the extent of the flood 

inundation increased. The comparison between these months has been shown in the display 

figure that has been generated in the software ArcGIS 10.5 after applying the analysis of the 

normalized difference water index (NDWI). The difference in water bodies has been shown 

very clearly through magnificent results. The Indus River touches the borderline of Battagram, 

and some stream coverage in which the flood extends seems to be through image processing.  

 

Figure 9: Comparison between before and after flood simulation 
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Figure 10: The flood extend map 
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Figure 11: Temporal map of land use and land cover (2010-2022)  

 

 Figure 11. Presents the LULC changes by comparing categorized Landsat photos from 

2010 and 2022. Significant increases were observed in the case of the water body, while major 

losses were observed in the forest. Although there was a minor increase in snow, the overall 
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amount of built-up contributing increased in 2015 to 11.85 then decreased due to flood, so the 

migration may be the reason of the declining rate of built-up. By using randomly selected 

samples that were spatially well-distributed, the total accuracy of the classification process was 

found to be 82.37%. Since our goal was to investigate agricultural land, the results were 

ultimately compared with LULC to mask out the permanent characteristics like forests and 

glaciers. 

Table 2: The area calculation of LU/LC throughout 2010-2022  

LULC results of the study area and comparison of both the years (2010–2022). 

Years 2010 2015 2022 

Classes 

Area(sq 

km)  

Percentag

e (%) 

Area(sq 

km)  

Percentag

e (%) 

Area(sq 

km)  

Percentag

e (%) 

Snow 

1687.0

6 11.27 2542.01 16.98 2051.09 13.7 

Water Body 254.97 1.7 431.74 2.88 544.24 3.63 

Forest 

4784.6

1 31.96 4731.33 31.61 4818.3 31.19 

Build-up 847.91 5.66 1774.36 11.85 809.89 5.41 

Vegetation 

3062.9

2 20.46 1731.58 11.56 3324 22.2 

Rocky area 

4328.9

7 28.92 3755.42 25.09 3418.92 22.84 

 

 

Figure 12: Graphical representation of landcover 
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Weighted Sum Analysis  

 These final weights are integrated into the GIS environment and used in ArcGIS 

software to generate the resulting map using the Weighted Sum method.  Five classes have 

been generated from the results as shown in the map Very high (5.41%), high (42.5714%), 

moderate (36.0127%), low (14.2585%), and very low (1.74178%). 

 

Table 3: The weights assigned to all factors 

Data layer Weight 

Aspect 3 

Slope (degree) 30 

Elevation(m) 11 

Rainfall 10 

Rd distance 5 

Fault distance 8 

Land use/land cover 8 

Geology 10 

Earthquake 10 

NDVI 5 
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Figure 13: The landslide susceptibility map by using weighted sum analysis 

Frequency ratio model  

 From the association between the landslide-causing factors and the places where 

landslides had not happened, one might infer the relationship between the landslide occurrence 

area and the landslide causal factors. A straightforward statistical method known as the 

frequency ratio approach has been used to determine the landslide susceptibility. To advance 

an LSM map, the frequency ratio for the designated contributing influence classes was mutual 

in geospatial (Figure 13).  
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Figure 14: The landslide susceptibility map by using Frequency Ratio 

 Towards advance a landslide susceptibility map for learning zone, the LSM map is 

classed into two classes: very low and extremely high susceptibility (Fig. 15).  
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Figure 15: Landslide susceptibility map induced from earthquake and flood 

 According to the results, 44.67% of the range is in the very high class, followed by the 

high susceptibility class (40.94%), moderate class (11.61%), low susceptibility class (1.96%), 

and very low susceptibility class (0.79%). The LSM map (Fig. 15) gives rise to the success rate 

curve. The LSM map's index values for every pixel stayed as expected overall. The 1% 

cumulative intervals were used to reclassify these values into 100 classes. The landslide 

susceptibility map and the classified map used to overlap. According to the justification results, 

70% of the pixels are correctly categorized as landslide pixels. 
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Figure 16: The Relationship between landslide and all parameters 
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Table 4: The calculation of frequency ratio for landslide susceptibility 

 

 The landslide susceptibility map comprises of the predicted landslide area hence it can 

be used to decrease the potential hazard associated with the landslides in this study area. It 

means this model is 88.9% accurate to predict the probability of landslide and the model is 

92.3% success to generate the prediction in the study area. 

Parameters Class Value Class Pixcel % Pixcel Landslide Pixel%landsliidng Pixel FR
<1,482 1 381830 22.21 231 12.19 0.001

1,482-2130 2 440629 25.63 577 30.45 0.001
2130-2811 3 348330 20.26 446 23.54 0.001
2811-3542 4 311525 18.12 328 17.31 0.001

>4891 5 237177 13.79 313 16.52 0.001
1719491 1895 0.006

<- 0.09 1 175123 11.70 231 12.19 0.001
0.09 - 0.20 2 180965 12.09 577 30.45 0.003
0.20 - 0.28 3 399932 26.72 446 23.54 0.001
0.28 - 0.35 4 486289 32.49 328 17.31 0.001

>0.57 5 254335 16.99 313 16.52 0.001
1496644 1895 0.008

< 73.99603642 1 314573 18.29 231 12.19 0.001
73.99 - 148.99 2 278285 16.18 577 30.45 0.002
148.99- 216.91 3 376541 21.90 446 23.54 0.001
216.91 - 287.66 4 352692 20.51 328 17.31 0.001

> 359.82 5 397400 23.11 313 16.52 0.001
1719491 1895 0.006

<3.85 1 6919 14.05 231 12.19 0.033
3.85 - 4.14 2 10190 20.69 577 30.45 0.057
4.14 - 4.38 3 13978 28.39 446 23.54 0.032
4.38 - 4.66 4 13424 27.26 328 17.31 0.024

> 6.25 5 4732 9.61 313 16.52 0.066
49243 1895 0.212

<5,752.38 1 10707 29.17 231 12.19 0.022
5,752.38 - 12,748.52 2 9668 26.34 577 30.45 0.060

12,748.52 - 20,522.01 3 6059 16.51 446 23.54 0.074
20,522.01 - 28,761.91 4 6031 16.43 328 17.31 0.054

> 39,644.80 5 4236 11.54 313 16.52 0.074
36701 1895 0.283

Snow 1 205109 13.70 231 12.19 0.001
Water Body 2 54424 3.64 577 30.45 0.011

Forest 3 481830 32.19 446 23.54 0.001
Built up 4 80989 5.41 328 17.31 0.004

Vegetation 5 332400 22.21 313 16.52 0.001
Rocky Area 6 341892 22.84 1895 0.000

1496644 0.018
< 3.85 1 415847 27.71 231 12.19 0.001

3.85 - 4.14 2 556394 37.07 577 30.45 0.001
4.14 - 4.38 3 216290 14.41 446 23.54 0.002
4.38 - 4.66 4 186865 12.45 328 17.31 0.002

>6.25 5 125352 8.35 313 16.52 0.002
1500748 1895 0.008

<0.003 1 24328 49.40 231 12.19 0.009
0.003- 0.008 2 13073 26.55 577 30.45 0.044
0.008 - 0.013 3 7080 14.38 446 23.54 0.063
0.013 - 0.020 4 3596 7.30 328 17.31 0.091

>0.037 5 1166 2.37 313 16.52 0.268
49243 1895 0.476

<10° 1 494599 65.46 231 12.19 0.000
20-Oct 2 251548 33.29 577 30.45 0.002
20-30 3 5765 0.76 446 23.54 0.077
30-40 4 1994 0.26 328 17.31 0.164
>50 5 1666 0.22 313 16.52 0.188

755572 1895 0.432
Mi 1 11381 21.95 231 12.19 0.020

PzpC 2 1408 2.72 577 30.45 0.410
S 3 17065 32.92 446 23.54 0.026
pC 4 21990 42.42 328 17.31 0.015

51844 1582 0.471

Rainfall

RD Distance 

Slope 

Geology 

Elvevation

NDVI

Aspect

Earthquake

Fault Distance 

LULC
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Table 5: The prediction ratio for all the factors 

 

 

Figure 17: Graphical representation of Prediction ratio 

Conclusion 

 The purpose of this work was to create a complete database of landslides caused by the 

Battgaram earthquake and rainfall by interpreting multitemporal images and correlating them 

with environmental, seismic, and rainfall parameters. These landslides resulted from a mix of 

rainfall- and earthquake-induced occurrences. It is difficult to assess how the climate affects 

landslides because the two phenomena only partially overlap in space and time.  While rainfall 

Slope (degree) 2.357866 235.79
Elevation(m) 2.17186737 217.19

Rainfall 1.03679384 103.68
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is likely the most frequent cause of landslides, this study has identified earthquakes and floods 

as additional triggers for landslide risk. The northern portion of Battgaram is closely watching 

the extent of the flood and the activation of the earthquake in 2022, which increases the 

susceptibility of landslides. Examining the landslide inventory map made especially for the 

study area, it is evident that the majority of the region's active landslide locations are located 

in its higher-elevation sections. The findings lead to the following conclusions, which are 

proposed: The purpose of this study was to use geographic methods to create an LSM of the 

research region in order to lessen the effects of potential dangers. The weighted sum analysis 

of the study showed that 1.74178% of the area had very low susceptibility. The area of 

Muzaffarabad is divided into four susceptibility zones: high (2.5714%), moderate (36.0127%), 

low (14.2585%), and very high (5.41%). Specifically, 44.67% of the range falls into the very 

high class, followed by the high susceptibility class (40.94%), the moderate class (11.61%), 

the low susceptibility class (1.96%), and the very low susceptibility class (0.79%) in the 

frequency ratio model. In the current study, the GIS-based statistical models WSM and FR 

were utilized to calculate the correlation between dependent variables (the elements that cause 

landslides) and dependent variables (the events or inventories of landslides).  

 The purpose of this study was to assess the relationship between the occurrence of 

landslides and causal factors. The topography, geology, hydrology, climate, and 

geomorphology of these factors were listed. After applying the Weight Sum analysis method 

and transferring the weight data to the GIS environment, a landslide susceptibility map was 

produced. The results of the validation showed that the FR model is a reliable approach for the 

LSM. The susceptibility map was validated by comparing its positions with those of known 

landslides. 85.7% of the predictions were shown to be accurate. We conclude that the most 

authentic, adaptable, and dependable way to generate LSM is through statistical modeling 

based on GIS. The maps of landslide susceptibility that this study produced are crucial for local 

governance and sustainable urban development. Initial decision-making and policy planning 

may benefit from the data obtained from the created map. Furthermore, in order to be widely 

applied in more regional areas, more relative data must be obtained. 
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