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Abstract

A landslide is a natural disaster that can cause significant global damage
and human casualties. As a flood-prone area, the Battagram district of
Khyber Pakhtunkhwa, Pakistan, has seen an increase in urbanization,
making it challenging to choose an appropriate location for seismic activity.
This study seeks to assess the susceptibility to landslide risk through the
application such as seismic activity and flooding. This analysis employs
Geographic Information System (GIS) and Remote Sensing techniques. The
research utilized several data sets, encompassing geological data processed
with the ArcGIS 10.8 software, Shuttle Radar Topography Mission (SRTM)
data, Landsat thermal images from missions 5 and 8, thematic data,
meteorological data, and a seismic catalogue. SAR photos are used to map
Sentinel-1A in Google Earth Engine (GEE) to determine the extent of
floods. The landslide inventory was separated into training and validation
sets for this investigation. Significant contributing factors, including slope
aspect, elevation, land cover and use during earthquakes, normalized
difference vegetation index (NDVI), road distance, fault distance, rainfall,
and geology, are taken into consideration when assessing landslip
susceptibility. To establish the spatial correlation between landslides and
these parameters, the frequency ratio model and weighted sum analysis
were utilized. The WSM analysis indicates that 1.74% of the region is
classified as having very low susceptibility, with the remaining areas being
classified as low (14.26%), moderate (36.01%), high (2.57%), and very high
(5.41%). 44.67% of the region is classified as having very high
susceptibility by the FR model, with high (40.94%), moderate (11.61%),
low (1.96%), and very low (0.79%) following. The FR model demonstrated
reliability in risk assessment, with an accuracy of 85.7% against known
landslide events. These findings support the use of GIS-based statistical
modeling in urban planning and hazard mitigation by demonstrating how
well it can identify high-risk areas. For increased accuracy and scalability,
future developments should concentrate on adding more localized data.

Keywords: Landslide susceptibility, weighted sum analysis, GIS, frequency ratio,
remote sensing, Google earth engine
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Introduction

One of the most common geological disasters, landslides are said to cause significant
property loss and fatalities all over the world (Linkha, 2024). According to CRED, the
landslides segment accounts for 17% of fatalities in all natural disasters worldwide (Alimonti
& Mariani, 2024). Climate models project that the intensity of monsoon rainfall in southern
Asia will rise in the future owed to climate change. This could feasibly enhance the winter
rebound and cause more seismic events. Rainfall and flash floods can cause rockfalls and debris
flow, and environmental factors like rock deterioration over time can also cause landslides.
Similarly, natural disasters like earthquakes can cause a slope to become weak due to
construction along its banks (Shabbir et al., 2023). Every year, during the monsoon season,
landslides and floods in the Himalayan region reason fatalities and damage to property (Sana
et al., 2024). The rough terrain, active seismicity, monsoon rains, and human activity on uneven
slopes make northern Pakistan one of the most landslide-prone areas (Hussain et al., 2023).
The deadliest and worst flood disaster in the past ten years occurred in Pakistan in 2022.
Pakistan encountered a monsoon climate and extremely hot weather in mid-June 2022 (NASA,
2022), and as a result, at least two-thirds of the nation experienced the most precipitation in
almost 30 years. Following the flood in 2022, some of the highland's volcanic mountains are
still active. Additionally, fissures and cracks truncate the main rock types in this highland.

Many landslides have occurred in the area as a result of earthquakes destroying them
(Sana et al., 2024). In order to forecast future landslides, it is vital to identify the zones that are
vulnerable. By using scientific analysis to identify and forecast landslide-prone areas,
appropriate preventative measures can reduce landslide damage (Jena et al., 2021). Therefore,
the two main causes of landslides in the region are earthquakes and rainfall (Vasil Levski &
Dolchinkov, 2024). Using the data that is currently available and geospatial techniques, this
study attempts to create landslide susceptibility mapping over the Battagram district that is
caused by earthquake and flood activity. As a result, the study evaluates the primary causes of
landslides in the Battagram district as well as the effects of land cover change over the previous
16 years on landslides in the study area. The study area has a primarily monsoonal climate, and
landslides are typically caused by heavy rainfall. The risk of landslides is influenced by human
activity in addition to climate and geotectonic factors.

Disasters appear on the news headlines almost every day, according to (Dietrich et al.,
2024). Most of them take place in distant areas and pass by swiftly. In light of (Lu et al., 2024),
there have been eighteen fatal earthquakes worldwide
between 1989 and 2015, which have caused extensive landslides across a
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wide area. Examples of large-magnitude earthquakes in the past ten years, according to (Saima
Akbar, 2024), include the 2005 earthquake in Kashmir caused thousands of landslides in
northern Pakistan, resulting in a thousand deaths. Some of the most notable landslide
disasters that have occurred in northern Pakistan include the 2005 Kashmir earthquake, which
caused thousands of landslides over an area of more than 7,500 km? in Kashmir and its
surroundings, killing 87,350 people. (Bali et al., 2025) stated that three major mountain ranges,
the Himalayas, Karakoram, and the Hindu Kush, are the dominant feature of the northern
regions of Pakistan. These mountain ranges comprise the world's steepest peaks with a 45°
slope (Ahmed et al., 2019). Flash floods and landslides occurred on October 3-4 in Khyber
Pakhtunkhwa Province (Northern Pakistan) due to heavy rain, leading to casualties. Across
Charsadda and Lower Kohistan Districts, the Provincial Disaster Management Authority
(PDMA) reports that two people have died and six have been injured. Rescue operations are
taking place in Charsadda, as a few families have been relocated to relief camps. On October
6-7, there is a forecast of dry conditions over Khyber Pakhtunkhwa Province. Pakistan's history
has shown numerous flood events starting from its creation, such as the floods of 1950, 1992,
1998, and 2010 (Saima Akbar, 2024)

Several revisions in this area focused on geospatial and GIS-based methods to analyze
numerous spatial data types, the evolution of geostatistical models, and the predictable points
of risk and vulnerability for a given area (Rehman et al., 2022) A susceptibility map that
identifies areas that are likely to experience landslides in the future (Tyagi et al., 2023). An
essential first step in hazard and risk assessment, landslide susceptibility assessment is a
widespread practice worldwide, primarily utilized for landslide mitigation strategies. Landslide
susceptibility assessment requires the use of remote sensing and Geospatial-derived outcomes,
such as landslide inventory and contributing and triggering factors. Landslide susceptibility
assessment methods can be divided into two categories: quantitative methods, such as statistical
models, heuristics (multi-criteria analysis), and physical-based models, and qualitative
methods, such as knowledge-based and geomorphological mapping (Batar & Watanabe, 2021).
According to (Dou et al., 2019) usually, rainfall or earthquakes cause landslides, though
sometimes an earthquake causes a rainfall event, or vice versa. A digital elevation model
(DEM) is used in large-scale physically based landslide susceptibility processes to describe the
terrain constraints that fundamentally define the local elevation, slope, hydrologic, and further
geomorphic processes (Schlogel et al., 2018). Land use and land cover variation can modify
the geological circumstances and distress the manifestation of the landslides (Chen et al.,
2019). Remote sensing data, land-based data, and numerous other data sources are used to
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extract the spatial information related to the aforementioned factors. Landslide susceptibility
maps demonstrate the comparative possibility of future landslides based exclusively on the
vital assets of a background or site (Rahim et al., 2018). Landslide susceptibility mapping
(LSM) is regarded as a prime phase in the execution of instant disaster management planning

and risk mitigation events (Camilo et al., 2017).

The occurrence of landslides is primarily ascribed to the combined effect of various
factors, and it is never easy for researchers to assess the extent of these factors' influence (Abd1
et al., 2021). Unusually, in recent years, firm changes in global climatic conditions have
controlled to extreme weather events that increase the propensity of landslides (Zou et al.,
2021). Even though landslides have been studied extensively, little is known about how floods
and seismic activity interact to cause landslides. This is especially true in Northern Pakistan's
Battagramdistrict, which is particularly vulnerable because of its complicated topography,
active tectonics, and unpredictable climate. Current models frequently ignore the compounding
effects of multiple hazards and only take into account landslide triggers in isolation.
Additionally, little research has been done to incorporate changes in land cover over the past
few decades into susceptibility assessments. By using the Frequency Ratio (FR) model and
Geospatial techniques to generate an extensive Landslide Susceptibility Map (LSM), this study

seeks to close these gaps.
Study Area

The geographical location of District Battagram is latitude 34.79147 and longitude
73.121641, which covers an area of 350,172 acres. The district usually has dense forests and
mountains with peaks higher than 4000 meters. It is bordered to the north by Kohistan District,
to the east by Mansehra District, to the south by the Kala Dhaka Tribal Area, and to the west
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by Shangla District.
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Figure 1: Study Area Map

The corporate headquarters is located in Battagram town, which is about 75 kilometers
from Mansehra along the Silk Highway. Battagram and Allai are the two tehsils that make up
the district. It features a number of stunning valleys. The Nindhyarkhawar and Allai Khawar
are the two main streams, which are referred to as Khawar in the local dialect. Beginning in
the "Hill" mountains, the Nindhyar Khawar flows over the main village before joining the Indus
River at Thakot in the east. The Chaur Mountains are the source of the other large stream, Allai
Khawar, which empties into the Indus River at Kund in the east. The maximum temperature
on an average day for each month in Battagram is displayed by the "mean daily maximum"
(solid red line). Similarly, the average minimum temperature is displayed by the "mean daily
minimum" (solid blue line). The average of each month's hottest day and coldest night over the

previous 30 years is displayed by hot days and cold nights (dashed red and blue lines).
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Mean yearly temperature, trend and anomaly, 1979-2023

Figure 2: Graphical representation of temperature (1979 2023)

Battagram 34.68°N, 73.02°E.

Mean yearly precipitation, trend and anomaly, 1979-2023.

Battagram 34.68°N, 73.02°E

Figure 3: Graphical representation of precipitation (1979-2023)

The graph displays an approximation of the mean total precipitation for the greater area
of Battagram. The dashed blue line is the linear climate change inclination. In the lower part,
the graph demonstrates the so-called precipitation stripes. Respectively colored stripe
represents the total precipitation of a year - green for wetter and brown for drier years. There
is an entire 369 km road network in the valleys. The Karakoram Highway or the Silk Highway,

arrives in the district at Sharkool, Mansehra, and leaves it at Thakot. The major roads in the
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district are Battagram-shamlai, Batagram-Oghi, Battagram-paimal Sharif and Chattar-

Kuzabanda road.

It's interesting to note that geologists have long recognized a connection between
seismic activity and rainfall rates. For instance, the yearly rainfall cycle of the summer
monsoon season in the Himalayas affects the frequency of earthquakes (Mir et al.,
2024). According to investigation, only 16% of Himalayan earthquakes happen throughout the
monsoon season, with 48% occurring during the drier pre-monsoon months of March, April,
and May. (Munir et al., 2021) stated that Pakistan continues to experience flooding and
landslides due to the country's heavy rainfall, which also causes an increasing amount of
damage and fatalities. In Khyber Pakhtunkhwa Province, flash floods and landslides caused at
least 13 fatalities and 27 injuries between August 31 and September 1. According to the NDMA
report, there have been 2,245 damaged homes, 189 fatalities, and 128 injuries since the start of
the monsoon season. According to (Bahram & R. Paradise, 2020), nearly every element of the
people's socioeconomic lives as well as the district's physical infrastructure was impacted by
the earthquake. In the last ten years, 1389 earthquakes of magnitude four or higher have
occurred within 300 kilometers (186 miles) of Battagram, Khyber Pakhtunkhwa. This
translates to an average of 11 earthquakes per month, or 138 earthquakes annually. Near
Battagram, an earthquake occurs approximately every two days on average. Battagram has

experienced 19 earthquakes with magnitudes greater than 2 and up to 5.0 since 2022.

Materials and Methods

Data acquisition

Multi-source data has been used for landslide susceptibility monitoring in Battagram.
This study's landslide susceptibility map was created using ten factors. The factors were
entirely chosen based on their availability and efficacy. For LULC variation analysis, multi-
temporal cloud-free Landsat 5 and 8 Thematic Mapper (TM) data of August 2010, 2015, and
2022 (Table 1) were obtained from USGS Earth Explorer (EarthExplorer (usgs.gov). The
extraction of topographic information, including elevation, slope, aspect, hill shade hydrology,
was obtained from the Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-
DEM) with 30 m resolution. The geological data were obtained from toposheets from the
Geological Survey of Pakistan (GSP) and satellite data from the U.S. Army KMZ. The monthly
rainfall data from 2010 to 2022 were collected from the Data Access Viewer-NASA POWER
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(https://power.larc.nasa.gov/data-access-viewer/). The historical landslide data have been
collected from the NASA Landslide Viewer.
Table 1: Evidence about satellite data

Satellite Dates of Images Resolution Reference
system/Path/Row
Landsat 5 18/06/2010 30m WRS/150/36
Landsat 8 15/06/2015 30m WRS/150/36
Landsat 9 20/06/2022 30m WRS/151/40

Data processing

The data was then imported, processed, and analysed in ArcGIS software to create
various maps of the factors impacting the incidence and spreading of groundwater in the

watershed. Multiple factors have been considered to regulate landslide-susceptible zones.

Methodology
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Figure 4: The methodological framework
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Data analysis

Flood extent

Sentinel-1 SAR data were principally utilised in this study to map the flood inundation
in the Battgaram District in 2022. A population dataset and land use/cover (LULC) have been
used in the evaluation of flood damage. The Global Human Settlement Layers (GHSLs) and
Gridded Population of the World (GPW v4) datasets were analyzed for population and density,
respectively, in order to assess the effects of flooding. Using the monthly precipitation data
from Terra Climate, the rainfall pattern and anomaly during the 2022 flood event have been

recognized. The crop land and population density had been calculated using ArcGIS software.

Figure 5: The methodological framework for assessment of flood extent

Landslide inventory map

A landslide inventory map, which illustrates the positions and contours of landslides,
expresses the knowledge of landslides in a specific area. A data set that may include one or
more incidents is called a landslide inventory. Forecasting the likelihood of landslides in a
study area primarily relies on historical and present landslide inventory data. Sentinel-1 and

Google Earth pictures were used to generate the landslide inventory map for this study.
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Common factors controlling landslides

The primary determinants of seismic landslides include geological, seismic, and
topographic factors. Ten common landslide-causative characteristics that are used to analyze
landslides triggered by earthquakes and rainfall were examined in this study. The topography,
geology, tectonic features, weather, land cover, and human activity all have a significant
influence on the intensity and spatial distribution of landslides. It is crucial to assess how these
causal elements affect the landslide's spatial distribution for the purpose to comprehend how
they work and create a map of landslide vulnerability. The primary factor influencing the
location and severity of landslides is the slope of the terrain (Jin et al., 2024).

Slope is an important causal component in landslide inquiry, according to (Mir et al.,
2024), since it causes loose sediment material to migrate downslope. The current research area's
slope was calculated using a DEM with a spatial resolution of 12.5 m. Next, using ArcGIS
10.8, the computed slope was divided into five classes, as Figure 8 illustrates. The research
area's terrain aspect was calculated using a 3*3 moving window in ArcGIS 10.8 based on the
DEM. It is usually recognized that lithological structures have a substantial influence on the
physical potentials of both surface and subsurface material, counting their strength and
permeability, which in turn influences the probability of landslides (Khan et al., 2019). The
distribution of landslides is greatly affected by land cover; generally, landslides are less
common in forested areas than in barren ones. Strong root systems of the vegetation give the
mechanical and hydrological forces that frequently stabilize the slopes. The area's land cover
was categorized as consisting of permanent snow, glaciers, irrigated agricultural land, barren
ground, woodland and shrub land, and water bodies. The prevalence and intensity of co-seismic
landslides are primarily determined by the spatial spreading and character of fault lines (Duan
et al., 2023). The region's fault lines were taken from the geological map of the region. Using
ArcGIS 10.8 software, the distance to the fault was split into five regions spaced 50 meters
apart (Fig. 6¢). Building roads and railroads as part of a communication network in hilly areas
frequently causes instability in slopes and ultimately landslides (Dahiya et al., 2025). The road
network was derived from the obtained Sentinel 1 pictures and then verified in the field to
evaluate the influence of the road network on the landslides in the research area. Then, using
ArcGIS software, distance from the road was measured at 50-meter intervals. Streams can
cause undercutting from toe erosion and saturation of the slide toe from increased water
penetration, both of which can negatively impact a slope's steadiness (Hussen et al., 2024).

Using Arc Hydro tools, the stream network for the study area was computed using the ASTER
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DEM to evaluate the influence of the streams on the distribution of landslides. The streams that

accumulated more than 20 square kilometers were extracted.
Weighted Sum Analysis

There are ten elements - Roads, Streams, Vegetation, and Slope - and three criteria
established for each element to regulate habitat correctness for the black bears. Feature to
Raster, Euclidean Distance, Slope, Reclassify and Weighted sum are cast-off for the analysis.
First, layers are converted and analysed to formulate for reclassification. Next, converted and
evaluated layers are reclassified giving to the criteria provided in the study. Reclassification for
additional specifics concerning reclassification. Finally, all the reclassified layers are draped.
A map representing appropriate areas for the black bears, representing three levels of habitat
suitability, is fashioned.

Frequency Ratio model

According to (Khan et al., 2019) to assess the likelihood of landslides, it is crucial to
comprehend the physical features unique to the place and the mechanisms that cause them. A
quantitative method for assessing landslide susceptibility that makes use of geographic data
and GIS technology is the frequency ratio. For mapping landslide susceptibility, the frequency
ratio (FR) technique is widely and successfully employed. It depends on the measured
correlation between the causal variables for landslides and the landslide inventory. We compute
the FR for each factor using Eq. 5.

FR=(NiPx/N)/Nil Q/NI

Where N is the total number of pixels in the study area, N i IP is the number of landslide
pixels in each landslide conditioning factor, Nl is the total number of landslide pixels in the
study area, FR is the frequency ratio, and Ni Px is the number of pixels in each landslide
conditioning factor class.

Landslide susceptibility mapping

It is crucial to make the assumptions that future landslides will occur within the same
conditions as prior landslides and that the geographical distribution of landslides is inclined by
the elements that trigger landslides while doing landslide susceptibility mapping. Frequency
Ratio (FR) has been utilized throughout this research to map the vulnerability to landslides.
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Results and Discussion

Although landslide growth is influenced by a variety of natural and man-made
elements, it is a complex process. (Khan et al., 2019). The most significant criteria for
precipitation and the detachment to the fault lines were determined to be those created by
consulting experts in the landslide susceptibility study (Konurhan et al., 2023). In order to
lessen the effects of present and future hazards, LSM was created in this work using geospatial
approaches that consider landslide events and risk influences (elevation, slope, aspect,
curvature, precipitation, LULC, distance to fault, lithology, distance to road, and distance to

streams).
Landslide inventory map

First, we used data from satellites and ground stations to create an inventory map. The
determining characteristics for landslides can be observed in the topographic aspects of aspect,
curvature, slope, and altitude. As seen in Figure 1, 324 past and present landslide occurrences

in the research area were found using ground-based data and satellite imagery.
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Figure 6: The landslide inventory map of Battgaram
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To generate a non-landslide area, we first abstract the landslide polygon after the
research area polygon. Next, we created random spots in the study zone which has been
designated as a non-landslide area using ArcGIS tools(Jin et al., 2024). The various forms of
landslides that occur during these occurrences include mudflows, debris flows, rockfalls, and
rockslides, topples, and creeps. Three bivariate models are used in this study to generate the

study area's LSM. Table 2 displays particular details of each model's outcomes.

Causative Factors of Land sliding

According to (Khan et al., 2019), elevation is a significant requirement for landslide
incidence. The current study's elevation characteristics show a substantial correlation with
landslide occurrences. >4,500 m is the most significant elevation class, followed by 494 —
4,891 m. The slope, which is the independent variable in this study, is seen to be the most
important component. According to Table 2, the slope component has an impact up to 30°
because landslides occur more frequently at higher slopes. Above that point, however, landslide
activity declines as the slope increases. The results showed that the most prone class of slope
is 15-30 °, while the most resistant class to landslides is >30 °, followed by the 10°-15 ° class.
According to Table 2, the most important class of aspects is SE, which E, S, and SW. As shown
in Table 2, the tabulated findings clarified that the critical class of landslides is concave
structure. As Table 2 illustrates, the current study's findings suggest that faults have no direct
bearing on the likelihood of landslides. The findings show that a relatively limited number of
landslide pixel values of 0—39,644 for WOE and FR, respectively, occurred in a zone <50 m
equidistance from the fault. To measure the relationship between rainfall parameters and
landslide incidents, a rainfall map derived from CHIRPS data was created in the current study,
verified using data collected from the ground, and classed into five classes. The precipitation

data in Table 2 indicate that rainfall plays a substantial part in the occurrence of landslides.

The precipitation period is the censorious class for landslides, according to the results,
followed by 301.87-391.30 mm/year. The vegetation cover is crucial for stabilizing slopes
because roots anchor and strengthen soil layers. The NDVI values of plant formations are
mainly positive and fall between 0.571 to 0.086. The results demonstrate that lithology plays a
major causal role in the analysis of landslides. The furthermost prone geological creation for
landslides is pC, tracked by Mi, PzpC, and S, as Figure 9 illustrates. It is believed that road
construction is a direct effect of human activity, which leads to slope instability. The road

network map is a polyline vector generated from the data, as seen in Figure 9. As a result,
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varying land use plays a vital role in determining landslide susceptibility in numerous studies
(Abdi et al., 2021). Different land uses have varying effects on landslides. Table 1 results
indicate that the current study area's flooded vegetation and forest land make it particularly

vulnerable to landslides.
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Figure 7: The resultant maps included land use and cover, geology, rainfall, lineament

density, slope, and soil.
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Figure 8: The frequency ratios of different landslide-related factors

Flood Extent in 2022 as Derived from SAR

A continuous rise in flooding was pragmatic in the inundation area from the Sentinel-
1A data within 3 months since 13 March 2022 to 31 August 2022. In March, a significant
percentage of the region was flooded under water owing to a particularly impacted exposure in
Figure 10. Nevertheless, in later months, such as August of 2022, the extent of the flood
inundation increased. The comparison between these months has been shown in the display
figure that has been generated in the software ArcGIS 10.5 after applying the analysis of the
normalized difference water index (NDWI). The difference in water bodies has been shown
very clearly through magnificent results. The Indus River touches the borderline of Battagram,

and some stream coverage in which the flood extends seems to be through image processing.
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Figure 9: Comparison between before and after flood simulation
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Figure 11: Temporal map of land use and land cover (2010-2022)

Figure 11. Presents the LULC changes by comparing categorized Landsat photos from
2010 and 2022. Significant increases were observed in the case of the water body, while major

losses were observed in the forest. Although there was a minor increase in snow, the overall
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amount of built-up contributing increased in 2015 to 11.85 then decreased due to flood, so the

migration may be the reason of the declining rate of built-up. By using randomly selected

samples that were spatially well-distributed, the total accuracy of the classification process was

found to be 82.37%. Since our goal was to investigate agricultural land, the results were

ultimately compared with LULC to mask out the permanent characteristics like forests and

glaciers.

Table 2: The area calculation of LU/LC throughout 2010-2022

Years 2010 2015 2022
Area(sq | Percentag | Area(sq | Percentag Area(sq Percentag
Classes km) e (%) km) e (%) km) e (%)
1687.0
Snow 6 11.27 2542.01 16.98 2051.09 13.7
Water Body | 254.97 1.7 431.74 2.88 544.24 3.63
4784.6
Forest 1 31.96 4731.33 31.61 4818.3 31.19
Build-up 847.91 5.66 1774.36 11.85 809.89 5.41
3062.9
Vegetation 2 20.46 1731.58 11.56 3324 22.2
4328.9
Rocky area 7 28.92 3755.42 25.09 3418.92 22.84
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Figure 12: Graphical representation of landcover
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Weighted Sum Analysis

These final weights are integrated into the GIS environment and used in ArcGIS
software to generate the resulting map using the Weighted Sum method. Five classes have
been generated from the results as shown in the map Very high (5.41%), high (42.5714%),
moderate (36.0127%), low (14.2585%), and very low (1.74178%).

Table 3: The weights assigned to all factors

Data layer Weight
Aspect 3
Slope (degree) 30
Elevation(m) 11
Rainfall 10
Rd distance 5
Fault distance 8
Land use/land cover 8
Geology 10
Earthquake 10
NDVI 5
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Figure 13: The landslide susceptibility map by using weighted sum analysis

Frequency ratio model

From the association between the landslide-causing factors and the places where
landslides had not happened, one might infer the relationship between the landslide occurrence
area and the landslide causal factors. A straightforward statistical method known as the
frequency ratio approach has been used to determine the landslide susceptibility. To advance
an LSM map, the frequency ratio for the designated contributing influence classes was mutual

in geospatial (Figure 13).
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Figure 14: The landslide susceptibility map by using Frequency Ratio

Towards advance a landslide susceptibility map for learning zone, the LSM map is

classed into two classes: very low and extremely high susceptibility (Fig. 15).
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Figure 15: Landslide susceptibility map induced from earthquake and flood

According to the results, 44.67% of the range is in the very high class, followed by the
high susceptibility class (40.94%), moderate class (11.61%), low susceptibility class (1.96%),
and very low susceptibility class (0.79%). The LSM map (Fig. 15) gives rise to the success rate
curve. The LSM map's index values for every pixel stayed as expected overall. The 1%
cumulative intervals were used to reclassify these values into 100 classes. The landslide
susceptibility map and the classified map used to overlap. According to the justification results,

70% of the pixels are correctly categorized as landslide pixels.
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Table 4: The calculation of frequency ratio for landslide susceptibility

Parameters Class Value| Class Pixcel | % Pixcel |Landslide Pixelpandsliidng Pix FR
<1,482 1 381830 22.21 231 12.19 0.001
1,482-2130 2 440629 25.63 577 30.45 0.001
2130-2811 3 348330 20.26 446 23.54 0.001
Elvevation 2811-3542 4 311525 18.12 328 17.31 0.001
>4891 5 237177 13.79 313 16.52 0.001
1719491 1895 0.006
<-0.09 1 175123 11.70 231 12.19 0.001
0.09 - 0.20 2 180965 12.09 577 30.45 0.003
NDVI 0.20 - 0.28 3 399932 26.72 446 23.54 0.001
0.28 - 0.35 a 486289 32.49 328 17.31 0.001
>0.57 5 254335 16.99 313 16.52 0.001
1496644 1895 0.008
<73.99603642 1 314573 18.29 231 12.19 0.001
73.99 - 148.99 2 278285 16.18 577 30.45 0.002
148.99-216.91 3 376541 21.90 446 23.54 0.001
spect 216.91 - 287.66 a 352692 20.51 328 17.31 0.001
> 359.82 5 397400 23.11 313 16.52 0.001
1719491 1895 0.006
<3.85 1 6919 14.05 231 12.19 0.033
385-4.14 2 10190 20.69 577 30.45 0.057
414 -4.38 3 13978 28.39 446 23.54 0.032
4.38-4.66 a 13424 27.26 328 1731 0.024
> 6.25 5 4732 9.61 313 16.52 0.066
49243 1895 0.212
<5,752.38 1 10707 29.17 231 12.19 0.022
5,752.38 -12,748.52 | 2 9668 26.34 577 30.45 0.060
12,748.52 - 20,522.01| 3 6059 16.51 446 23.54 0.074
20,522.01 - 28,761.91| 4 6031 16.43 328 17.31 0.054
> 39,644.80 5 4236 11.54 313 16.52 0.074
36701 1895 0.283
Snow 1 205109 13.70 231 12.19 0.001
Water Body 2 54424 3.64 577 30.45 0.011
Forest 3 481830 32.19 446 23.54 0.001
Built up a 80989 5.41 328 17.31 0.004
Vegetation 5 332400 22.21 313 16.52 0.001
Rocky Area 6 341892 22.84 1895 0.000
1496644 0.018
<3.85 1 415847 27.71 231 12.19 0.001
3.85-4.14 2 556394 37.07 577 30.45 0.001
414 -4.38 3 216290 14.41 446 23.54 0.002
4.38 - 4.66 a 186865 12.45 328 17.31 0.002
>6.25 5 125352 8.35 313 16.52 0.002
1500748 1895 0.008
<0.003 1 24328 49.40 231 12.19 0.009
0.003- 0.008 2 13073 26.55 577 30.45 0.044
0.008 - 0.013 3 7080 14.38 446 23.54 0.063
0.013 - 0.020 a 3596 7.30 328 17.31 0.091
>0.037 5 1166 2.37 313 16.52 0.268
49243 1895 0.476
<10° 1 494599 65.46 231 12.19 0.000
20-Oct 2 251548 33.29 577 30.45 0.002
Slope 20-30 3 5765 0.76 446 23.54 0.077
30-40 a 1994 0.26 328 17.31 0.164
=50 5 1666 0.22 313 16.52 0.188
755572 1895 0.432
Mi 1 11381 21.95 231 12.19 0.020
PzpC 2 1408 272 577 30.45 0.410
Geology S 3 17065 32.02 446 23.54 0.026
pC a 21990 42.42 328 17.31 0.015
51844 1582 0.471

The landslide susceptibility map comprises of the predicted landslide area hence it can
be used to decrease the potential hazard associated with the landslides in this study area. It
means this model is 88.9% accurate to predict the probability of landslide and the model is

92.3% success to generate the prediction in the study area.
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Table 5: The prediction ratio for all the factors

Slope (degree)| 2.357866 235.79
Elevation(m) |[2.17186737 217.19

Rainfall 1.03679384 103.68
Rd distance [ 2.95838643 295.84
Fault distance 1 100.00

dInduse/land cov( 3.24558626 324.56
Geology 4.56060049 456.06
Earthquake | 1.06810309 106.81
NDVI 1.8171733 181.72
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Figure 17: Graphical representation of Prediction ratio
Conclusion

The purpose of this work was to create a complete database of landslides caused by the
Battgaram earthquake and rainfall by interpreting multitemporal images and correlating them
with environmental, seismic, and rainfall parameters. These landslides resulted from a mix of
rainfall- and earthquake-induced occurrences. It is difficult to assess how the climate affects

landslides because the two phenomena only partially overlap in space and time. While rainfall
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is likely the most frequent cause of landslides, this study has identified earthquakes and floods
as additional triggers for landslide risk. The northern portion of Battgaram is closely watching
the extent of the flood and the activation of the earthquake in 2022, which increases the
susceptibility of landslides. Examining the landslide inventory map made especially for the
study area, it is evident that the majority of the region's active landslide locations are located
in its higher-elevation sections. The findings lead to the following conclusions, which are
proposed: The purpose of this study was to use geographic methods to create an LSM of the
research region in order to lessen the effects of potential dangers. The weighted sum analysis
of the study showed that 1.74178% of the area had very low susceptibility. The area of
Muzaffarabad is divided into four susceptibility zones: high (2.5714%), moderate (36.0127%)),
low (14.2585%), and very high (5.41%). Specifically, 44.67% of the range falls into the very
high class, followed by the high susceptibility class (40.94%), the moderate class (11.61%),
the low susceptibility class (1.96%), and the very low susceptibility class (0.79%) in the
frequency ratio model. In the current study, the GIS-based statistical models WSM and FR
were utilized to calculate the correlation between dependent variables (the elements that cause

landslides) and dependent variables (the events or inventories of landslides).

The purpose of this study was to assess the relationship between the occurrence of
landslides and causal factors. The topography, geology, hydrology, climate, and
geomorphology of these factors were listed. After applying the Weight Sum analysis method
and transferring the weight data to the GIS environment, a landslide susceptibility map was
produced. The results of the validation showed that the FR model is a reliable approach for the
LSM. The susceptibility map was validated by comparing its positions with those of known
landslides. 85.7% of the predictions were shown to be accurate. We conclude that the most
authentic, adaptable, and dependable way to generate LSM is through statistical modeling
based on GIS. The maps of landslide susceptibility that this study produced are crucial for local
governance and sustainable urban development. Initial decision-making and policy planning
may benefit from the data obtained from the created map. Furthermore, in order to be widely
applied in more regional areas, more relative data must be obtained.
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