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ABSTRACT 

A graph G is defined to be a μ-graph if the standard measures of central 

tendencies (mean, median and mode) of eccentricities coincide. The μ-

graphs are characterized and studied in this paper. The measures of 

central tendencies of the eccentricities of graphs have implications in the 

study of Chemical Graphs, Internet Graphs, Acquaintanceship Graphs, 

BIG DATA Analysis and Social Network Graphs, to name a few.   

Keywords: Eccentricity; Mean Eccentricity; Median Eccentricity; Mode 

Eccentricity; μ െgraph. 

1. INTRODUCTION 
By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor 

multiple edges. For graph-theoretic terminology we refer to Harary [4]. All graphs in 

this paper are assumed to be connected and non-trivial.  

The eccentricity of a vertex is the maximum distance from it to any other vertex. The 

radius of the graph is the minimum eccentricity, and the diameter is the maximum 

eccentricity. Nestled in between is the average eccentricity which is introduced by 

Buckley and Harary [1] (as the eccentric mean). In association with different centrality 

measures, many authors have investigated how the different parameters of distance 

are related. Mukambi and Hove-Musekaw [6] studied the cutting number of a graph in 

relation with the centrality. Later in 1995, Hage and Harary [3] analyzed the relation 

between eccentricity and centrality. But the notion of mean eccentricity seems not to 

have been studied extensively. Dankelmann et al.[2] established the bounds on the 

mean eccentricity of a graph. Kauffman [5] made an extensive study on mode 

vertices and mode graphs, in relation with the eccentricity of the vertices of a graph. 

In this paper, the sequence of eccentricities of the vertices is expressed in the 

ascending order and the multiplicity is expressed as superscript. 

We now define and represent the mean, median and mode of eccentricities of the 

vertices of a graph with certain symbols.  
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Definition 1.1 The mean eccentricity or average eccentricity is denoted 

by	μ୫ୣሺGሻ. 

Definition 1.2 The median eccentricity is defined as the value which is in the 

middle of the eccentric sequence and is denoted by	μ୫ୢሺGሻ. 

Definition 1.3 The mode eccentricity is defined as the value which is most 

repeated in the eccentric sequence and is denoted by 	μ୫୭ሺGሻ.  

Definition 1.4 The graphs having same mean, median and mode eccentricities 

are characterized into a new family called  -graph. The central value eஜሺGሻof a ߤ-

graph is defined by eஜሺGሻ ൌ μ୫ୣሺGሻ ൌ μ୫ୢሺGሻ ൌ μ୫୭ሺGሻ.  

Mean Eccentricity μ୫ୣሺGሻ

Median Eccentricity μ୫ୢሺGሻ

Mode Eccentricity μ୫୭ሺGሻ

 

,ሺ۵ሻ܍ܕૄ .2  ሺ۵ሻ OF SOME STANDARD GRAPHSܗܕૄ܌ܖ܉	ሺ۵ሻ܌ܕૄ

We discuss the mean eccentricity, median eccentricity and mode eccentricity of path, 

cycle, wheel, hypercube and Hajỏs graph. 

Theorem 2.1 [2] The mean eccentricity μ୫ୣሺGሻ of a path P୬ is  

 
  1 3 1

4
3 2

4

me n

n n
if n is odd

nP
n

if n is even



  
 




 

Theorem 2.2 The median eccentricity μ୫ୢሺGሻ of a path P୬ is

 

3 2
, 3(mod 4)

4

3 2
,

4

md n

n
if n

P
n

else



      
 

  

  (1) 

Proof: Let P୬ be a path with the vertex set V(P୬)=ሼݒଵ, ,ଶݒ … ,  ௝ areݒ	݀݊ܽ	௜ݒ .௡ሽݒ

adjacent if and only if ݆ ൌ ݅ ൅ 1, 1 ൑ ݅ ൑ ݊ െ 1	ܽ݊݀	2 ൑ ݆ ൑ ݊. We can see that the 

eccentricities of ݒ௜	ܽ݊݀	ݒ௡ାଵି௜, 1 ൑ ݅ ൑ ݊,	are equal. For a path the highest eccentricity, 

݊ െ 1, is for ݒଵܽ݊݀	ݒ௡. All the eccentricities appear in pairs from ݊ െ 	݋ݐ	1 ௡
ଶ
 if ݊ is even. 

If ݊ is odd, the eccentricities from ݊ െ 	݋ݐ	1
௡ାଵ

ଶ
 appear in pairs and the vertex ݒ೙శభ

మ
 

alone will have the eccentricity ቔ௡
ଶ
ቕ.	Obviously, the median eccentricity is one of the 

values in the eccentric sequence. Therefore, we need to show that the value in 

equationError! Reference source not found. appears in eccentric sequence of a 

path nP . In addition to these, we are aware that, there are 
2

n 
  

  distinct terms in the 

eccentric sequence. The eccentric sequence of the path nP  for an odd ݊ is 
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2 2 2

2 , , , ,..., 1 
2

1 2 ( )
2 2

3
2

n
n

n n n    

                         
    

   (1) 

Similarly, for even n, the eccentric sequence is  

2 2 2 2 2, 1 , 2 , 3 ,..., 1
2 2 2 2

( ) ( ) ( ) ( ) ( )n n n n
n                        (2) 

We prove the result by analysing the divisibility of n  by 4.  

Case 1: 0(mod4)n  

Let  4n k  for some non-negative integer k. The largest eccentricity 4k-1 is for the 

end vertices v1 and v4k.  Since n is even, the smallest eccentricity 2k is for the vertices 

v2k and v2k+1.  Arranging 2k=
௡

ଶ
, to 4k-1=n-1, we obtain the median value as 3k-1. Since 

n=4k, we have 3k-1= 
ଷ௡

ସ
െ 1. However, this is same as ቔଷ௡ିଶ

ସ
ቕ, when n=4k for every 

non-negative integer k. 

Case 2: 1(mod4)n  

Let 4 1n k  . Then, the largest eccentricity 4k is for the vertices v1 and v4k+1 and the 

smallest eccentricity 2k+1 is for the vertex v2k+1. All eccentricities from 4k to 2k+2 

appear twice and the eccentricity 2k+1 appears only once. Arranging all the 4k+1 

eccentricities in the ascending order, we get the median value as 3k. Since n=4k+1, 

we have 3k = 
ଷ௡ିଷ

ସ
. However, this is same as ቔଷ௡ିଶ

ସ
ቕ, when n=4k+1 for every non-

negative integer k. 

Case 3: 2(mod4)n  

Let 4 2n k  . In this case, the eccentricities are from 2k+1 to 4k+1, all appearing 

twice each. After arranging in the ascending order we get the median value as 3k+2. 

Since n=4k+2, we have 3k+1= 
ଷ௡ିଶ

ସ
. However, this is same as ቔଷ௡ିଶ

ସ
ቕ, when n=4k+2 

for every non-negative integer k. 

Case 4: 3(mod4)n eccentricity 

Let 4 3n k   for some non-negative integer k.  The eccentricities are 4k+2 to 2k+2 

appearing twice and 2k+1 appearing just once. Arranging the eccentricities in the 

ascending order, we get the median value as 3k+2. Since n=4k+3, we have 3k+2= 

ଷ௡ିଵ

ସ
. However, this is same as ቒ

ଷ௡ିଶ

ସ
ቓ, when n=4k+3 for every non-negative integer k. 

Hence we have the proof. 

Theorem 2.3 The mode eccentricity mo  of a path P n  is 

( )mo nP   , 1 , 2 , . . . , 1
2 2 2

   
n n n

n
              
      
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Proof: The proof is trivial since the eccentricities of a path appear in pairs and from 

equations (1) and(2). 

In the next theorem, we prove that the centrality measures of a cycle are equal.  

Theorem 2.4 The mean eccentricity  me , median eccentricity  md  and mode 

eccentricity  mo  of a Cycle C n  is 
2me n md n mo n

n
C C C         

 

Proof: The proof is trivial. The eccentricities of vertices in a cycle nC  are equal and  

if n is even
2

( )
if n is odd

2

G n

n

e C
n


    

 

Hence we obtain the result. 

The definition of a wheel W n , holds that one vertex will have eccentricity as one and 

the remaining (n - 1) vertices will have eccentricity two. Thus we have the following 

theorem. 

Theorem 2.5 The mean eccentricity ( me ), median eccentricity ( md ) and mode 

eccentricity ( mo ) of a Wheel W n , is  
2 1

( )me n

n
W

n
 

  and

( ) ( ) 2md n mo nW W    

Proof: In a wheel W n , the eccentricity of the central vertex is always one since it is 

adjacent to all other vertices. Remaining (n - 1) vertices will have 2 as eccentricity. 

Thus the mean eccentricity is given by  

( )

1
( ) ( )

1
1 2( 1)

2 1
.

[ ]

n

n

me n W
v V W

W e v
n

n
n
n

n

 

  





ò

 

The median eccentricity ( md ) and mode eccentricity ( mo ) of a wheel nW  is always 

two. Hence we have ( ) ( ) 2md n mo nW W   . 

The hypercube Q n  has the same diameter, thus we conclude saying 

Theorem 2.6 The mean eccentricity ( me ), median eccentricity ( md ) and mode 

eccentricity ( mo ) of a hypercube Q n  is ( ) ( ) ( )me n md n mo nQ Q Q n     . 
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Proof: The diameter of a hypercube is n, since it takes n steps to change all n 

coordinates. Thus its mean eccentricity ( me ), median eccentricity ( md ) and mode 

eccentricity ( mo ) are one and the same. Hence, the proof. 

For all self-centered graphs, we obtain the mean eccentricity, median eccentricity and 

mode eccentricity in the following theorem. 

Theorem 2.7 The mean eccentricity ( me ), median eccentricity ( md ) and mode 

eccentricity ( mo ) of a self-centered graph is ( ) ( ) ( ) ( )me md mo GG G G e v     . 

Proof. A self-centered graph has r(G) = diam(G). Hence every vertex of G has the 

same eccentricity. Hence, the proof.  

Remark 2.8 All regular graphs - cycle graph, complete graph, k-partite, Petersen 

graph, dodecahedral graph, etc., are having the same mean eccentricity  me , 

median eccentricity  md  and mode eccentricity  mo , since they are self-centered 

graphs.  

Theorem 2.9 The mean eccentricity  me , median eccentricity  md  and mode 

eccentricity  mo  of a Hajỏs graph  nS is ( ) ( ) ( ) 2me n md n mo nS S S      

Proof: The sun graph S n  is constructed as the complete graph K n  with an outer 

ring of n vertices, of which each vertex is joined to both endpoints of the closest outer 

edge of the complete graph. Then 3-sun S 3 , the eccentricity of each six vertices is 

two. Then 3 3 3 3( ) ( ) ( ) ( ) 2.me md moe S S S S        

Hence Hajỏs graph is a  -graph.  

 

 

 

 

 

 
 

Fig1: 3-Sun Graph (Hajỏs graph) 

3. THE ૄ-GRAPH 

In this section we define a new family of graphs as  -Graph with the property of 

equal mean eccentricity ( me ), median eccentricity ( md ) and mode eccentricity        

( mo ).  



6                            ANTONY PUTHUSSERY AND JOSEPH VARGHESE KUREETHARA                           . 
 

Definition 3.1 A  -graph is a graph, if for any graph G, me (G) =  md (G) = mo

(G) on the set of eccentricities of the vertices of a given graph. 

 

 

 

 

 

 

Fig 2: G 1  is a  -graph & G 2  is not a  -graph 

Example 3.2 In Figure 2, the eccentric sequence of G 1  is 2 5 . Therefore, 1( )me G  

=  1( )md G  = 1( )mo G . Hence 1G  is a  - graph . But 2G  in Figure 2, G2 is not a 

  graph. The eccentric sequence of 2G  is 1, 23. Therefore,

2 2 2( ) ( ) ( )me md moG G G    . The measures of centrality tend to a value which is 

central to all values. Similarly, in graph, we find the vertex or vertices which is/are 

central. In a   graph, we define a central value by the following definition. All the 

vertices having this central value as the eccentricity would be the central vertices.  

Definition 3.3 The central value ( )e G  of a   graph is defined by 

( ) ( ) ( ) ( ).me md moe G G G G       

The characterisation of Path is given in the next theorem.  

Theorem 3.4 Path nP  is a  -graph if and only if n is twice any positive odd 

number. 

Proof: We prove the necessary and sufficient condition for path to be a   - graph. 

Let nP  be a   graph. By the definition of   graph, we have  

 ( ) ( ) ( ) ( )n me n md n mo ne P P P P                                     (3) 

To prove: if nP  is a   graph, then 2(2 1)n k  , .k W   We know from theorem 

2.1 that 

 

( 1)(3 1)
if n  is  odd

4( )
3 2

if n  is  even
4

me n

n n

nP
n



 
  


                             (4) 

For all values of n, from theorem 2.2, we have median eccentricity as 

 
3 2

( )
4md n

n
P 

                                     (5) 

The value of mode eccentricity by theorem 2.3 becomes 
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 ( ) ( )
nmo n P iP e v                                         (6) 

Equation (6) exhibits the mode eccentricity as one of the values in the eccentric 

sequence. From equations (4) and (5), only for even n N , the equation (3) 

satisfied. Hence from equations(3),(4), (5) and (6), we get  

 
3 2

( )
4n

n
e P


                                       (7) 

The equation (7) is true only for 2,6,10,14,18,.....n  Thus 2(2 1)n k   where 

k W . Hence if nP  is a   graph, then 2(2 1)n k  , where k W . 

Conversely, we prove that if 2(2 1)n k  , then nP  is a   graph. We prove the 

converse part using mathematical induction on k.  

When 0k  , n becomes 2. Obviously, 2P  is a  -graph. Hence the result is true if 

0k  . Assume for k m , the result is true. Then 2(2 1)n m   and 4 2mP   is a  -

graph.  

To verify that the result is true for 1k m  . This implies that

2(2( 1) 1) 2(2 1) 4n m m      . By the induction hypothesis, for 2(2 1)n m  , 

nP  is a  -graph. We need to show that it is true for 2(2 1) 4n m   . 

For this n, the corresponding path is 4 6mP  . The path 4 6mP   has four vertices more 

than path 4 2mP  .  

Using equation (2), the eccentric sequence becomes 

2 2 22 3 , 2 4 ,..., 4 5 .( ) ( ) ( )m m m    

Using theorem 2.1, we get the mean eccentricity as 

 4 6( ) 3 4me mP m                                               (8) 

Similarly using theorem 2.2, we obtain the median eccentricity as 

 4 6( ) 3 4md mP m                                               (9) 

We know that eccentricities of the vertices of an even path come in pairs. Thus mode 

eccentricity of a path is 

 ( ) ( )
nmo n P iP e v                                                (10) 

From equations (8), (9) and (10), we conclude that 

( ) ( ) ( ) ( ).n me n md n mo ne P P P P       

Hence P 4 6m  is a  -graph. Therefore the result is true for k = m + 1. Hence by 

induction, it is true for all k. Thus for k  W, 2(2 1)n k  , nP  is a  -graph. Hence 

the proof. 

Theorem 3.5 A graph G is self-centered then it is a  -graph. 

We prove that if G is a self-centered graph, then G is a  -graph. 
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By definition, self-centered graphs have ( ) ( )r G diam G . Thus all the vertices have 

the same eccentricity. From theorem 2.7, we conclude that the mean eccentricity, 

median eccentricity and mode eccentricity of the self-centered graph are the same. 

Hence all self-centered graphs are  -graphs. 

Thus, if G is a path Pn, n = 2(2k + 1), where k   W, the set of whole numbers or G is 

a self-centered graph, then G is a  -graph. 

4. THE CENTRAL VALUE ( ( )e G ) OF SOME STANDARD GRAPHS 

Here we discuss the central value of path, k-regular graphs and k-partite graphs. 

Corollary 4.1 The central value of nP  for 2(2 1)n k   is 
3 2

( ) ,
4n

n
e P




where  k W . 

Proof: It is clear that when 2(2 1)n k  , the path nP  is a  -graph. From 

theorems 2.1, 2.2 and 2.3, we conclude that 
3 2

( )
4n

n
e P


 , where .k W  

Corollary 4.2 The central value of a k-regular graph is  

1 if 1

( ) 2 if 1 1
2

if 2 1
2

k n

n
e

n

k

G k n

n
k



 
  


  

    



  


 for all even n. 

Cycle, hypercube, Petersen graph and 3-Sun graph or Hajỏs graph all belong to k-

regular graphs.  

Corollary 4.3 The central value of K , ,...,p q r  is  , ,...,( )p q re K k   

5. BOUNDS OF CENTRAL VALUE OF A GRAPH 

Theorem 4.4 For any simple, finite and connected graph G with n  2 vertices, 

 
3 2

1 ( )
4

n
e G


                                  (11) 

Proof: We know that if e  (G) = 1, then eccentricities of each of the vertices is one. 

Then the given graph is a complete graph K n . Hence the lower bound holds true.  

Next, we consider the upper bound for both cyclic and acyclic graphs. 

Case 1: Let G be an acyclic graph. Since G is connected, it is a tree. Among all trees 

of n  vertices, path have the maximum eccentricity n–1. Hence we obtain, 

( ) 1 for ( ).Ge v n v V G     From Corollary 4.1, we know that  
3 2

( ) .
4n

n
e P


  

Hence for acyclic graph G, the equality of the upper bound is attained. 
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Case 2: Let G be a cyclic graph. Cyclic graphs may be unicyclic or multi-cycle 

graph. If the graph G is unicyclic of n vertices, then the maximum eccentricity we can 

obtain could be n - 2. Still the upper bound holds in equation(11). With the increase in 

the edges of n vertices graph, the eccentricity reduces. This is also the case with 

multi-cycle graphs.  

Hence, 
3 2

1 ( ) for 2.
4

n
e G n


    

6. CONCLUSION 

In this paper, we have extended the study of the centrality parameters of eccentricity 

of graphs. We characterized the graphs of identical mean eccentricity, median 

eccentricity and mode eccentricity. The sufficient condition for a graph to be a  -

graph is proved. The concept of central values of a -graph is defined and 

investigated for certain standard graphs. The study could be extended in finding the 

necessary condition for a graph to be a  -graph. 
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ABSTRACT 

In this paper, we considered the numerical treatment of the fifth 

order boundary value problem (BVP) through an elegant mixture of 

the power series approximation method (PSAM) and the 

Variational iteration method (VIM). The method approximates the 

analytic solution using a rapid convergent power series which 

satisfies the given boundary conditions; thus giving rise to the 

initial approximation. The method was tested on both linear and 

nonlinear fifth order boundary value problems with known analytic 

solutions. Results obtained were presented both graphically and in 

tables. All computational analysis in this work was performed with 

Maple 18 software. 

Keywords: Boundary value problem, power series, trial solution, 

Lagrange multiplier, approximate solution. 

 

1. INTRODUCTION 

Let us consider a general fifth order boundary value problem 

ሻݔሺହሻሺݕ    ൌ ሻݔሺݕሻݔሺݎ ൅ ݂ሺݔሻ, 0 ൏ ݔ ൏ 1		                 (1) 

subject to the boundary conditions          

ሺ0ሻݕ   ൌ ,଴ܣ ሺ0ሻ′ݕ ൌ ,ଵܣ ሺ0ሻ"ݕ ൌ ,ଶܣ ሺ1ሻݕ ൌ ,଴ܤ ሺ1ሻ′ݕ ൌ  ଵ,                  (2)ܤ

where ݂ሺݔሻ, ݅ ,௜ܣ ,are assumed real and continuous on ሾ0,1ሿ	ሻݔሺݎ ሻ, andݔሺݕ ൌ

0ሺ1ሻ2,	and ܤ௜, ݅ ൌ 0,1, are finite real constants in ሾ0,1ሿ. 

These types of equations are very useful in science and technology, especially in the 

field of mathematical modelling. However, solving these equations analytically proves 

difficult and strenuous due to complex algorithm involved. Hence, many researchers 

instead prefer seeking their approximate solutions. In recent years, various numerical 

methods have been developed and implemented by researchers, some of these 

include: the power series approximation method (PSAM) [1], orthogonal collocation 
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approach [2], Galerkin method [3], Tau-collocation method [4], weighted residual 

method [5], homotopy perturbation method (HPM) [6], variational iteration method [7-

8], Adomian decomposition method [9-10], optimal homotopy asymptotic method 

(OHAM) [11], differential transform method (DTM) [12] etc. In like manner, [13] 

considered a coupling method involving the Sumudu transform and the variational 

iteration method for a class of local fraction diffusion equation, while [14] considered 

an elegant mixture of the series expansion method and the variational iteration 

method to the Helmholtz equation involving local fractional derivation operators. The 

Laplace transforms and the variational iteration method has been applied for solving 

linear partial differential equations with local fractional derivative [15]. Furthermore, a 

local fractional variational iteration algorithm has been developed to solve problems 

such as the Fokker-Planck equation on a cantor set, and the non-homogeneous 

model associated with non-differentiable heat flow [16-17]. 

In this paper, we aim at solving the fifth order boundary value problem using power 

series variational iteration method (PSVIM). The PSVIM comprises of the PSAM 

(developed by Njoseh and Mamadu [1] for a generalized nth order boundary value 

problem) and the variational iteration method (developed by He [8]). In this method, 

the PSAM is employed to seek the initial approximation via the trial solution satisfying 

the given boundary conditions.  The correction functional is constructed and the 

Lagrange multiplier is estimated via variational theory to start iteration. The method 

approximates the analytic solution using a rapid convergent power series (trial 

function) with no regard to linearization or perturbation. 

2. BASIC IDEAS OF POWER SERIES VARIATIONAL 

ITERATION METHOD 

PSAM requires transforming the set of equations (1) - (2) into system of ordinary 

differential equations [1] 

ݕ  ൌ ,ଵݕ
ௗ௬భ
ௗ௫

ൌ ,	ଶݕ
ௗ௬మ
ௗ௫

ൌ ,	ଷݕ
ௗ௬య
ௗ௫

ൌ ,	ସݕ
ௗ௬ర
ௗ௫

ൌ ହݕ ൌ ݂ሺݔሻ ൅  ሻ,            (3)ݔሺݕሻݔሺߙ

subject to the conditions in (2). 

We consider the theorem below: 

Theorem 1.1  

Using PSAM, the approximate solution to (1) is given as 

ሻݔሺݕ    ൌ ∑ ௜ݔሻݔሺ௜ሻሺݕ
೙షభ
మ

௜ୀ଴ ሻݔሺ௜ሻሺݕ  , ൌ ஺೔
௜!

                                      (4) 

subject to  

ሺ0ሻݕ   ൌ ,଴ܣ ሺଵሻሺ0ሻݕ ൌ ,ଵܣ ሺଶሻሺ0ሻݕ ൌ ,ଶܣ ሺଷሻሺ0ሻݕ ൌ ሺସሻሺ0ሻݕ ,ଷܣ ൌ  ସ      (5)ܣ

Proof:  

Let the approximate solution be given as 

ሻݔሺݕ    ൌ ∑ ௜௡ିଵݔሻݔሺ௜ሻሺݕ
௜ୀ଴      (6) 

Hence, substituting (6) into (4), and using the prescribed boundary at ݔ ൌ 0,	we have  

ሻݔሺݕ   ൌ ሻݔሺଵሻሺݕ ൅ ݅ ∑ ௜ିଵ௡ିଵݔሻݔ௜ሺݕ
௜ୀଶ ,           (7) 
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But, ݕሺଵሻሺ0ሻ ൌ  ଵ, which impliesܣ

ሻݔሺݕ   ൌ ଵܣ ൅ ݅ ∑ ௜ିଵ௡ିଵݔሻݔ௜ሺݕ
௜ୀଶ                                           (8) 

Similarly, 

ሻݔሺݕ ൌ ሻݔሺଶሻሺݕ2 ൅ ݅ሺ݅ െ 1ሻ෍ݕሺ௜ሻሺݔሻݔ௜ିଶ
௡ିଵ

௜ୀଷ

. 

⟹ ሻݔሺݕ ൌ ଶܣ ൅ ݅ሺ݅ െ 1ሻ෍ݕ௜ሺݔሻݔ௜ିଶ
௡ିଵ

௜ୀଷ

, 

where ݕሺଶሻሺݔሻ ൌ
஺మ
ଶ!

. 

Continuing this process, we arrive at  

ሻݔሺ௜ሻሺݕ        ൌ
஺೔
௜!
, ݅ ൒ 0.                 (9) 

Thus,   

ሻݔሺݕ     ൌ ∑ ஺೔
௜!
௜௡ିଵݔ

௜ୀ଴                                                   (10) 

Now, for ݊ ൌ 5 in (4), we have 

ሻݔሺݕ   ൌ ሺ0ሻݕ ൅ ݔሺଵሻሺ0ሻݕ ൅
௬ሺమሻሺ଴ሻ

ଶ
ଶݔ ൅ ௬ሺయሻሺ଴ሻ

଺
ଷݔ ൅ ௬ሺరሻሺ଴ሻ

ଶସ
 ସ                 (11)ݔ

subjecting (11) to (5), we have that 

ሻݔሺݕ    ൌ ଴ܣ ൅ ݔଵܣ ൅
஺మ
ଶ
ଶݔ ൅ ஺య

଺
ଷݔ ൅ ஺ర

ଶସ
 ସ                              (12)ݔ

which is equivalent to the initial approximation. 

Thus, the PSAM is employed here in estimating the initial approximation by 

subjecting the approximate solution (4) to the prescribed boundary conditions at    

ݔ ൌ 0. 

Remark 1:  

Equation (4) is equivalent to the initial approximation as earlier stated. This 

approximation is however obtained at the boundary ݔ ൌ 0. From (2), we are given the 

following boundary conditions at ݔ ൌ 0, 

ሺ0ሻݕ ൌ ,଴ܣ ݕ
ሺଵሻሺ0ሻ ൌ ,ଵܣ ݕ

ሺଶሻሺ0ሻ ൌ  ଶܣ

which are inadequate or insufficient with regard to the order of the boundary value 

problem. Thus, we define  

ሺଷሻሺ0ሻݕ ൌ ,ଷܣ ݕ
ሺସሻሺ0ሻ ൌ  ସܣ

so as to correspond to the order of the BVP.  

The parameters ܣ଴, ,ଵܣ  ସ are unknowns which areܣ ଷ andܣ ଶ are given; whileܣ

computed at the boundary ݔ ൌ 1 in equation (2). 

Having obtained the initial approximation, we next apply the variational iteration 

method.  

The variational iteration method requires the construction of a correction functional for 

equation (1) subject to the conditions in (2) [7] 

ሻݔ௡ାଵሺݕ  ൌ ሻݔ௡ሺݕ ൅ ׬ ሻݏሺߣ ቀ ௗ
ఱ

ௗ௦ఱ
ሻݏ௡ሺݕ െ ሻݏ௡ሺݕሻݏሺݎ െ ݂ሺݏሻቁ ,ݏ݀

௫
଴

݊ ൒ 0,                

(13) 
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where ߣሺݏሻ is the general Lagrange multiplier, which can be obtained optimally via 

variational theory and ݕ෤௡ሺݏሻ ൌ 0. The Lagrange multiplier, ߣሺݏሻ can be obtained using 

the formula in [8] 

ሻݏ௡ሺߣ     ൌ ሺെ1ሻ௡ ሺ௦ି௫ሻሺ೙షభሻ

ሺ௡ିଵሻ!
    (14) 

where ݊ is the order of the derivative.  

Hence, the PSVIM for (1) becomes 

ሻݔ଴ሺݕ    ൌ ଴ܣ ൅ ݔଵܣ ൅
஺మ
ଶ
ଶݔ ൅ ஺య

଺
ଷݔ ൅ ஺ర

ଶସ
 ସ   (15)ݔ

ሻݔ௡ାଵሺݕ  ൌ ሻݔ௡ሺݕ ൅ ׬ ሻݏሺߣ ቀ ௗ
ఱ

ௗ௦ఱ
ሻݏ௡ሺݕ െ ሻݏ௡ሺݕሻݏሺݎ െ ݂ሺݏሻቁ ,ݏ݀

௫
଴

݊ ൒ 0  (16) 

for the computation of  

,ሻݔ௡ሺݕ ݊ ൒ 1. 

The unknowns in each iterate are computed at ݔ ൌ 1. 

3. ERROR ANALYSIS AND CONVERGENCE THEOREM 

Let 

   ݁௡ሺݔሻ ൌ ሻݔሺݕ െ  ሻ    (17)ݔ௡ሺݕ

be an error function of the approximate solution  ݕ௡ሺݔሻ to the exact solution ݕሺݔሻ.  

This implies that ݕ௡ሺݔሻ  satisfies  

௡ݕ                                           
ሺହሻሺݔሻ ൌ ሻݔሺݕሻݔሺݎ ൅ ݂ሺݔሻ ൅ ,ሻݔ௡ሺܪ 0 ൏ ݔ ൏ 1  (18) 

subject to the boundary conditions  

ሺ௠ሻሺ0ሻݕ ൌ ݉,௠ܣ ൌ 0,1,2    (19) 

ሺ௠ሻሺ1ሻݕ   ൌ ݉,௠ܤ ൌ 0,1    (20) 

ሻݔ௡ሺܪሻ  in equation (18) is called the perturbation term, and is given asݔ௡ሺܪ ൌ

௡ݕ
ሺହሻሺݔሻ െ ሻݔሺݕሻݔሺݎ െ ݂ሺݔሻ                        (21) 

Transforming the set of equations (18)-(20) and finding an approximant ݁௡
ሺହሻሺݔሻ to the 

error function ݁௡ሺݔሻ,  

 the error function therefore satisfies 

ሻݔ௡ሺܪ ൌ ሻݔሺݕሻݔሺݎ ൅ ݂ሺݔሻെݕ௡
ሺହሻሺݔሻ,	 0 ൏ ݔ ൏ 1, 

with conditions  

ሺ௠ሻሺ0ሻݕ ൌ 0, ݉ ൌ 0,1,2. 

ሺ௠ሻሺ1ሻݕ ൌ 0,			݉ ൌ 0,1. 

 

Lemma 1.1. (Sufficient Conditions of Convergence)  [7] 

Define ݕହሺݔሻ by D(u) in (1) such that ܦሺݑሻ ൌ ሻݔሺݕሻݔሺݎ ൅ ݂ሺݔሻ. Then, (16) converges if 

the following conditions are satisfied:  

 i. ሺܦሺݑሻ െ ,ሻݒሺܦ ݑ െ ሻݒ ൑ ݑ‖߬ െ ,ଶ‖ݒ ߬ ൐ 0, ,ݑ ݒ ∈  ܪ

 ii. For Ω ൐ 0, there exist ܫሺΩሻ ൐ 0 such that ‖ݑ‖ ൑ Ω,	 ݑ, ∈  then ,ܪ

  ሺܦሺݑሻ െ ,ሻݒሺܦ ݑ െ ሻݒ ൑ ݑ‖ሺΩሻܫ െ ,‖ݎ‖‖ݒ ݎ ∈  .ܪ

where ܪ ൌ ሺሺܽ, ܾሻ ൈ ሾ0, ܶሿ is a Hilbert Space. 
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Lemma 1.2.  [18] 

Suppose that the boundary value problem (1) satisfy the condition in Lemma (1.1), 

and ݕሺݔሻ, ሻݔ௡ሺݕ 	∈ ,ହሾ0,1ሿܥ ݊ ൌ 1,2,⋯.		then the sequence ሼݕ௡ሺݔሻሽ௡ୀଵஶ  defined by (16) 

converges to the solution of (1). 

Theorem 1.2  

Given  

ሻݔሺݕ ൌ ∑ ஺೔
௜!
௜ݔ

೙షభ
మ

௜ୀ଴ , 

where ݕሺ௠ሻሺ0ሻ ൌ ,௠ܣ ݉ ൌ 0, 1, 2, 3, 4. The PSVIM for the considered boundary value 

problem (1) and (2) converges as ݊ → ∞. 

Proof:  

Let the approximate solution be given as 

ሻݔሺݕ ൌ ∑ ௜௡ିଵݔሺ௜ሻሺ0ሻݕ
௜ୀ଴ , 

then for ݅ ൒ 0, we have that 

ሻݔሺݕ ൌ ∑ ஺೔
௜!
௜௡ିଵݔ

௜ୀ଴   , 

which evidently is the initial approximation as shown in section 2 of this work. 

Since, the considered boundary value problem is of order 5, then 

ሻݔ଴ሺݕ ൌ ∑ ஺೔
௜!
௜ସݔ

௜ୀ଴ . 

By the theorem of VIM [7-8],  

ሻݔ௡ାଵሺݕ ൌ ሻݔ௡ሺݕ ൅ ׬
ሺ௦ି௫ሻర

ଶସ
ቀ ௗ

ఱ

ௗ௦ఱ
ሻݏ௡ሺݕ െ ሻݏ௡ሺݕሻݏሺݎ െ ݂ሺݏሻቁ ,ݏ݀

௫
଴

݊ ൒ 0.  

When  ݊ ൌ 0:  

ሻݔଵሺݕ ൌ ሻݔ଴ሺݕ ൅ ׬
ሺ௦ି௫ሻర

ଶସ
ቀ ௗ

ఱ

ௗ௦ఱ
ሻݏ଴ሺݕ െ ሻݏ଴ሺݕሻݏሺݎ െ ݂ሺݏሻቁ .ݏ݀

௫
଴

  

When  ݊ ൌ 1:  

ሻݔଶሺݕ ൌ ሻݔଵሺݕ ൅ ׬
ሺ௦ି௫ሻర

ଶସ
ቀ ௗ

ఱ

ௗ௦ఱ
ሻݏଵሺݕ െ ሻݏଵሺݕሻݏሺݎ െ ݂ሺݏሻቁ .ݏ݀

௫
଴

  

⋮ 

ሻݔ௡ሺݕ ൌ ሻݔ௡ିଵሺݕ ൅ ׬
ሺ௦ି௫ሻర

ଶସ
ቀ ௗ

ఱ

ௗ௦ఱ
ሻݏ௡ିଵሺݕ െ ሻݏ௡ିଵሺݕሻݏሺݎ െ ݂ሺݏሻቁ ,ݏ݀

௫
଴

 ݊ ൒ 1. 

Thus, by Lemmas (1.1) and (1.2), the approximate solution ݕ௡ሺݔሻ converges to the 

exact solution ݕሺݔሻ as ݊ → ∞. 

 

4. NUMERICAL EXAMPLES 

To demonstrate the accuracy of the method, we consider two boundary value 

problems of fifth order with known analytic solution. All numerical results are obtained 

using Maple 18 software. 

 Example 4.1. [19] 

Consider the following nonlinear boundary value problem of fifth order, 

)()( 2)( xyexy xv                  (22) 

Subject to the boundary conditions 

ሺ0ሻݕ ൌ 1, ᇱሺ0ሻݕ ൌ 1, ᇱᇱሺ0ሻݕ ൌ 1, ሺ1ሻݕ ൌ ᇱሺ1ሻݕ ൌ ݁		 
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The exact solution is  

ሻݔሺݕ ൌ ݁௫. 

Applying the methodology in section 2, we have, 

ሻݔ଴ሺݕ ൌ 1 ൅ ݔ ൅ ଵ

ଶ
ଶݔ ൅ ஺య

଺
ଷݔ ൅ ஺ర

ଶସ
 ସ   (23)ݔ

ሻݔ௡ାଵሺݕ ൌ ሻݔ௡ሺݕ െ ׬
ሺ௦ି௫ሻర

ସ!
ቀ
ௗఱ

ௗ௦ఱ
ሻݏ௡ሺݕ െ ቀ1 െ ݏ ൅ ଵ

ଶ
ଶݏ െ ଵ

ଷ!
ଷݏ ൅ ଵ

ସ!
ସቁݏ ሻሻቁݏ௡ଶሺݕ ,ݏ݀

௫

଴
݊ ൒ 0   (24) 

Solving equation  (24) for ݊ ൒ 0, and estimating ܣଷ and ܣସ at the boundary at ݔ ൌ 1, 

we generate the following error bound for each iterate as shown in Table 1 below. 

The approximations for ݕ௡ሺݔሻ, ݊ ൌ 0,1,⋯, are given as 

ሻݔ଴ሺݕ ൌ 1 ൅ ݔ ൅
1
2
ଶݔ ൅ ଷݔ0.1548455000 ൅  .ସݔ0.06343633333

ሻݔଵሺݕ ൌ 			1 ൅ ݔ ൅
1
2
ଶݔ ൅ ଷݔ0.1666685000 ൅ ସݔ0.04166470833 ൅  ହݔ0.008333333333

൅	0.00138888889ݔ଺ ൅ ଻ݔ0.000198412704 ൅ ଼ݔ0.000024802122

൅  ଽݔ0.0000027554352

൅	2.5052264ܧ െ ଵଵݔ07 ൅ ܧ1.4613888 െ ଵଶݔ07 ൅ ଵଷݔെ08ܧ5.620690

൅  ଵସݔെ08ܧ1.686217

        ൅	4.014581ܧെ09ݔଵହ ൅ ଵ଺ݔെ10ܧ5.5204110 ൅   .ଵ଻ݔെ011ܧ9.7407910

⋮ 

Table 1.  Estimates of ܣଷ and ܣସ with the maximum error for each iterate for Example 

4.1. 

 ସ Maximum Errorܣ ଷܣ 

 ሻ 0.929073 1.522472 9.7290E-06ݔ଴ሺݕ

 ሻ 1.000011 0.999953 1.9385E-09ݔଵሺݕ

 ሻ 1.000033 0.999849 4.0000E-00ݔଶሺݕ

   

 

 

Figure 1: The comparison of each iterate and the exact solution for Example 4.1. 
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Example 4.2. [19] 

Consider the linear boundary value problem of fifth order 

ሻݔሺ௩ሻሺݕ ൌ ݕ െ 15݁௫ െ  (௫    25݁ݔ10

Subject to the boundary conditions 

ሺ0ሻݕ ൌ 0, ᇱሺ0ሻݕ ൌ 1, ᇱᇱሺ0ሻݕ ൌ 0, ሺ1ሻݕ ൌ 0, ᇱሺ1ሻݕ ൌ െ݁		 

The exact solution is  

ሻݔሺݕ ൌ ሺ1ݔ െ  ሻ݁௫ݔ

By the methodology in section 2, we have, 

ሻݔ଴ሺݕ ൌ ݔ ൅ ஺య
଺
ଷݔ ൅ ஺ర

ଶସ
 (ସ     26ݔ

ሻݔ௡ାଵሺݕ ൌ ሻݔ௡ሺݕ െ ׬
ሺ௦ି௫ሻర

ସ!
ቆ ௗఱ

ௗ௦ఱ
ሻݏ௡ሺݕ െ ሻݏ௡ሺݕ ൅ ሺ15 ൅ ሻݏ10 ቀ1 െ ݏ ൅

ଵ

ଶ
ଶݏ െ ଵ

ଷ!
ଷݏ ൅

௫
଴

ଵ

ସ!
,ݏସቁቇ݀ݏ ݊ ൒ 0		        (27)  

Solving equation (27) for ݊ ൒ 0, and estimating ܣଷ and ܣସ at the boundary ݔ ൌ 1, we 

obtain the following error bound for each iterate as shown in Table 2 below. 

The approximations for ݕ௡ሺݔሻ, ݊ ൌ 0,1,⋯, are given as 

ሻݔ଴ሺݕ ൌ ݔ െ ଷݔ0.2817181667 െ   .ସݔ0.7182818333

ሻݔଵሺݕ ൌ ݔ			 െ ଷݔ0.4999308333 െ ସݔ0.3334135833 െ ହݔ0.1250000000

൅  ଺ݔ0.0083333334

               ൅	0.00099206346ݔ଻ െ ଼ݔ0.00044641832 ൅ ଽݔ0.0000046842118 െ

   .ଵ଴ݔ0.000013778666

 

Table 2. Estimates for ܣଷ and  ܣସ with the maximum errors for each iterate for 

Example 4.2. 

 ସ Maximum Errorܣ ଷܣ 

 ሻ -1.690309 -17.238764 1.8107E-04ݔ଴ሺݕ

 ሻ -2.999585 -8.001926 6.1200E-08ݔଵሺݕ

 ሻ -2.999763 -8.001098 3.4960E-08ݔଶሺݕ
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Figure 2: The comparison of each iterate and the exact solution for Example 4.2. 

5. DISCUSSION OF RESULTS 

The numerical evidences show that the approximate solution (broken lines) 

converges favourably to the exact solution (solid lines) as shown in the figure 1 and 2 

with maximum errors of 1.9385E-09 and 6.1200E-08 for Example 4.1 and 4.2 

respectively. This implies that with few iterations the approximate solution will 

converge absolutely to the exact solution. 

6. CONCLUSION 

We have implemented the PSVIM on linear and nonlinear fifth order boundary value 

problems. The method is explicit and accurate as the numerical results reveal with no 

requirement for linearization or perturbation. The method can be extended to other 

problems such as random processes problems. 
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MORPHOLOGICAL CHANGES InN FILMS 
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ABSTRACT 
Effect of focus shots on deposited indium nitride films is studied on Si 

substrate using plasma focus device. Indium nitride is found to be 

maximum for 2 focus shots and silicon recrystallized and plane reflection 

(400) transforms to (220) plane. Morphological studies showed nano-

ribbons for sample treated with higher focus shots of 6 and 8 focus shots. 

Electron dispersive X-ray spectroscopy (EDX) analysis showed maximum 

At% of indium content for 2 focus shots. Band gap is found to vary from 

2.13 to 2.18 eV for various focus shots using ellipsometry. 

 

INTRODUCTION 

Indium Nitride is one of the important materials because it has wide range of 

applications due to its narrow and direct band gap, good mechanical properties, high 

thermal conductivity and high electrical resistivity [1-2]. Indium nitride has numerous 

applications such as ultra violet blue light emitting diodes, laser diodes, solar cells 

and optical wave guides. Since InN has low dissociation temperature, therefore high 

crystallinity is difficult to achieve [3-4]. Furthermore, indium nitride has diverse 

advantages in high frequency devices due to good transport characteristics over GaN 

and GaAs [5]. Indium nitride has been deposited by Plasma Assisted Molecular Beam 

Epitaxy (PAMBE) [6-11], Plasma assisted CVD [12-13], vapor phase epitaxial 

technique [14], reactive evaporation [3], Thermal Chemical Vapor Deposition [15], 

radio frequency metalorganic molecular beam epitaxy [16], RF sputtering [17], and 

pulsed laser deposition (PLD) [18]. Plasma focus device is used as deposition 

source. It is the source of pulsed X-rays [19], relativistic electrons, energetic ion beam 

[20-21] and neutrons [22-23]. Various workers had used it for thin film deposition and 

surface modification [24-27]. 

 

EXPERIMENTAL SETUP 

The Dense plasma focus device is used for the deposition of  InN on Si substrate. 

Samples are obtained by cutting them from Si wafer which are cleaned with acetone 

and then in ultrasonic bath for fifteen minutes. Mather type DPF device of energy is 

used for deposition process. Device parameters are given in previous papers [28]. 

The Schematic of system is shown in Figure 1. 
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Figure 1: Schematic diagram of dense plasma focus system 

Mather type Plasma focus device has coaxial symmetry in which anode is centered 

while having six electrodes around it which have equal space among themselves. 

Indium target was placed at the top of the hollow anode of copper. Nitrogen ambient 

environment is used for the desired film deposition. Low pressure upto 1 x 10-2 mbar 

is achieved into chamber by means of rotary pump. The pressure of ambient gas is 

kept constant at 1.25 m bar. The distance between target and substrate is kept 9 cm 

throughout the experiment. Si substrate is placed at substrate holder above the 

anode which is covered by shutter. Purpose of the shutter was to avoid exposure of 

substrate during the trial focusing as shown in Figure 1. Rogowski coil and high 

voltage probe are used to monitor the focusing of device. Frequency of focus shots is 

kept one focus shot per minute. It is enough for the thermal relaxation of substrate 

which is heated by the interaction of energetic ion beam with the substrate. 

The working of the device is as follows: high energy stored capacitor is discharged 

across the device through spark gap. This sudden high voltage discharge initiates the 

breakdown of gas which occurs along the insulator surface. This forms the current 

sheath between anode and cathode having azimuthal symmetry. Current sheath 

moves axially towards the upper end of anode under JxB force where it pinches 

radially inward forming a focus shot which has highly energetic and dense beam of 

ions and electrons [29]. These relativistic electrons ablate the target (indium) 

materials which interact with nitrogen plasma forming InN. InN is directed towards the 



                         STUDY OF EFFECT OF VARYING FOCUS SHOTS ON STRUCTURAL…                      21 
 

substrate with the help of ions. Highly energetic ions move towards the substrate 

where they can either implant or re-sputter the deposited material.  

Indium target is used as an insert in the anode. Films are deposited for 2,4,6 and 8 

focus shots. XRD, SEM, EDX and ellipsometry are used to characterize the 

structural, morphological, elemental and bandgap of the deposited film respectively.  

 

RESULTS AND DISCUSSIONS 

Figs. 2 and 3 show the XRD spectra of untreated and treated samples Si (400) with 

only one peak at angle of 69.7degree. Diffraction peak of hexagonal InN is observed 

having preferred orientation along the phase of (101) plane which appears for of all 

samples treated at different focus shots [12]. Ion assisted recrystallization [30] results 

in the transformation of Si from (400) to (220) [31]. This structural analysis is also in 

agreement with the Inorganic Crystal Structure Database (ICSD).  

 

Figure 2: XRD spectra for Silicon 

The good crytallinity for InN is observed for two focus shots only but it decreases with 

the shots. CuO is also found with phases of (-111) and (111) planes for two focus 

shots which may be due to the interaction of sputtered copper from anode and 

residual gases present in the chamber.  
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Figure 3: XRD spectra for various shots 

Peak shift is observed towards lower angles which are due to the thermal shocks 

[14]. When high energetic ions strike the substrate, they penetrate into the substrate 

by ion implantation and diffusion causing defects which in turn develop stresses in the 

film resulting in peak shift. 

Figure 4 shows relation between diffraction peak intensity and number of shots. A 

sudden decrease in intensity is observed from 2 to 4 focus shots which are due to re-

sputtering. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Plot between Number of focus shots and diffraction peak intensity 

It is the observed that the film growth is dominant up to 2 focus shots while re-

sputtering phenomenon and amorphization becomes dominant with increase in 

nitrogen dose. This lowers the crystallinity of the film due to nitrogen enrichment 

which may also be related with the rise of temperature. 
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The residual stresses have developed in the film which can be calculated using the 

relation given below: 

Stress =  
܌∆

ࢊ
 x E 

Where, E = Young’s modulus = 149 GPa [32] and  

 
܌∆

ࢊ
ൌ ሻࡰࡿ࡯ࡵሺࢊሻିࢊࢋ࢜࢘ࢋ࢙࢈࢕ሺࢊ

ሻࡰࡿ࡯ࡵሺࢊ
= Strain 

d = Interatomic Distance  and    ࢊሺࡰࡿ࡯ࡵሻ  = Strain free interatomic spacing  

The calculated stresses are plotted in figure 4. All stresses are tensile. Although 

tensile stresses remain almost constant from 2 to 6 focus shots but a drastic 

improvement in stresses is found for 8 focus shots which reveals the phenomenon of 

stress relaxation as observed in inset of figure 3. 

 

Figure 5: Effect of Stress by increasing Number of Focus shots 

The reason of this behavior is plasma assisted annealing due to which Si 

recrystallization is found maximum for 8 focus shots. 
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SEM ANALYSIS 

Figure 6 shows the surface morphology of Silicon substrate used in the experiment. 

 
Figure 6: SEM image of untreated Silicon 

      

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: a, b, c and d show SEM micrograph of samples treated with 2, 4, 6 and 8 

focus shots respectively 

Scattered nano-grains are found in the SEM micrograph of sample treated with 2 

focus shots as shown in fig 7 (a). The grains are distributed uniformly having sizes of 

50 nanometers to 500 nanometers. With the increase in nitrogen and material flux, 

these grains grow to agglomerate forming continuous film for 4 focus shots. Nitrogen 

rich environment assists the formation of smaller rod like structure having void spaces 

which can be seen in SEM image of 6 and 8 focus shots. Chang et al [12] controlled 

the temperature and observed the transformation of InN nanowires into nano-ribbons. 

Here, only ribbons are found, as we know that temperature is high which is suitable 

for nano-ribbons formation. Cracks are also observed in 4, 6 and 8 focus shots 

images which are result of tensile stresses. 

b 

d 

 

a 

c
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Electron Dispersive X –ray (EDX) Analysis 

Table 1 shows the EDX data of sample treated with various focus shots. This data is 

collected from the backscattered detector of SEM.  

Table 1: EDX analysis of InN/Si treated with various focus shots 

 

Elements 

2 Focus Shots 4 Focus Shots 6 Focus Shots 8 Focus Shots 

At % At % At % At % 

In 0.95 0.08 0.30 Negligible 

Si 89.64 99.12 96.71 24.16 

N 9.41 --- --- 43.21 

O Negligible 0.80 2.99 32.62 

 

Indium percentage has been found maximum for 2 focus shots and it is decreased 

further by increasing shots and diminishes at 8 focus shots. This behavior is due to 

the low decomposition temperature of indium nitride. On the contrary, Nitrogen 

concentration is found maximum for 8 focus shots which reveals that the ion 

implantation is dominant at higher shots which is suitable for recrystallization of Si. 

So, lower focus shots seem better for film deposition while ion implantation is better 

for higher focus shots. Moreover, oxygen content shows a tremendous increase at 8 

focus shots. This shows that the repetition of focus shots results in the heating of the 

chamber which in turn results in the activation of burial gases. Although higher focus 

shots are found to be good for ion implantation but they also brought high 

concentration of impurity.   

 

BAND GAP MEASUREMENT USING ELLIPSOMETRY 

Ellipsometry is used to determine the band gap that is plotted in figs. 9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Bandgap for sample treated with 2 focus shots 

Figure 9 shows the Tauc plot between α2 and Energy. The x-intercept of this plot tells 

the band gap of the material. From the plot calculated band gap is 2.18 eV which is 

approximately same as reported in [17]. The plot between α2 and Energy is nearly 
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linear. It is the evidence of the direct band to band transition. The band gap remains 

almost constant (2.13-2.18 eV) for various focus shots. This value is much higher 

than the predicted earlier [33, 34] for pure indium nitride. Higher value is due to the 

presence of oxygen and oxynitride in the indium nitride. Another reason which is 

found is the Burstein–Moss effect in which band gap is shifted towards the higher 

energies due to the dopants [33, 34].  

 

CONCLUSION 

InN films have been deposited on silicon substrate using plasma focus device for 

various focus shots. XRD analysis has confirmed the deposition of InN (101) having 

tensile stresses. 2 focus shots treatment is found to be good for deposition to achieve 

good crystalline quality. SEM analysis shows the nano-ribbons formation depending 

upon the nitrogen flux. EDX analysis has revealed that deposited films have 

maximum at % of indium for 2 focus shots. Bandgap is found in the range            

2.13-2.18 eV. 
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ABSTRACT 

Plasma assisted growth of Indium Oxide thin films on Stainless Steel (SS-

306) substrate using Mather type dense plasma focus device is reported 

here. Effect of variation in number of plasma focus shots on structural, 

morphological and compositional characteristics of synthesized thin films 

have been investigated. The film structure and chemical composition were 

characterized by using X-ray diffraction (XRD) and Fourier Transform 

Infrared Spectroscopy (FTIR). The surface morphology was investigated 

by Scanning electron microscopy (SEM). The XRD results suggested the 

formation of Indium oxide thin film on SS-306 substrate with crystal planes 

(222), (110), (420), (332) and (642). Indium and oxygen bonding is 

confirmed by FTIR is appearing at wave number 700 to 900 cm-1. SEM 

analysis showes combination of uniform and rough surface of the 

deposited thin films with indium oxide particles on substrate surface 

diffused together at various number of focus shots. 

Keywords: Indium Oxide thin films; DPF; XRD; SEM 

 

INTRODUCTION 

Indium oxide is transparent conducting oxide (TCO) material that has wide range of 

applications in photo electronic devices, flat panel display, thin film transistor, 

electroluminescent devices, photovoltaic cells, gas sensors sand light emitting diodes 

[1–3].  In2O3 has a direct band gap of about 3.7 eV [4] and an indirect band gap of 

about 2.6 eV [5]. Indium oxide thin films have unique properties such as high optical 

transparency and high electrical conductivity are extensively used in many 

applications. 

 A variety of techniques employed to fabricate In2O3 thin films such as reactive 

thermal evaporation [6], ion beam sputtering [7], pulsed laser deposition (PLD) [8], 

chemical vapor deposition [9] and thermal evaporation [10–12] reveal that the 

principal factors affecting the structural, optical and electrical properties of such films 

include the method of  preparation, substrate temperature, rate of deposition, 
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composition, film thickness, partial pressure of oxygen and post deposition annealing 

processes. 

The dense plasma focus (DPF) device is a hydro magnetic coaxial plasma 

accelerator where the high-current electrical discharge efficiently heats and 

compresses the plasma into a pinched plasma column where a short lived hot          

(1 keV–2 keV) and dense (1025 m-3–1026 m-3) plasma is produced. The energy density 

of the DPF device is reported to be in a range of 1.2×1010 J/m3–9.5×1010 J/m3, which 

makes it a high energy plasma facility. [13] The dense and hot plasma produced by 

the device has also been acknowledged as a multi radiation source of highly 

energetic ions, [14] relativistic electrons, [15,16] neutrons, [17] and intense bursts of 

x-rays.[18] Due to the broad energy spectrum of radiation emanated in the plasma 

focus, its application in material processing has shown prominent features of better 

adhesion and good deposition rates [19, 20]. Numerous properties and features of 

DPF, which have made it an exclusive and attractive source for thin film depositions 

and material processing, have been reported by Rawat in a recent review paper. 

 

EXPERIMENTAL SETUP 

The system of Plasma Focus is energized through capacitor of capacitance 32 F, 15 

kV maximum 3.6 kJ and it is charged at the voltage of 12 kV (2.3 kJ). This is giving 

maximum discharge current approximately about 175 kA. The capacitor charges to 

the voltage to 12 kv by using charging unit and it is discharged across the load by 

using high power switch. 

 

Figure 1: The Schematic Diagram of Dense Plasma Focus 

 

In Initial Break down phase capacitor bank is discharged through a spark gap which 

creates high pulsating potential difference between coaxial electrodes in the chamber 

filled with gas at the optimum pressure. The breakdown of gas takes place 
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instantaneously. This breakdown results in the formation of an axis symmetric current 

sheath, which is influenced and accelerated by the Lorentz force. The current sheath 

spreads uniformly outwards towards the cathode rods in an inverse pinch phase and 

then accelerates upwards towards the open end of the electrodes in an axial run 

down phase. The sheath collapses radially inwards on reaching the open end of 

electrode assembly, resulting in the creation of short lived (~1–50 ns), dense     

(~1026 m-3) and hot (~1 keV) pinched plasma just above the anode tip in the final 

focus phase. 

In Pinched plasma column the induced electric field is enhanced locally, that couples 

with the magnetic field, resulting in the disruption of the plasma column due to 

sausage (m=0) instability [21]. The disruption of the plasma column leads to the 

acceleration of highly energetic ions towards the top of the chamber, and relativistic 

energies electrons (100 keV above) in the downward direction towards the positively 

charged anode. 

Indium oxide thin films were deposited on Stainless Steel (SS-306) substrate using 

DPF (dense plasma focus) device. Indium as a target and SS-306 as a substrate 

material are utilized. Oxygen gas was used as a reactive gas for the formation of 

indium oxide thin films. Plasma was generated in Mather type plasma focus device. 

The samples were treated for different number of focus shots (2, 5, 8 and 11) at 0o on 

the axis and 10 cm away from anode’s tip. The treated samples were analyzed using       

X-Ray diffraction (XRD), FTIR spectroscopy and scanning electron microscope 

(SEM). 

 

RESULTS AND DISCUSSIONS 

Structural analysis of Indium Oxide Thin Films (XRD) 

Structural analysis was performed using X Pert PRO (MPD) X-Ray diffractromter. The 

difractrometer was operated at 40 kV and 40 mA using kα source (1.5406 Å). 

Figures 2 and 3 show the XRD patterns of unexposed and exposed samples. The 

XRD pattern for the unexposed sample confirms the signatures of FCC (face 

centered cubic) austenitic stainless steel (γ-Fe) phase and a BCC (body centered 

cubic) ferritic iron (α-Fe) phase. The plane reflections (111), (200) and (220) are 

related to the γ-Fe phase while (110) and (200) plane reflections are corresponding to 

α-Fe phase. The increase in temperature during manual polishing may cause stress 

induced transformation of gamma to alpha phase [73, 74]. 

Figure-3 shows the XRD patterns of the samples treated at 0° angular position for 

various numbers of focus shots (2, 5, 8 and 11). The emergence of indium oxide 

crystalline phases for all the exposure conditions confirms the deposition of indium 

oxide on stainless steel substrate. For two focus shots, seven new diffraction peaks 

corresponding to plane reflections of (222), (110), (104), (110), (103), (600), (640) of 

In2O3, Cr2O3 and Cr2O5 phases are appeared respectively. For 5 number of 

deposition focus shots the intensity of diffraction peaks of In2O3 and Cr2O3 phases 
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increases indicating the improvement in crystallanity [73] with increase in number of 

focus shots. Moreover peak corresponding to (222) and (103) reflection planes 

disappears with the emergence of In2O3 phase corresponding to (332) reflection 

plane, which suggests the growth of one phase at the expense of the other [74]. It is 

interesting that the intensity of (110) In2O3 reflection plane is stronger than any of the 

other emerged phases. This shows that the quantity of In2O3 phase is more as 

compared to that of other phases at the top surface of the exposed samples except 

Stainless Steel peak. For 8 and 11 number of focus shots the peak corresponding to 

(222) plane reflection reappears along with reduction in intensities of most of the 

peaks.  

Upon exposure the intensities of interface peaks related to γ-Fe and α-Fe reflection 

planes are decreased. Moreover there are considerable shifts in the γ-Fe phases 

which may be due to the residual stresses induced in the deposited films. From the 

above discussion we can say that that the indium oxide film formation in the present 

work is not only because of the implantation of the energetic oxide ions on the SS-

306 substrate but also due to the deposition of sputtered indium. If the route is only 

the ion implantation then one would expect the formation of only In2O3. This confirms 

that plasma focus assisted thin film deposition is the combination of two different 

processes: the ion implantation and re-deposition of ion beam ablated backscattered 

species. The rise in substrate temperature may result in the formation of Indium 

Oxide peaks as oxygen is reactive. So it can react with substrate at favorable 

conditions (rise in substrate temperature) which results in the formation of interface 

peaks (Cr2O3 and Cr2O5). 

Figure 2: XRD pattern of untreated SS-306 

 

 

 

 

 



                         PLASMA ASSISTED DEPOSITION OF INDIUM OXIDE THIN FILMS…                       33 

 

Figure-3: XRD pattern of exposed SS-306 for various number of focus shots           

(a)  2 shots (b) 5 shots (c) 8 shots (d) 11 shots 

 

FTIR SPECTROSCOPY 

For Chemical analysis of Indium oxide thin films on SS-306 substrate was performed 

by IRPrestige-21 Shimadzu FTIR Spectrometer in the ATR mode for spectral range 

from 650-4000 cm-1. The ATR-FTIR was performed with 25 scans repetition and with 

4 cm-1 resolution. The recorded FTIR Spectra for untreated and exposed SS-306 

substrate shown in Figure 4. 

Figure 4: FTIR spectra of untreated SS-306 and Indium oxide thin films deposited on 

SS-306 

The band positions and number of transmittance peaks are dependent on crystal 

structure, chemical composition and on the morphology of the deposited thin films 
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[22]. Untreated SS-306 has range of transmittance peaks which correspond to its 

chemical composition. These peaks are due to the bonding of elements present in 

SS-306 with Carbon and oxygen and inter elemental bonding. A band is also 

observed in the wavenumber range of 700 to 900 cm-1 which corresponds to the 

bonding of Indium and Oxygen bond and the peak at 732 cm-1 is attributed to the 

formation of In2O3 thin film [23]. 

The given spectra have one small peak of CO2 at 2357 cm-1. CO2 flows through the 

sample cell due to the cavity formed between the sample surface and ATR Crystal 

and absorbs IR light [24]. 

Table 1: IR frequencies and band assignments for the In2O3 thin films deposited on 

SS-306 for varying focus shots. 

 

 

 

 

 

 

 

The peak at 732 cm-1 is attributed to the formation of In2O3. Small peak at 2360 cm-1 

arises due to contamination during analysis. By increasing the focus shots, similar 

kind of spectra is formed.  

 

MORPHOLOGICAL ANALYSIS 

The surface morphology of the indium oxide thin films deposited on SS-306 substrate 

with different number of focus shots (2, 5, 8 and 11) at the axis is exhibited in    

Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: SEM micrograghs for various number of focus shots (A) 2 Shots (B) 5 

Shots (C) 8 Shots and (D) 11 Shots 

Wavenumber (cm-1) Band Assignment 

700-900                              

732                                      

1200-2300, 3500-3800       

1430                                    

2360                                    

In-O 

In2O3 

Related to elements present in SS-306 

C = C             

CO2 
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The absence of scratches in the treated samples morphology provides the evidence 

for the formation of indium oxide films fully covered the samples surfaces. For 2 focus 

shots (Fig. 5 A) a large number of indium oxide /chromium oxide nano particles are 

distributed unevenly on the subsurface of the deposited films. These particles do not 

cover the whole surface of the film, showing that microstructure of the top surface is 

less dense in nature. For 5 focus shots Fig. 5 B, the micrograph shows relatively 

smooth surface morphology but few voids are present in the film. The sudden change 

in surface morphology and emergence of irregular pores/voids may be due to 

energetic ions irradiation followed by successive focus shots. The rise in surface 

temperature may be another reason for melting the surface. The surface morphology 

of the  film deposited with 8 focus shots  changes  significantly  as  it  becomes  

rougher  and  consists  of  cracks and relatively small sized particle, distributed evenly 

on the entire surface. These structures may be developed due to transfer of sufficient 

ion energy to the sample surface. For each focus shot the sample is exposed with 

pulsed energetic ion beam (with approximately 100 ns pulse duration and the energy 

range of ions is 38 keV to 1.6 MeV) which may cause transient sample surface 

heating approximately up  to  several  thousand  degrees  centigrade  in  a  short  

time  and  is   followed  by fast melting  and  re-solidification  [26]. Sudden re-

solidification leads to the crack formation on the surface of deposited films. We can 

say that the process of ion irradiation is equivalent to the transient thermal annealing 

and results in rearrangement of atoms in the layers of the surfaces. This transient 

thermal annealing by means of pulsed ion beam causes atomic diffusion on surface 

layer after focusing. That is why 8 focus shots irradiation significantly changes the 

surface morphology. Again for 11 focus shots cracks can be observed in the 

deposited film with irregular swollen surface. 

By  the  bombardment  of  energetic  oxygen  ions sufficient amount of  energy  may  

transfer  to  the sample surface that initiates the nucleation of new compounds. With 

increasing number of focus shots the film develops through nucleation in different 

forms depending on successive focus shots. It is reported that growth of rough 

surfaces is quicker in comparison with growth smooth surfaces. At low substrate 

temperature, surfaces are almost smooth (Fig. A, B) but when the temperature is 

increased with number of focus shots, surfaces become rough [26] and swollen with 

cracks. These cracks are developed due to quenching and stresses present in the 

film. 

 

CONCLUSIONS 

Indium oxide thin films are deposited on Stainless steel (SS-306) substrate using 

Dense Plasma (DPF) device with various number of focus shots. XRD patterns of the 

exposed samples confirm the presence of Indium Oxide phases along with Chromium 

Oxide peaks for all conditions. The FTIR analysis also confirms the presence of 
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Indium Oxide. The SEM analysis shows that morphology of treated samples strongly 

depends on the number of plasma focus shots. 
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