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ABSTRACT: Metallic targets of Al, Ni and Ta were laser ablated by 

Thum-Jaeger et al. (2000) using Nd:YAG laser ( λ = 1.06 µm, τ = 5 ns, E 
= 200 mJ, and  I = 5×10

10 
W/cm

2
 ). Ions up to charge state q = 4, emitted 

from the laser produced plasma (LPP) of these metallic targets are 
found to distribute angularly in the form of a cone, and each charge 
state follows the cosine power-law: F = Focos

n
θ. The value of 

exponent n of cos
n
θ distribution function increases with the increase 

in charge state of ions. It is found that exponent n of each charge 
state exhibits an excellent correlation with the room temperature 
Debye-Waller thermal parameter B, which is proportional to the mean-
square amplitude of the atomic vibrations <u

2
> of target metals. All 

above is also valid in the case of LPP ions flux comprising all the four 
ionization states. 

Keywords: Nd:YAG laser, Metals, LPP ions, Ionization states,  

Angular distribution. 

1. INTRODUCTION 

One of the most important characteristics of laser produced plasma (LPP) 

is the angular distribution of LPP ions. Its knowledge is very important to 

understand the plasma expansion and the physical processes taking place 

in it. Numerous experiments relating to the angular distribution of LPP ions 

of different mono- and bi-atomic targets has been done in the past [1−12]. 

One can infer from these experiments that (i) the maximum flux of LPP ions 

emission takes place close to the target normal, and (ii) the higher the ion 

velocity the narrower is the distribution width. In most cases, angular 

distribution of LPP ions have been studied using cosine power-law: F= 

Focos
n
θ , where F is the flux of LPP particles emitted in a direction making 

an angle θ with the target-normal and Fo is the maximum flux along the 
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target normal, i.e. for θ=0
o
. The value of exponent n of cos

n
θ distribution 

function reflects on the distribution width of LPP ions. A number of 

attempts have been made to correlate the exponent n with the atomic mass 

[1−8], the sublimation energy [9−11], and the room temperature Debye-

Waller thermal parameter B, which is proportional to the mean-square 

amplitude of atomic vibrations <u
2
> [12], of the target metals. 

Recently, Thum-Jaeger et al. [5] used  Nd:YAG laser Q-switch pulses(λ = 

1.06µm, τ = 5ns, E = 200 mJ, and  I = 5×10
10 

W/cm
2
), which were incident at a 

fixed angle of ‒ 45° onto flat, rotating targets inside a vacuum chamber to 

ablate Al, Ni, and Ta metals. They obtained time-of-flight (TOF) spectra for 

LPP ions emitted per unit time per unit solid angle as a function of flight 

time at angles of emission in the range ‒17.5° to 60°. Nearly 90% of the 

plasma ions were emitted along a direction normal to the target, and 

consisted of singly, doubly, triply, and quadruply ionized states. These 

ions carried with them major portion of the plasma thermal energy. 

Moreover, along this direction, the ions of higher ionization states always 

had higher values of temperature than those for lower ionization states. 

In the present work, we shall investigate, using the wealth of data obtained 

by Thum-Jaeger et al. [5], whether the angular distribution of LPP ions 

emitted follows the cosine power law or not? If yes, it will be further 

examined to what extent the value of exponent n of cos
n
θ distribution 

function of each ionization state as well as of cumulative flux of LPP ions 

correlates with the atomic mass, the sublimation energy, and the room 

temperature Debye-Waller Thermal parameter B of target metals. 

2. DATA ANALYSIS 

2.1. INDIVIDUAL IONIZATION STATES  

Reference to Fig. 1(a) ‒ (c) shows the angular distribution of LPP ions up to 

charge state +4 for (a) Al, (b) Ni, and (c) Ta. The data points depict the 

maximum number of ions per unit solid angle in the TOF spectra obtained  
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Fig. 1: Angular distribution of LPP ions flux F of (a) Al, (b) Ni, and (c) Ta for 
 different charge states. The curve fitted to the data points for a given 

 charge state is a graphical manifestation of cosine power-law: F = F0cos
n
θ.  

Table 1: Parameters characterizing angular distribution of LPP ions for various 
charge states emitted from three metallic targets. 

Charge State Fo (ions sr
-1

) n 

Al
+1

 1.00×10
11

 6 
Al

+2
 2.80×10

11
 5 

Al
+3

 5.70×10
11

 7.5 
Al

+4
 7.40×10

11
 18 

Ni
+1

 2.10×10
11

 10 
Ni

+2
 3.80×10

11
 12.5 

Ni
+3

 3.90×10
11

 15 
Ni

+4
 2.80×10

11
 20 

Ta
+1

 4.80×10
11

 15 
Ta

+2
 3.60×10

11
 21 

Ta
+3

 1.77×10
11

 25 
Ta

+4
 0.9×10

11
 26 

 

by Thum-Jaeger et al. [5] as a function of angle θ relative to the target-

normal for ions of different ionization states for each target. The curve 

fitted to data points pertaining to a given metal and a given ionization state 

-30 -15 0 15 30 45 60 75 90

0.0

2.0x10
11

4.0x10
11

6.0x10
11

8.0x10
11

( a )

 

 

F
lu

x
 (

 i
o

n
s
  
s
r-1

 )

  ( Degree )

 Al
+1

: n = 6

 Al
+2

 : n = 5

 Al
+3

 : n = 7.5

 Al
+4

 : n = 18

-30 -15 0 15 30 45 60 75 90

0

1x10
11

2x10
11

3x10
11

4x10
11

( b )

 

 

F
lu

x
 (

 i
o

n
s
  
s
r-1

 )

  ( Degree )

 Ni
+1

 : n = 10

 Ni
+2

 : n = 12.5

 Ni
+3

 : n = 15

 Ni
+4

 : n = 20

-30 -15 0 15 30 45 60 75 90

0

1x10
11

2x10
11

3x10
11

4x10
11

5x10
11

( c )

 

 

F
lu

x
 (

 i
o

n
s
  
s
r-1

 )

  ( Degree )

 Ta
+1

 : n = 15

 Ta
+2

 : n = 21

 Ta
+3

 : n = 25

 Ta
+4

 : n = 26



D. ALI, M. Z. BUTT AND M. KHALEEQ-UR-RAHMAN 

 

4 

is a graphical manifestation of the cosine power-law: F= Focos
n
θ. The 

values of exponent n and Fo for individual ionization states used to 

accomplish agreement with experiment have been listed in Table 1.The 

points in Fig. 2 denote the values of exponent n (Table 1) as a function of 

ionization state q, which were derived from Fig. 1. The value of exponent n 

increases linearly with the increase in charge state of ions emitted from a 

given metal target. The lines passing through the data points were obtained 

by least-squares fitting, and are encompassed by the mathematical 

expressions: 

Al:   n = ‒ 0.50 + 3.85 q     (1) 

Ni:  n = 6.25 + 3.25 q     (2) 

Ta:  n = 12.5 0 + 3.70q     (3) 

 

with the linear correlation coefficient r = 0.828, 0.982, and 0.957, 

respectively. 

 
Fig. 2: Relation between the exponent n of cos

n
θ distribution function and the 

charge state (q) of three metallic targets.  

Table 2: Values of square-root of atomic mass, sublimation energy, room 
temperature B-factor, and values of exponent n for various charge states of three 
metallic targets. 

Elements M
1/2 

(amu
1/2

) 
SE 

 (kJ / mol) 
B 

(nm
2
) 

n 

q
+1

 q
+2

 q
+3

 q
+4

 

Al 5.194 293.4 0.0086 6 5 7.5 18 
Ni 7.662 370.4 0.0037 10 12.5 15 20 
Ta 13.45 743 0.0032 15 21 25 26 
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In Fig. 3, the values of exponent n for LPP ions of Al,  Ni, and Ta (Table 1) 

have been plotted as a function of the square-root of atomic mass (M
1/2

) for 

individual ionization states ( q
+1

, q
+2

, q
+3

, q
+4

 ). The linear least-squares fit to 

the data points for various ionization states is represented by: 

q
+1

:
  

n = 1.13 + 1.05 M
1/2

     (4) 

q
+2

:
  

n = ‒3.24 + 1.85 M
1/2

     (5) 

q
+3

:
  

n = ‒2.14 + 2.05 M
1/2

     (6) 

q
+4

:
  

n = 12.7 + 0.98 M
1/2

     (7) 

with the linear correlation coefficient r = 0.986, 0.982, 0.989, and 0.998, 

respectively. 

 
Fig. 3: Relation between the exponent n of cos

n
θ distribution function and the 

square-root of atomic mass (M
1/2

) for different charge states of three metallic 
targets.  

Referring to Fig. 4, the points denote the values of exponent n for 

individual ionization states as a function of the sublimation energy of the 

target metals at room temperature. The values of sublimation energy were 

taken from [13]. The straight lines drawn through these data points for 

various ionization states by least-squares fit method are given by: 
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with the linear correlation coefficient r = 0.955, 0.947, 0.961, and 0.997, 

respectively. 
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Fig. 4: Relation between the exponent n of cos

n
θ distribution function and the 

sublimation energy for different charge states of three metallic targets. 

Finally, the exponent n of LPP ions has been plotted as a function of 

the room temperature Debye-Waller thermal parameter B for individual 

ionization states ( q
+1

, q
+2

, q
+3

, q
+4

 ) in Fig. 5. 

0.004 0.006 0.008 0.010
0

4

8

12

16

20

24

28

Ta
+4

Ta
+3

Ta
+2

Ta
+1

Ni
+4

Ni
+3

Ni
+2

Ni
+1

Al
+4

Al
+3

Al
+1

Al
+2

 

 

E
x

p
o

n
e

n
t 

n

B ( nm
2
 )

 +1

 +2

 +3

 +4

 
Fig. 5: Dependence of the exponent n of cos

n
θ distribution function for various 

charge  states on the room temperature Debye-Waller thermal parameter B of three 
 metallic targets. 

The linear least-squares fit to the data points for various ionization states is 

represented by: 

q
+1

:
  

n = 17.17 −1323 B     (12) 

 q
+2

:
  

n = 25.15 − 2385 B     (13) 

q
+3

:
  

n = 29.01 − 2551 B     (14) 



CHARACTERIZATION OF IONS WITH DIFFERENT CHARGE STATES ………… 

 

7 

q
+4

:
  

n = 26.74 − 1048 B        (15) 

with the linear correlation coefficient r = −0.875, −0.889, −0.867, and −0.751, 

respectively. The B-values were taken from [14]. 

2.2. CUMULATIVE IONIZATION STATES 

Figure 6 shows the angular distribution of LPP ions flux comprising all the 

four ionization sates for Al, Ni, and Ta. The data points represent the values 

of cumulative flux of LPP ions measured at various angles ranging from 

−17.5˚ to 60˚, and the curve fitted to the data points for a given target is a 

graphical manifestation of the cosine-power law : F= Focos
n
θ.  The values 

of exponent n and constant Fo used to accomplish agreement with 

experimental data of various targets have been listed in Table 3. 

 
Fig. 6: Angular distribution of the cumulative flux F of LPP ions emitted from Al, 
 Ni, and Ta.  

Table 3: Parameters characterizing angular distribution of cumulative flux of LPP 
ions for three metals. 

Elements Fo(ions sr
-1

) n 

Al 1.69×10
12

 8.5 
Ni 1.26×10

12
 13 

Ta 1.09×10
12

 19 

 

Like individual ionization states, the values of exponent n of cos
n
θ 

distribution function obtained from Fig. 6 (Table 3) for cumulative ionization 

states of LPP ions have been plotted as a function of (a) the square-root of 

atomic mass, (b) sublimation energy, and (c) room temperature Debye-

Waller thermal parameter B. The lines drawn through the data points in Fig. 

7(a) ‒ (c) using least-squares fit method are given by: 
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n = 2.72 + 1.23 M
1/2     

(16) 

n = 3.63 + 2.11×10
-2

SE     (17) 

n = 21.4 −1530 B     (18) 

with the linear correlation coefficient r = 0.989, 0.961, and 0.867, 

respectively . A good linear dependence of exponent n on all the three 

parameters, i.e. M
1/2

, SE, and B, is thus evident.  

 

 
Fig. 7: Relation between the exponent n of cos

n
θ distribution function of 

cumulative flux F of LPP ions and (a) the square-root of atomic mass (M
1/2

), (b) the 
sublimation energy, and (c) the room temperature Debye-Waller thermal parameter 
B. 

Since the sublimation energy of metals has been shown to be a function of 

room temperature B-factor [12], and so is true in case of their atomic mass 

(Fig. 8), i.e.  

M
1/2 

=14.53 – 1115 B      (19) 

with the linear correlation coefficient r = −0.785, one may rightly consider  

the room temperature B-factor as the most fundamental determining factor 

for angular distribution of LPP ions of individual charge states or in toto.  
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Fig. 8: The square-root of atomic mass as a function of the room temperature B-

factor. 

3. CONCLUSIONS 

From the foregoing analysis of the laser-ablation data obtained by Thum-

Jaeger et al. [5] with Al, Ni and Ta target metals, we conclude as under: 

1. The angular distribution of LPP ions flux F of each charge state 

emitted from a metallic target follows the cosine power-law: F = 

F0cos
n
θ.  

2. The value of exponent n of cos
n
θ distribution function increases 

with the increase in the charge state of LPP ions. 

3. Exponent n of each charge state exhibits a good linear dependence 

upon the room temperature Debye-Waller thermal parameter B of 

metal targets.  

4. The above is also valid for angular distribution of cumulative LPP 

ions flux comprising all the four ionization states. 
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ABSTRACT: The random recursive tree is a combinatorial structure 

used to model a variety of applications such as contagion, chain 
letters, philology, etc. In this paper, we determine the expectation and 
variance of Xn the external path length in a random m-oriented 
recursive tree of size n. 

Keywords: Random recursive trees, path length. 

1. INTRODUCTION 

The analysis of the length of paths in tree families has received a lot of 

attention, see, e.g., [1,3,6-8], often due to their importance in the analysis of 

algorithms. In [3,6,7] the total path length is investigated in random 

recursive trees. However, up to now there is no result about the external 

path length of random m-oriented recursive trees. Here we obtain the 

expectation and variance of the external path length in random m-oriented 

recursive trees. 

By a recursive tree we mean a labeled rooted tree such that each path from 

the root to any node of the tree is labeled with an increasing sequence of 

labels. 

A survey of applications and results on recursive trees is given in [10]. 

These trees are used, e.g., to model chain letters and pyramid schemes [5], 

and as a simplified growth model of the World Wide Web [2]. 
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Fig. 1: Two different plane-oriented trees. 

 

Fig. 2: An extended plane-oriented recursive tree. 

In working with recursive trees it is to convenient to consider an extension 

of these trees obtained by adding a different type of node called external at 

each possible insertion position. 

Orientation in the plane was not taken into account in the definition of 

recursive trees. The two labeled trees in Fig. 2 are only two drawings of the 

same recursive tree. If different orientations are taken to represent different 

trees, we arrive at a definition of a plane-oriented re-cursive tree. In such a 

tree, if a node has outdegree d; there are d children under it, with d+1 

external nodes. 

Figure 2 shows one of the plane-oriented recursive trees of Fig. 1 after it 

has been extended; the external nodes are shown as squares in Fig. 2. 
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In this paper we consider m-oriented recursive trees the generalization of 

random plane-oriented recursive trees where if a node has outdegree d; 

there are d children under it, with (m-1)d+1 external nodes, (this 

generalization first defined in [9]). If d(i) denotes the outdegree of the ith 

node then the total number of external nodes in an extended m-oriented 

recursive tree of size n is 

 
1 1

(( 1) ( ) 1) ( 1) ( )
n n

i i

m d i m d i n
 

       

                             ( 1)( 1)m n n       

                      ( 1) 1.m n    

                         

A random m-oriented recursive tree of size n is constructed as follows. One 

starts from a root node holding the label 1; at stage i (i=2,3, . . . ,n) a new 

node holding label i (the ith node) is attached to any previous node j of 

outdegree d(j) of the already grown tree 1iT  of size i-1 with probability 

( 1) ( ) 1

( 2) 1

m d j

m i

 

 
(the number of remaining external nodes for the node j, (m-

1)d(j)+1, is divided by m(i-2)+1, the number of all external nodes). This 

function implies that the higher outdegree nodes possess a higher 

attraction for new neighbors. 

As the tree grows by the progressive insertion of nodes, two cumulative 

random variables may serve as measures of the overall cost of 

construction of the tree, or the cost of later processing of the whole tree if 

each internal or external node is to be accessed equally often. 

Let   be the depth of jth node in a random m-oriented recursive tree of size 

n. The first cumulative random variable is the internal path length 

1

n

n jj
I D


 . Suppose the external nodes are indexed by 1, 2, . . . , m(n-

1)+1, and   be the depth of the jth external node. The second cumulative 

random variable is 
( 1) 1

1

m n

n jj
X x

 


 . This random variable is called the 

external path length. By the proof of Theorem 1, the relation 
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                                                      n nX mI n                                                (1) 

and then 
1

n

n jj
X m D n


   can be deduced. The strong dependence 

between the random variables jD makes it difficult to compute the exact 

distribution of nX . In Section 2, we compute the expectation and variance 

of nX . 

In the following, the term random tree without qualification will refer to a 

random m-oriented recursive tree. 

2. EXPERIMENTAL PROCEDURES 

The total path length in random recursive trees has investigated in [3]. 

Expectation and variance of the external path length of plane-oriented 

recursive trees are derived in [8]. In this section, the following results for

nD , will be used (see [4]): 

1

1

1
[ ]

( 1) 1

n

n

j

E D
m j






 

       and      

1

2
1

( 1)
[ ] .

( ( 1) 1)

n

n

j

m j
Var D

m j








 
  

THEOREM 1: 

 

 

 

and 

3

2
1

( )( 1)( ( 1) 1)
[ ] .

( ( 1) 1) ( 1)

n

n

j

m n j j m n
Var X

m j mj

   


  
  

 

Proof:  Observe that a tree nT of size n is obtained algorithmically from a 

tree 1nT   of size n-1 by inserting the nth node at level .nD  The nth node 

may replace any of the ( 2) 1m n   external nodes of 1nT   with probability 

1

( 1) 1
[ ] ,

( 1) 1

n

n

j

m n
E X

m j

 


 

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1/ ( ( 2) 1).m n   The new node gives the tree m+1 new external nodes, but 

one of the external nodes of 1nT   is lost in the process. The net gain in the 

external path length is therefore ( 1) 1,n n n nmD D D mD      i.e., 

1 1.n n nX X mD    

Let n denote the sigma field generated by tree nT . When the shape of the 

tree 1nT   is available, the levels 1 ( 2) 1, , m nx x    of the external nodes are 

completely determined. Thus nD  may assume any of the values 

1 ( 2) 1, , m nx x    with equal probability 1/ ( ( 2) 1).m n   We can now 

formulate a conditional expectation, 

( 2) 1

1 1

1

1
[ | ] ( 1)

( 2) 1

m n

n n n j

j

E X X mx
m n

 

 



   
 

  

( 2) 1

1

1

1 .
( 2) 1

m n

n j

j

m
X x

m n

 





  
 

  

But the remaining sum is the external path length of 1nT  , i.e., 

1 1

( 1) 1
[ | ] 1.

( 2) 1
n n n

m n
E X X

m n
 

 
  

 
 

Taking expectations of the last relation we get the following recurrence on 

expected external path length 

1

( 1) 1
[ ] [ ] 1,

( 2) 1
n n

m n
E X E X

m n


 
 

 
 

which can be easily solved under the initial condition 1[ ] 1E X   to yield the 

first required result. 

To compute the variance of nX we formulate a recurrence for 
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[ ]
:

( 1)( ( 1) 1)

n
n

Var X
Q

mn m n


  
 

as follows. Let
[ ]

( 1) 1

n n
n

X E X
Z

m n




 
. Replace nX  by 1 1n nX mD    in the 

definition of nZ and write 

1 11 [ 1]

( 1) 1

n n n n
n

X mD E X mD
Z

m n

     


 
 

                    
1

( 2) 1
( [ ]).

( 1) 1 ( 1) 1
n n n

m n m
Z D E D

m n m n


 
  

   
 

Upon squaring the latter relation and taking expectations we get 

2 2

2 2

1

( 2) 1
[ ] [ ] [ ]

( 1) 1 ( 1) 1
n n n

m n m
E Z E Z Var D

m n m n


    
    

      
 

                                        
12

2 ( ( 2) 1)
[ ( [ ])].

( ( 1) 1)
n n n

m m n
E Z D E D

m n


 
 

 
              (2) 

Since the component 1[ [ ]]n nE Z E D  is zero, in the last term we need only to 

find 1[ ]n nE Z D . For the required term we compute 

1 1 1 1 1[ ] [ [ | ]] [ [ | ]].n n n n n n n nE Z D E E Z D E Z E D         

But according to the algorithmic development, 

( 2) 1

1
1

1

[ | ] .
( 2) 1 ( 2) 1

m n
j n

n n

j

x X
E D

m n m n

 






  
   

  

So, 

2

1 1[ ] [ ].n n nE Z D E Z   
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Plugging this relation into (2) we arrive at the recurrence 

2 2

12

( 1)( ( 2) 1)
[ ] [ ]

( ( 1) 1)
n n

mn m n
E Z E Z

m n


  


 
 

                                                       

2

2
[ ].

( ( 1) 1)
n

m
Var D

m n


 
            (3) 

The substitution nQ  linearizes the recurrence (3) into the simple recurrence 

2

1 [ ].
( ( 1) 1)( 1)

n n n

m
Q Q Var D

m n mn
 

  
 

By the relation for the variance of nD , the solution to the last recurrence 

gives 

2 1

2
3 1

( 1)
.

( ( 1) 1)( 1) ( ( 1) 1)

jn

n

j k

m m k
Q

m j mj m k



 




    
   

Expanding 1/ ( ( 1) 1)( 1)m j mj    by partial fractions and collapsing the 

resulting telescopic sums, we have 

31

2
2

( )( 1)
.

( ( 1) 1) ( 1)( 1)

n

n

j

m n j j
Q

m j mj mn





 


   
  

So by definition of nQ , the proof is complete. 

REMARK: By (1) the expectation of internal path length nI is 

1

1 ( 1) 1
[ ] .

( 1) 1

n

n

j

m n n
E I

m m j m

 
 

 
  
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So the average external path length is asymptotically m times as much as 

the average internal path length   n
m

n
IE n ln . 

The standard deviation of the external path length of a random m-oriented 

recursive tree is relatively small compared to the mean value, since

[ ] ( 1)( ( 1) 1)n nVar X mn m n Q     a n d  (1)nQ O  then 

[ ] ( )nVar X O n , while nnXE n ln][  , as .n  From an application of 

Chebychev's inequality we can conclude that 1
ln

nX

n n
 ,    in probability. 
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ABSTRACT: The present work shows that the chloride ions 

enhancement ratio is of the order of 3 to 7, which is 2 to 3 times 
greater than that produced by oxygen during irradiation. Adding 
sodium chloride to food patient increases the amount of water, and 
the amount of chloride ions inside the tumor cells. This process 
provides excellent route for hydroxyl radical production during 
irradiation. The present work suggests that chloride ions must add to 
patient food at the highest concentration allowed. Adjustment of 
patient food is highly recommended during radiotherapy procedure.  

Keywords: Reaction kinetics, Chloride ions and radiation therapy. 

1. INTRODUCTION 

The aim of radiotherapy procedures is to increase damage to tumor area 

with a minimum risk to normal surrounding tissue. This can be achieved by 

shielding to normal tissue or by using a precise collimation of the radiation 

beam to fit only the area of interest [1,2]. A high radiation dose is to be 

delivered, thus a computerized collimator is frequently used to shape the 

radiation beam to the required area. Hypothetically same result can be 

achieved but with lower radiation dose by using proper radio-sensitizer 

which can enhance radiation damage to tumor cells. Many radio-sensitizers 

have been studied and shown to be of varying effect. Among the natural 

occurring radio-sensitizers is the oxygen and it was shown that the oxygen 

enhancement ratio (OER) is of the order of 2 to 4 [3]. The present work 

flash a spot light on another natural radio-sensitizer which appear to be 

stronger than the sensitization of oxygen. 
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2. MATERIAL AND METHOD 

Oxidation damage is the main reason of radiation damage in mammalian 

cells. The free radicals formed by irradiation near to the critical target of the 

cell reacts rapidly with the available oxygen to form peroxyradical 

molecules which is an irreversible reaction leads to damage fixation.  

..

22 ROOR         (1) 

Some of the oxygen we breath (1-3 %) converted to oxygen radical 

molecules (superoxide ). 

If oxygen present at high tension, then many superoxide molecules can 

react with hydrogen ions  formed by radiolysis of water molecules inside 

the cells. This reaction leads to form hydrogen peroxide molecules, which 

is a very strong oxidative agent to the cell membrane. 

22222 2
..

OOHHOO        (2) 

The rate of the above reaction is faster at acidic pH value [4]. This equation 

is therefore radiation dependent. Oxidation and damaging process started 

when hydrogen peroxide inter a chain reactions to form free radicals. 

Hydrogen peroxide reacts slowly with superoxide to form hydroxyl radical 

molecule. 

2222

..

OOHOHOOH        (3) 

Hydrogen peroxide can also penetrate through cell membrane and catalyze 

intercellular metallic ions such as , and other transition ions and 

form free radicals 

  32

22

.

FeOHOHFeOH     (4) 

  OHOHCuOHCu
.2

22
    (5) 

Copper ion reacts with  to make  with much greater rate constant 

than do .  

Chloride ion role started when hydrogen peroxide reacts with chloride ions 

to form hypochlorous acid. 

  OHHOClClOH 22
     (6) 
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This reaction is radiation dependent since the hydrogen peroxide produced 

in large amount by irradiation. In fact, hypochlorous acid is also formed 

naturally in biological system by combining chlorine molecules with water 

molecules. 

HClHOClOHCl  22
     (7) 

Hypochlorous acid then undergoes a reaction with superoxide molecules 

to form free radicals. 

  ClOOHOHOCl 22

..

  (8) 

This reaction is more dominate at high oxygen tension.  

The hypochlorous acid can also react with intercellular metallic ions inside 

the cells and form more free radicals. 

   ClFeOHFeHOCl 32 .

     (9) 

3. DISCUSSION 

The rate of reaction (8) is seven orders of magnitude faster than the rate of 

reaction (3), and the rate of reaction (9) is about three orders of magnitude 

faster than the rate of reaction (4). Reactions (8) and (9) are called “kinetic 

amplification reactions” [5]. The amount of hydroxyl radicals generated via 

reaction (8) and (9) is three to seven times greater in magnitude than that of 

reaction (3) and (4). The chain reactions of chloride ion can very much 

enhance the radiation damage during radiotherapy procedure. The chloride 

ion enhancement ratio is therefore more effective than that for oxygen.  

Both healthy and cancerous cells makes energy, it requires sugar and 

oxygen to store energy in the form of ATP molecules. Cancerous cells 

require to burns more sugar molecules for more nourishment and since 

oxygen is very limited inside this type of cells, an anaerobic, oxygen free, 

process takes place. Every time the cell takes in a single molecule of sugar 

from the bloodstream, it expels two positively charged potassium ions. At 

the same time, it absorbs three positively charged sodium ions. As the 

anaerobic energy production continues, more sodium absorbed. The more 

sodium they contain, the more water they absorb to dilute the sodium, and 

the more hydroxyl radical produced by irradiation. Cancer cell bloat 
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because they absorb sodium, which the diet provides. This is one of the 

outcomes from adding more sodium chloride to patient food. The main 

advantage comes from the availability of chloride ions in environment of 

the cells which provide a strong route for hydroxyl radical production.  

The present work suggests that chloride ions must add to patient food at 

the highest concentration allowed during the treatment of cancer. Careful 

adjustment for patient food is highly recommended. 
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1. INTRODUCTION AND PRELIMINARIES 

Let C  be a nonempty subset of a real Banach space E . Recall that a 

mapping CCT :  is : (i) uniformly L -Lipschitzian if for some 0>L , 

yxLyTxT nn   for all Cyx , and for all 1n  (ii)  )(   

uniform Lipschitz if there exists 0>  such that 


 yxyTxT nn   

for all Cyx ,  and for all 1n  (iii) uniformly continuous if for some 0>

, there exists a 0>  such that <yTxT nn   whenever <yx  for 

all Cyx ,  and 1,n  or, equivalently, T  is uniformly continuous if and 

only if 0 n

n

n

n yTxT  whenever 0 nn yx  as ;n  (iv) 
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asymptotically nonexpansive if for a sequence )1,[}{ nk  with 

1,=lim nn k  we have yxkyTxT n

nn   for all Cyx ,  and for all 

1.n  

It is obvious that (i)   (ii)   (iii) but the converse implications do not 

hold, in general. 

Asymptotically nonexpansive mappings, ever since their introduction by 

Goebel and Kirk [1] in 1972, remained under study of many authors. Goebel 

and Kirk [1] proved: If C  is a nonempty bounded closed convex subset of 

a uniformly convex Banach space E  and CCT :  is an asymptotically 

nonexpansive mapping, then T  has a fixed point. In recent years, iterative 

techniques for approximating fixed points of asymptotically nonexpansive 

and nonexpansive mappings have been studied by many authors(see, e.g., 

[2-9]). 

Finding common fixed points of a finite family }1,2,3,...,=:{ njTj  of 

mappings acting on a Hilbert space is a problem that often arises in applied 

mathematics. Probably the most important case is the one where each 

mapping jT  is the metric projection onto some closed convex set jC , 

under the assumption that intersection of all involved sets jC  is nonempty. 

In fact, many algorithms for solving ‘convex feasibility problem’ connected 

to metric projections may be generalized to different classes of more 

general mappings having a nonempty set of common fixed points; for more 

details, see [10]. In 2001, Khan and Takahashi [4] introduced and studied 

the following modified Ishikawa iterative scheme of two asymptotically 

nonexpansive self mappings TS,  on a convex set :C  

 















 1,,)(1=

,)(1=

,

1

1

nxySx

xxTy

Cx

nnn

n

nn

nnn

n

nn



  (1) 
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 where   1,<0 nn  for some ).
2

1
(0,  If IT =  in (1), then it 

becomes modified Mann iteration [7]. 

It is remarked that weak convergence result of Khan and Takahashi [4] 

does not apply to 
pL  spaces with 2p  because none of these spaces 

satisfies the Opial‘s property. Some useful results in this direction have 

been recently obtained in [11]. 

For nonself nonexpansive mappings, some authors (see, e.g.,[12-13]) have 

studied strong and weak convergence in Hilbert spaces or uniformly 

convex Banach spaces. 

The concept of nonself asymptotically nonexpansive mappings has been 

introduced by Chidume, Ofoedu and Zegeye[14], in 2003, as a 

generalization of asymptotically nonexpansive self mappings as follows: 

A subset C  of E  is said to be a retract of E  if there exists a continuous 

mapping CEP :  such that xPx =  for all .Cx  Recall that EEP :  

is a retraction if .=2 PP  Let CEP :  be a nonexpansive retraction of E  

onto .C  A nonself mapping ECT :  is asymptotically nonexpansive if 

there exists a sequence )1,[}{ nk  with 1=lim nn k  such that 

yxkyPTTxPTT n

nn   11 )()(  for all Cyx ,  and for all 1.n  

Using the iteration process:  

     








 1,),)()((1=

,
1

1

1

nxPTTxPx

Cx

n

n

nnnn 
                      (2) 

Chidume et al. [14] obtained some convergence theorems for nonself 

asymptotically nonexpansive mappings in uniformly convex Banach 

spaces. 

For approximating common fixed points of two nonself asymptotically 

nonexpansive mappings ECTS :, , Wang [15] introduced the following 

iteration scheme: 
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



















1,),)(1)((=

),)(1)((=

,

1

1

1

1

nxxPTTPy

xyPSSPx

Cx

nnn

n

nn

nnn

n

nn



                                     (3) 

where }{ n  and }{ n  are sequences in [0,1].  

In case IT  , the iteration scheme (3) reduces to (2). For self mappings S  

and T , P  becomes identity mapping, so (3) collapses into (1). 

Define set of fixed points of T  by }.=:{=)( xTxCxTF   If ,)( TF  

then T  is asymptotically quasi-nonexpansive [5,10,15] if for a sequence 

)1,[}{ nk  with 1,=lim nn k  we have pxkpxT n

n   for all 

,Cx  )(TFp  and 1.n  

From the above definitions, it is clear that an asymptotically nonexpansive 

mapping must be uniformly L -Lipschitzian(or  )(   uniform Lipschitz 

or uniformly continuous) as well as asymptotically quasi-nonexpansive but 

the converse statement is not generally true. 

Qihou [18-20] has constructed fixed points of asymptotically quasi-

nonexpansive self mappings through Mann and Ishikawa iterations. 

Fukhar-ud-din and Khan[16] have also studied common fixed points of 

these mappings by constructing the Ishikawa type iteration scheme with 

errors and generalized the results appearing in [18-20]. Recently, Khan et 

al. [17] have investigated Ishikawa type iterations via an n-step iteration 

scheme for a finite family of asymptotically quasi-nonexpansive self 

mappings. 

A nonself mapping ECT :  is said to be asymptotically quasi-

nonexpansive if there exists a sequence )1,[}{ nk  with 1=lim nn k  

such that qxkqxPTT n

n 1)(  for all ,Cx  )(TFq  and for all 

1.n  

A Banach space E  is uniformly convex if for each (0,2]r , the modulus 

of convexity of ,E  given by  



 WEAK AND STRONG CONVERGENCE OF ISHIKAWA ITERATES FOR … 

 

27 

,1,1,:
2

1
1inf=)(









 ryxyxr yx  

 satisfies the inequality 0.>)(r  For a sequence, the symbol ( resp.   ) 

denotes norm (resp. weak) convergence. The space E  is said to satisfy : (i) 

Opial’s property  [21]  if for any sequence }{ nx  in E , nx     implies that 

yxxx nnnn


 limsup<limsup  for all Ey  with xy   (ii) 

Kadec-Klee property [9] if for every sequence }{ nx  in E , xxn  weakly
 

and xxn   together imply xxn   as .n  

A mapping ECT :  is demiclosed at Ey  if for each sequence }{ nx  

in C  and each xxEx n   weakly,  and yTxn   imply that Cx  and 

.= yTx  

Let 1}=:{= xExS   and let 
E  be the dual of ,E  that is, the space of 

all continuous linear functionals f  on .E  The norm of E  is : (iii) Gâteaux 

differentiable [9] if  

t

xtyx

t




lim

0

 

 exists for each x  and y  in S  and (iv) Fréchet differentiable [9] if for each 

x  in ,S  the above limit is attained uniformly for y  .S  In the case of 

Fréchet differentiable norm, it has been obtained in [9] that  

)(,
2

1

2

1
)(,

22
xJhhxxxJh   hbx 

2

2

1
 (*) 

 for all hx,  in ,E  where J  is the normalized duality map from E  to 
E  

defined by  

 ,==,:=)(
22   xxxxExxJ  

 .,.  is the duality pairing between E  and 
E  and b  is a function defined 
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on )[0,  such that 0.=
)(

lim 0
t

tb
t  

The iterative construction of fixed points hings on the parametric 

sequences used in the process. Indeed, a survey of the literature about 

approximation of fixed points of some nonlinear mappings through 

convergence of the iterative schemes reflects that conditions on the 

iteration parametric sequences play a vital role to establish the 

convergence results (see,e.g., [2,10,18]). 

For the parametric sequences }{ n  and }{ n  in [0,1],  the condition 

   1,1)( nnC  for some 0>  

has been used by Chidume et al. [14], Khan and Takahashi [4], Rhoades[6] 

and Wang [15]. 

We introduce a new and weaker condition on the parametric sequences 

}{ n  and }{ n  as follows: 

 


 =)(10,>liminf2)(
1= nnnnnC   and ],1[  n  

for some ).
2

1
(0,  

Clearly, 1)(C  implies 2).(C  

We establish weak and strong convergence of the iterative scheme (1.3) 

under the new control condition 2)(C  for two nonself asymptotically 

quasi-nonexpansive mappings in a uniformly convex Banach space 

equipped with several boundary conditions. Khan and Takahashi [11], 

Qihou [18-20] and Rhoades [6] have studied iteration sequences for 

asymptotically nonexpansive(quasi-nonexpansive) self mappings while 

Chidume at el. [14] and Wang [15] have established iteration results in the 

context of nonself asymptotically nonexpansive mappings. Our results will 

thus generalize and improve the corresponding recent results in [3-8,14-

16,18-20] for nonself asymptotically quasi-nonexpansive mappings. 

2. PREPARATORY LEMMAS 

We need the following useful known lemmas in the next two sections.  
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Lemma 2.1 [14]: Let C  be a nonempty closed convex subset of  a uniformly 

convex Banach space E  and let ECT :  be a nonself asymptotically 

nonexpansive mapping with a sequence }{ nk  and 1nk  as n . Then 

TI    is demiclosed at 0.   

Lemma 2.2 [3]: Let }{ nr  and }{ ns  be two nonnegative real sequences such 

that   

1.  all for)(11  nrsr nnn  If ,<
1=




nn
s  then nn rlim   exists. 

Lemma 2.3 [22]: Let E  be a reflexive Banach space such that 
E  has the 

Kadec-Klee property. Let }{ nx  be a bounded sequence in E  and 

()(, nw xyx 
weak w-limit set of }).{ nx  Suppose 


  yxttxnn )(1lim  exists for all 0,1].[t  Then .=  yx  

Lemma 2.4 [23]: Let 1>p  and 0>r  be two fixed real numbers. Then a 

Banach space E  is uniformly convex if and only if there is a continuous 

strictly increasing convex function )0,)[0,: g  with 0=(0)g   such 

that, for all [0], rByx    ,:= rxEx     

  yxgyxyx p

ppp
 )()(1)(1   

 where 
pp

p )(1)(1=)(    for all 0,1].[  

Lemma 2.5 [24]: Let C  be a nonempty bounded closed convex subset of a 

uniformly convex Banach space .E  Then there is a strictly increasing and 

continuous convex function )0,)[0,: g  with 0=(0)g  such that, for 

every Lipschitzian continuous mapping ECT :  and for all Cyx ,  and 

0,1],[t the following inequality holds:  

  ,)(1())(1( 11 TyTxLyxLgTyttTxyttxT  
 

 where 1L  is the Lipschitz constant of .T  

We now set out to establish some useful lemmas for the development of 

our convergence results. 
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Lemma 2.6.: Let C  be a nonempty bounded closed convex subset of a 

normed space .E  Let ECTS :,  be uniformly continuous. Define 

sequence }{ nx  as in (3). If   

           ,)(lim=0=)(lim
11

n

n

n
n

n

n

n
n

xPTTxxPSSx 







  

 then   

          .lim=0=lim nn
n

nn
n

TxxSxx 


 

  

Proof: Set n

n

nn xPSSxc 1)(=   and .)(= 1

n

n

nn xPTTxd   

Since 0)( 1  

n

n

nnnn xPSSxyx   as ,n  therefore we have 

the following estimate:  

  nnn

n

nnnn xyPSSPxxx )(1)(= 1

1   

  

                     nnn

n

nn xyPSSx )(1)(= 1   
 

                   n

n

nn yPSSx 1)(=   

                   n

n

n

n

n

n

n yPSSxPSSxPSSx 111 )()()(    

                  .)()(= 11

n

n

n

n

n yPSSxPSSc    

 This together with the uniform continuity of S  gives that 

0.=lim 1


 nn
n

xx  

 Note that  

          111 )(   n

n

nnnnn xPSSxxxSxx  

       .))(()()( 1

1 nn

n

n

n

n

n SxxPSSSxPSSxPSS  

  

 Apply limsup  on both sides of the above inequality and use the definition 

of uniform continuity of S  to get  

              0.limsup 


nn
n

Sxx  
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 Hence 0.=lim nn
n

Sxx 


 Similarly, we have 0.=lim nn
n

Txx 


 

 That is,  .lim=0=lim nn
n

nn
n

TxxSxx 


  

Remark 2.1: Lemma 2.6 holds for the large class of uniformly continuous 

mappings while Lemma 3 in [4] and Lemma 3.3 in [14] work for the 

restricted class of uniformly L lipschitzian mappings. 

Lemma 2.7: Let C  be a nonempty closed convex subset of a normed space 

E  and let ECTS :,  be nonself asymptotically quasi-nonexpansive 

mappings with sequences )1,[}{},{ nn ts  such that 

,<1)(,<1)(
1=1=

 


nnnn
ts  respectively .  If the sequence }{ nx  is 

given by (3), then qxnn lim exists for all ).()( TFSFq   

Proof. Set }.,{max= nnn tsk  Then 


<1)(
1= nn

k  if and only if 




<1)(
1= nn

s  and .<1)(
1=




nn
t  

Now for any ),()( TFSFq   we have  

         qxyPSSPqx nnn

n

nn  

 ))(1)((= 1

1   

                           ))((1))(( 1 qxqyPSS nnn

n

n     

 qxqys nnnnn  )(1   

                          qxxPTTPs nnn

n

nnn  ))(1)((= 1 
 

qxnn  )(1   

                     ))((1))(( 1 qxqxPTTs nnn

n

nnn    qxnn  )(1   

 qxkqxts nnnnnnnnn  )(1  qxnn  )(1   

 .2 qxk nn   

 By Lemma 2.2, qxnn lim  exists for all )()( TFSFq   as desired.  

Lemma 2.8. Let C  be a nonempty closed convex subset of a uniformly 

convex Banach space .E  Let ECTS :,  be uniformly continuous and 
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nonself asymptotically quasi-nonexpansive mappings with sequences 

)1,[}{},{ nn ts  such that ,<1)(,<1)(
1=1=

 


nnnn
ts  

respectively. Define sequence }{ nx  by (3), where }{ n  and }{ n  are real 

sequences in [0,1]  and satisfy 2).(C  Then there exists a subsequence 

}{ ix  of }{ nx  such that  

.lim=0=lim ii
i

ii
i

TxxSxx 


 

Proof: Let }{ nk  be as in the above proof.  For any )()( TFSFq  , 

qxnn lim  exists as proved in Lemma 2.7. Consequently, 

 qyPSSqxPTTqyqx n

n

n

n

nn   11 )(,)(,,  is bounded. Therefore, we 

can obtain a closed ball [0]rB  such that 

.[0]})(,)(,,{ 11 CBqyPTTqxPTTqyqx rn

n

n

n

nn  
 

Applying Lemma 2.4 to the scheme(1.3), we have  

                   
2

12
))(1)((= qxxPTTPqy nnn

n

nn     

         
2

1 )(1)( qxxPTT nnn

n

n     

        
2

1 ))((1))((= qxqxPTT nnn

n

n    

       
22

1 )(1)( qxqxPTT nnn

n

n     nn dg)(2   

         nnnn egqxt )(2

22   (5) 

 

where n

n

nn xPTTxe 1)(=  . 

Using the scheme (3), Lemma 2.4 and the inequality (5), we infer that  

 
2

12

1 ))(1)((= qxyPSSPqx nnn

n

nn  

   

                   
2

1 )(1)( qxyPSS nnn

n

n     
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2

1 ))((1))(( qxqyPSS nnn

n

n     

22
1 )(1)( qxqyPSS nnn

n

n   
                   

 nn

n

n xyPSSg  1

2 )()(  

   
222 )(1 qxpys nnnnn    nn hg)(2   

    nnnnnnnn egsqxts )(2

2222  
          

 nnnn hgqx )()(1 2

2
   

     nnnnn egqxk )(2

24   nn hg)(2   

    nnnn egqx )(2

2
    Qkhg nnn 1)( 4

2    

 where nn

n

n xyPSSh 1)(=  and Q  is a real number such that 

.
2

Qpxn   

From the above estimate, we obtain the following two important 

inequalities:  

    Qkqxqxhg nnnnn 1)( 42

1

2

2    (6) 

and  

     .1)( 42

1

2

2 Qkqxqxeg nnnnnn    (7) 

  

Let m  be any positive integer. Summing up the terms from 1 to m  on both 

sides in the inequality (6), we have  

   1)()( 4

1=

2

1

2

12

1=

   n

m

n

mnn

m

n

kQqxqxhg  

                           1).( 4

1=

2

1   n

m

n

kQqx  

 When m   in the above inequality, we get  
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   


<)(2

1=

nn

n

hg  

and hence 

 

 

 

 By the properties of g , we have  

             
0.=liminf n

n

h


 

 

Since 0,>inflim nn   therefore we have  >n  for all 0nn   and 

0.>  

By the above fact, the inequality (7) reduces to  

                   ,<1)( 4

0
=

2

0

0
=

2  


n

nn

nn

nn

kQqxeg  

 which further, implies that  

0.=lim n
n

e


 

 That is :  

0.=)(lim
1

nn

n

n

xxPTT 



 

 Observe that  

nn

n

n

n

n

n

n hyPSSxPSSxPSSx   111 )()()(  

 Operating liminf  on both sides of the above inequality, we get  

0.=)(liminf
1

n

n

n
n

xPSSx 



  

 Hence, there exists a subsequence }{ ix  of }{ nx  such that  

              .)(lim=0=)(lim
11

i

i

i
i

i

i

i
i

xPSSxxPSSx 







  

 Finally, by Lemma 2.6, we get that 

.lim=0=lim ii
i

ii
i

TxxSxx 


 

  0.=liminf n
n

hg

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3. NONSELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS 

We prove a pair of lemmas in the context of asymptotically nonexpansive 

nonself mappings.  

In this section, we obtain weak and strong convergence of the scheme (3) 

for a larger class of mappings, namely, nonself asymptotically quasi-

nonexpansive mappings; for this we have to impose the additional 

hypothesis of ”uniform continuity” on the mappings. We thus obtain the 

following generalization of Theorem 3.1(i).  

Theorem 4.1. Let E  be a uniformly convex Banach space satisfying Opial’s 

property and C  be a nonempty closed convex subset of .E  Let 

ECTS :,  be uniformly continuous and asymptotically quasi-

nonexpansive mappings with sequences )1,[}{},{ nn ts  such that 

,<1)(,<1)(
1=1=

 


nnnn
ts  respectively .  Assume that TI   and 

SI   are demiclosed with respect to 0 . Define sequence }{ nx  as in (3), 

where }{ n  and }{ n  are real sequences in [0,1]  which satisfy 2).(C  If 

,)()(  TFSF  then }{ nx  converges weakly to a common fixed point of 

S  and .T  

Proof: Let q  ).()( TFSF   Then qxnn lim  exists as proved in 

Lemma 2.7: Let }{ ix  be the subsequence introduced in Lemma 2.8. Since 

E  is reflexive, there exists a subsequence }{ jx  of }{ ix  converging weakly 

to some .1 Cz   As in Lemma 2.8, iiiiii TxxSxx   lim=0=lim  

and TISI  ,  are demiclosed at 0,  so we obtain 11 = zSz  and 1.1 = zTz  

That is, ).()(1 TFSFz   In order to show that }{ ix  converges weakly to 

,1z  take another subsequence }{ kx  of }{ ix  converging weakly to some 

.2 Cz   Again in the same way, we can prove that ).()(2 TFSFz   We 

can prove that 21 = zz  on the basis of the Opial’s property as in Theorem 
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3.1(i). 

Therefore, }{ ix  converges weakly to a common fixed point of S  and T . 

The existence of the limit of the sequence  qxn   implies that }{ nx  

converges weakly to a a common fixed point of S  and .T  

Recall that a mapping ECT :  is (i) demi-compact if for a sequence 

}{ nx  in C  with 0=lim nnn Txx  , there exists a subsequence }{
i

nx  of 

}{ nx  such that Cpx
i

n  (ii) completely continuous or compact if }{ nx   

is bounded in C  implies that }{ nTx  has a convergent subsequence in .C  

Next we establish strong convergence results. 

Theorem 4.2: Let E  be a uniformly convex Banach space and let C  be a 

nonempty closed convex subset of .E  Let ECTS :,  be uniformly 

continuous and nonself asymptotically quasi-nonexpansive mappings with 

sequences )1,[}{},{ nn ts  such that ,<1)(,<1)(
1=1=

 


nnnn
ts  

respectively .  Define sequence }{ nx   by (3), where }{ n  and }{ n  are real 

sequences in [0,1]  which satisfy 2).(C  If  )()( TFSF  and either S  

or T  is completely continuous, then }{ nx  converges strongly to some 

common fixed point of S  and .T  

Proof: As proved in Lemma 2.8, there exists a subsequence }{ ix  of }{ nx  

such that  

.lim=0=lim ii
i

ii
i

TxxSxx 


 (10) 

Since }{ ix  is bounded and S  is completely continuous, so }{ iSx  has a 

convergent subsequence }.{
j

Sx  Suppose .CzSx
j

  

Then 0. zSxSxxzx
jjjj

 

Hence, .zx j   Now (10) assures that z  is a common fixed point of S  and 
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.T  As qxnn lim exists for all ),()( TFSFq   so 

.zxn 

 

Theorem 4.3: Let E  be a uniformly convex Banach space and let C  be a 

nonempty closed convex subset of .E  Let ECTS :,  be uniformly 

continuous and nonself asymptotically quasi-nonexpansive mappings with 

sequences )1,[}{},{ nn ts  such that ,<1)(,<1)(
1=1=

 


nnnn
ts  

respectively .  Define sequence }{ nx   by (3), where }{ n  and }{ n  are real 

sequences in [0,1]  which satisfy 2)(C . If  )()( TFSF  and either S  

or T  is demi-compact, then }{ nx  converges strongly to some common 

fixed point of S  and .T  

Proof: Suppose that S  is demi-compact. Since }{ nx  is bounded and 

0=lim ii
i

Sxx 


 for a subsequence }{ ix  of },{ nx  therefore there exists a 

subsequence }{ jx  of }{ ix  such that }{ jx  converges strongly to .Cz  In 

view of (10), z  is a common fixed point of S  and .T As qxnn lim  

exists for all ),()( TFSFq   so .zxn   

Remark 4.1: Recall that (i) 1)(C  is a special case of 2)(C (ii) nonself 

asymptotically nonexpansive mapping is nonself asymptotically quasi-

nonexpansive (iii) )( L  uniform Lipschitz mapping is uniformly 

continuous and (iv) for self mappings S  and T , P  becomes identity 

mapping. 

In view of these facts, Theorems 3.3-3.4 of Wang [15], Theorem of 

Qihou[20], Theorems 2-3 of Rhoades [6], Theorem 2 of Khan and Takahashi 

[4] and Theorem 2.2 of Schu [8] are special cases of our strong 

convergence results (Theorems 4.2-4.3). 

 Remark 4.2. Note that 1)(C  does not hold for the sequence 
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







 ,1,...
1

,1,...,1,1
3

1
,1,1

2

1
0,1,1=}{

n
n  and hence the results in [4, 6-

7, 15, 18] are not applicable to this sequence. As }{ n  satisfies 2)(C  so 

our weak and strong results work for this sequence of parameters. 
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